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Abstract

In this paper, we address the Tiny ImageNet classifica-
tion challenge from the perspective of data selection and
training. We evaluate the effectiveness of the training data
and propose a method to filter the invalid and un-helpful
samples. Different CNN architectures are constructed to
verify the validity of proposed algorithms. Experiment re-
sult shows our data filtering scheme combined with an ap-
propriate CNN structure can boost the classification result
by at least 3.6% percent in current dataset. The general
idea of our algorithm can be extended to other dataset with
similar characteristics and help improve classification re-
sult.

1. Introduction
Tiny ImageNet Challenge[2] is a subset of ImageNet

Challenge[3]. It contains a total of 100,000 images in 200
categories with object location information. Challengers are
asked to predict the class label of each image with no neces-
sity to localize the object. The challenge is evaluated by the
classification accuracy on the test set, of which the ground
truth labels are not unveiled to challengers.

Conventional approaches to image classification prob-
lem consist of two explicit stages — feature extraction and
classifier training. Local dense features like SIFT(Lowe,
2004)[14], HoG(Dalal et al., 2005)[8] and LBP(Ahonen
et al., 2006)[6] are usually extracted first. Global im-
age representation is then applied to pool the local fea-
tures, from naive concatenating and histogram to more
complicated scheme like spatial pyramid matching[10],
Fisher vector representation[11] and non-linear coding
representations[15]. After that, a classifier is trained us-
ing the encoded representation, usually a linear or kernelled
SVM, to give prediction on the test set. Sometimes, more
than one classifiers are trained with different feature combi-
nation, and their weighted average result will be considered,
which in most cases outperforms a single classifier. This
pipeline can work quite well when the dataset is relatively
small — on the order of tens of thousands of images. But

for dataset like ImageNet, which consists of over 15 mil-
lion labeled images in over 22000 categories, both feature
discriminability and model capacity become unaffordable at
that scale.

Recently, the deep convolution neural network (CNN),
with its strong ability to capture the nature of image and
variable learning capacity, offers a new perspective for solv-
ing large-scale image classification and recognition prob-
lem. CNN integrates the feature extraction and classifier
training in one coherent structure and provides an end-to-
end solution from raw pixel data to class scores. CNN ar-
chitecture makes the explicit assumption that the input are
images and revises the original neural network to be more
efficient. Specifically, the neurons are arranged in 3 dimen-
sions and only connected to a small region of its previous
layer. To further reduce the number of neurons, it uses a pa-
rameter sharing scheme which applies same weight vector
for all the neurons in a single depth slice.

In this report, we emphasize on the data preprocessing
problem in CNN and propose a method to evaluate the qual-
ity of labeled training data. We develop a data selection
scheme which can filter out invalid or un-helpful samples
by examining the shape and size of the bounded object.
We validate our method through controlled experiments and
show that it can indeed improve the classification results.

We develop our CNN with the deep learning framework
— Caffe[1]. We also obtained the help from NVIDIA[4]
to access their cluster with Tesla K40 and K80s for training
the model. The prediction is done on i7-4770K CPU. The
size and computing speed of our network is limited by the
Caffe framework, which does not support multi-GPU train-
ing currently. It is also limited by the restriction of python
framework on server. The result can be improved by apply-
ing same techniques with state-of-art method.

2. Background
ImageNet challenge has been hold for five years. At the

year of 2012, the emergence of CNN indicates a turning
point for the large scale image classification problem. Here
we briefly introduce the important work being done every
year based on a summarization paper[12]. Many works in-
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troduced here also provide helpful insights when we design
our CNN structure.

The ImageNet challenge starts from 2010. Most mod-
els in that years use a combination of traditional local im-
age features such as SIFT, HOG, etc and trained by a linear
SVM. The winner comes from NEC team who used SIFT
and LBP features wiht two non-linear coding representation
and a stochastic SVM.

At 2011, the winner team XRCE, applying high dimen-
sional image signatures with compression using product
quantization and one-vs-all SVMs.

2012 was the most important year. The winner, Super-
Vision, trained a CNN with 60 million parameters. Dropout
layers were added to the network. This determined the ba-
sic structure of the state-of-art CNN. Later, Visual Geom-
etry Group (VGG) published a paper that analyzed all the
tricks used in this network, which provided a very detailed
explanation of the these techniques.[7]

A great step is made in 2014 by GoogLeNet[13], who
achieved an astonishing 6.7% error rate for the classifica-
tion task. They introduce a multi-scale idea with intuitions
gained from the Hebbian principle. Addition dimension re-
duction layers allowed them to increase both the depth and
width of the network with incurring significant computa-
tional overhead.

For our project, we focused on learning the techniques
mainly from VGG and GoogleLeNet, as well as others, to
develop our own network that fits the scale of our data and
hardware.

3. The Dataset

Tiny ImageNet is a subset of the ImageNet dataset. It
contains 100,000 images in JPEG format, with a dimension
of 64 × 64. There are a total of 200 classes. Each class
has 500 training images, 50 validation images, and 50 test
images. Labels and bounding boxes are provided for the
training and validation sets but not for the test set. All the
information is stored in a text file along with the dataset.
The challenger obtains their prediction accuracy by upload-
ing the result to an evaluation server.

Before any data augmentation and model training, all the
images is substracted by the mean pixel intensity of each
channel. It ensures the model to be trained on centered
raw RGB images. [9] Training data is converted to Light-
ning Database[5] (LMDB) format required by Caffe frame-
work. Each image is paired with an index number, which
is uniquely mapped to the string provided in the Tiny Ima-
geNet dataset.

3.1. Invalid and Un-helpful Data

Without directly using the provided training data, we go
through the dataset first and find there are some samples

Figure 1. Example of invalid data(a volleyball should be in the red
box)

Figure 2. Example of un-helpful data. The basketball in red box
can hardly be seen.

should not be included. Particularly, We found two cate-
gories of data needs to be removed: invalid data and un-
helpful data.

Figure 1 shows an example of invalid data. It is labeled
with ”volleyball”, where the location of the object is (33,0)-
(39,0) — the top-left corner and bottom-right corner of the
bounding box. Geometrically, it is a 8×1 slit at the very top
of the image. We examine the entire training set and no-
tice the ”1 pixel width” or ”1 pixed height” bounding boxs
appear frequently and can show up at anywhere in the im-
age, whether the border or center. In most cases, the ob-
ject inside cannot be distinguished at all. We believe it is
caused by using an improper shrinking program to gener-
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Figure 3. Bounding box edge size vs Number of images

ate Tiny ImageNet dataset from the original high resolution
ImageNet dataset. We denote this kind of images invalid
because the object inside the bounding box does not match
its label.

Figure 2 shows an example of un-helpful data. It is la-
beled with ”basketball”, and the bounding box is a 4 × 5
rectangular located at (29,23)-(32,27). Unlike the invalid
image, the basketball is identifiable but requires extremely
careful observation, for it is quite small and mixed into the
noisy background caused by downsampling. For this im-
age, ”human”, ”sports” or ”building” are more likely to be
predicted if such labels exist as they occupy a much larger
region. As a result, it is reasonable to make the assumption
if bounding box of the object is smaller than certain thresh-
old, it will not be helpful for generalizing the model of its
corresponding class.

3.2. Bounding Box Distribution

Notice the invalid and un-helpful data has a very unbal-
anced length-to-width ratio or an extremely small area. In
order to find a decision boundary for affirming the valid-
ity of sample, we first study the statistical distribution of
bounding box on these two features.

In particular, we account three properties of the data.
First is the distribution of a single side length of the bound-
ing box(e.g., for a bounding box of 30× 50, the number 30
and 50 will be counted separately). Second is the is the area
size of the bounding box. Third is the length-to-width ratio.
These three properties can exhaustively reflect the two fea-
tures of the invalid and un-helpful data. If a discontinued
joint exists at a proper location, we can use it as a threshold
to perform filtering.

Figure 3,4 and 5 show these three distributions of the

Figure 4. Bounding box area size vs Number of images

Figure 5. length-to-width ratio vs Number of images

training data. In Figure 3, bounding boxs with edge of 63
and 64 pixels take up about 1/4 of the entire set. (The total
number of count is 200,000 based on the definition.). In
Figure 4, 64× 64 and 64× 63 boxes together take up about
10% of the data. In the Figure 5, we can see that the images
with a length-to-width ratio of 1:1 to 1:3 takes up about 90%
of all the data.

Based on these three distribution graph, it is obvious
that we can use the length-to-width ratio as the main dis-
tinguisher and use the bounding box size as the a subsidery
constrain.

3.3. Data with Cropping

Sampling random crops is a classic way of addressing
overfitting. When applying it to images with ground-truth
object bounding box, one case we need to pay attention is
the object being cut appart. Figure 6 shows an extreme case
in which the cropped image preserve the minimum area of
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Figure 6. Red box is random crop. Blue box is the object location.
How big should ”?” area be?

Figure 7. Percentage of data removed for each of the 200 class.

the object. As shown, the crop is taken on top left corner
whereas the object is on bottom right, only the overlapped
region can be learned by the CNN. In other cases, the shape
of the bounding box can be cropped to a very unbalanced
length-to-width ratio which also leads to an improper sam-
ple. Thus, all the filtering is processed after the data being
cropped.

3.4. Threshold and result

So finally, based on crop size of 56×56 (we will explain
why), we set the object size threshold to be 256, which is
equal to 16×16 if the bounding box is a square. We also
constrain the length-to-width ratio between 1:1 to 1:3.

To get an idea on how much data is removed for each
class, we plotted Figure 7. It shows that for 3 out of the
200 classes, we removed nearly 80% to 95 % percent of the
data. For 20 out of the 200 classes, more than 20% images
from each classes are removed. We considered that this is
an acceptable amount, taking into account of the accuracy
we can reach for now (about 41%).

Since training a new model at this scale takes quite a
long time, we are not able to fine tune all the filtering pa-

Structure 1 Structure 2 Structure 3 KamiNet
Data Data Data Data

Filtering
Crop + Flip Crop + Flip

Conv3-32 Conv3-256 Conv3-256 Conv3-256
Conv3-32 Conv3-256 Conv3-256 Conv3-256
Conv3-32 Conv3-256 Conv3-256 Conv3-256
maxpool maxpool maxpool maxpool
Conv3-64 Conv3-512 Conv3-512 Conv3-512
Conv3-64 Conv3-512 Conv3-512 Conv3-512
Conv3-64 Conv3-512 Conv3-512 Conv3-512
maxpool maxpool maxpool maxpool

Conv3-128 Conv3-512 Conv3-512 Conv3-512
Conv3-128 Conv3-512 Conv3-512 Conv3-512
Conv3-128 Conv3-512 Conv3-512 Conv3-512
maxpool maxpool maxpool maxpool
FC-1024 FC-4096 FC-4096 FC-4096
FC-1024 FC-4096 FC-4096 FC-4096
FC-200 FC-200 FC-200 FC-200
Softmax Softmax Softmax Softmax

Table 1. KamiNet Structure and comparison with earlier version
of KamiNet (ReLU after each Conv layer)

rameters. Based on current result, we believe the accuracy
can be further improved with customized parameters.

4. The Architecture
In this section, we introduce all the CNNs being trained

during the development of KamiNet. To fully evaluate the
effectiveness of our data filtering scheme, we set up a con-
trolled experiment with four consecutively improved CNN
structures. The structure 2 increases the depth of entire net
and each Conv layers. The structure 3 augments the data
with Crop+Flip scheme. Finally, KamiNet performs data
filtering before data augmentation. All the structures are
well designed after in depth study of related papers and con-
sideration of our computational capacity.

4.1. Scale and Non-linearity of Model

Initially, we want to build our network as large as possi-
ble within the limit of graphical memory. However, one big
defect of training our CNN versus the state-of-art ones is we
can not utilize parallel computing through multiple GPUs,
for the limitation of the server. As a result, we construct our
model and training batch in a moderate size to keep a good
balance between time cost and accuracy.

For the Conv layers in all the structures, we use 3× 3 re-
ceptive field and bundle every three layers as a Conv stack.
A stack of three 3×3 Conv layers has a 7×7 effective recep-
tive field. However, comparing with a single 7 × 7 layer, it
incorporates three non-linear rectification layers instead of
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one, which makes the decision function more discrimitive.
On the other hand, it also decreases the number of parame-
ters in the model and improves the training efficency.

Starting from structure 2, we increase the depth of the
volume of neuron to at least 256. Comparing to structure 1,
it dramatically increases the features extracted at each layer
and improve the capacity of mdoel. Results show that clas-
sification accuracy takes a big leap after this modification.

4.2. Crop and Flip

VGG paper “Return of the Devil in the detail”[7] sug-
gests, random cropping and flipping will increase the vali-
dation accuracy greatly. Many papers have investigated the
best cropping ratio and showed that a crop size as 7/8 of the
original image gives most stable and relatively well result
. So in our architecture, a size of 56×56 is used. We per-
form all the crops and filps randomly, with every possibility
being choosed equally.

4.3. Training

For weight initialization, we set all the weight based on
Gaussian distribution. N (µ = 0, σ = 0.1) The bias term
was initialized to 0 instead.

For hyperparameter, we tried VGG’s value as well as a
scale of 10 up and down. Then we figured that VGG’s value
is still the best one even we have different CNN structure.
So here are the decisions we made. Each layer uses the
same parameter setting. Mini-batch gradient descent, which
is default one in caffe framework, is being applied. Batch
size is set to 200, otherwise we will hit out-of-memory error.
Momentus is set to 0.9 and weight decau is set to 5E-4, as
a copy of VGG’s net. Dropout regularization is set to 0.5,
though we want to try less in the future since we believe we
overfit our data slightly.

We scaled our learning rate at 18000th iteration and at
35000th iteration again by 0.1. This is where we observed
that our validate accuracy doesn’t increase anymore. We
stopped the learning after 44 epochs.

5. Experiments
In this section, we present the image classification re-

sults achieved by the four structures. The results will be
evaluated progressively by comparing the accuracy change
between each structures. Since making prediction for the
entire test set will take up to ten hours, we only predict the
test set using KamiNet and obtain the test accuracy from the
evaluation server. An overall results is showed in Table 3.

5.1. Structure 1 to Structure 2

Notice, both training and validation accuracy get hugh
improve when the depth of the volume of neurons increases.
This phenomenon shows the learning capacity of structure 1

S1 S2 S3 KamiNet
Train Acc 48.1% 98.1% 96.7% 97.5%
Val Acc 5.6% 40.9% 43.5% 47.1%
Test Acc 49.5%

Table 2. Classification Result

is obviously unaffordable to the problem scale of Tiny Im-
ageNet. The validation accuracy stops increasing at 5.6%
and the training accuracy is 48.1% at that time. As a com-
parison, the structure 2 scales well to the problem and its
training accuracy reaches to 98.1% at the end. The valida-
tion accuracy also reaches to 40.9% which is almost eight
times to the structure 1.

Considering the size and variaty of images in Tiny Ima-
geNet, the increased volume depth can capture more infor-
mation like various oriented edges, the blob of colors and
distinguishable patterns. All these features offer a more dis-
tinctive description of the region neurons connected to and
consequently increase the capacity of the entire model. It is
obvious that if we keep increasing the layers in each Conv
stack, the validation accuracy can be further imrpoved.

5.2. Structure 2 to Structure 3

There is a noticeable increase after performing the data
augmentation. The validation accuracy increases from
40.9% to 43, 5%. This improvement is achieved without
modify the propagation layers. Notice, the training accu-
racy of both structures has reached nearly 100% percent. In
most cases, it is an indication of overfitting. Flipping and
cropping help increase the number of training samples ar-
tificially and without actually increase the training data in
the input. Rather, we just crop and flip the images at every
batch iteration. As shown in the table, the augmented data
slightly mitigates the possible overfitting. There are many
other ways to perform data augment, for example, modi-
fying the image contrast, making random tint. We believe
the validation accuracy can be further improved if we also
apply these data augmentation techniques.

5.3. Structure 3 to KamiNet

The KamiNet takes the validation accuracy to a higher
level with an increasing from 43.5% to 47.1. The improve-
ment is even greater than the extent achieved from struc-
ture 2 to 3. The results verify our assumption that remov-
ing the invalid and un-helpful data will improve the accu-
racy of model. Notice, the training accuracy of KamiNet
is slightly increased than S3, it is probability caused by re-
moving about 1/10 data in the original training set. Since
most of the removed data is ill-labelled, not only the data
scale but also the intraclass variation decreases. Thus, it is
reasonable to see the increase of training accuracy. The next
section will give a more detailed analysis based on accuracy
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Figure 8. Training and Accuracy of KamiNet

Figure 9. Lost vs Iteration of KamiNet

Figure 10. Weights of KamiNet’s first layer

and lost curve.

5.4. Accuracy and Lost

Figure 8 shows the plot for training and validation ac-
curacy, of KamiNet. And Figure 9 plots the softmax loss

Figure 11. Classification result of a single test image

based on iterations.
As we can see obviously from the plot, we scaled our

learning rate by 0.1 at iteration 18000 and 35000. The rea-
son we scale the learning rate there was because the vali-
dation accuracy doesn’t increase anymore at that point. So
further training will overfit the data.

From the loss plot, we can see that it has a good shape.
It hasn’t converged yet based on loss graph, even though
the validation accuracy doesn’t increase anymore. From the
accuracy plot, validation accuracy only increases a little bit
after scaling learning rate down. Since the training accuracy
was increasing, we’d say we overfit it a little bit. But this is
not too bad because it is not decreasing obviously.

We considered that the difference between our model
and state-of-art model is that our module is not as big as
VGG’s or GoogLeNet. Also, another reason for the differ-
ence is we are missing techniques such as channel switching
and other augmentation method.

5.5. Weights and Prediction

Figure 10 shows a weight of depth 256, for a single re-
ception field of 3 x 3. We can see they don’t look the same,
which means we broke the symmetricity successfully. We
cannot find any meaningful patterns because the reception
field is very small.

Figure 11 shows the predicted probability for the first
picture. The class with highest probability is ”candle, taper,
wax light”. As it is an image from test set, we don’t have
the exact label for it. It looks like a bottle. We think this is
reasonable because they all have a long and smooth shape.

6. Conclusion
The final KamiNet structure can achieve an error rate of

50.5
The data filtering method we used, which validates the

bounding box shape and length-to-width ratio can help im-
prove the validation accuracy by 3.6%. In the case of Tiny
ImageNet, we considered this to be a good result.

All the techniques we learned from different papers pro-
vided great help in terms of designing the network and tun-
ing hyperparameters. We believed that by applying more
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state-of-art techniques as well as accessing the hardware
with fewer limit, our accuracy would be much better.

The future works of our project includes tuning various
data filtering threshold, trying different strategy, applying
latest techniques, having larger model capacity, and utiliz-
ing the multi-GPU hardware better. Our next step is to try
the origional ImageNet challenge or try add location detec-
tion functionality in our mode.
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