
Feature Testing on Image Classification for ImageNet

Timothy Chan
Stanford University

timchan@stanford.edu

Abstract

The purpose of this research study is to classify images
from TinyImageNet, which contains a subsection of Ima-
geNet classes and a standardized image set for image clas-
sification. I created a Neural Network using some interest-
ing feature sets, most prominently SIFT and texture features.
While my SIFT features were calculated mainly using code
from OpenCV [4], an external source, I conducted several
experiments with texture features. I based these texture fea-
tures off of the work done by R. Haralick [2], but as his
were for classifying terrain, and my goal was to classify
everyday objects, I modified and experimented with the al-
gorithm. This experiment included two-hundred different
training, validating, and testing classes from TinyImageNet
to classify the images. In order to determine the accuracy of
the varying approaches, training set examples were catego-
rized into folders, which were eventually scored. Although
the research was successfully able to implement texture and
SIFT features, the results appeared to be unsuccessful in
showing much gain in classification accuracy. This loss of
gain may be mainly due to unsuccessful tuning of the algo-
rithm.

1. Introduction
Image classification analyzes the pixel properties of var-

ious images and organizes these images into categories
based off of the similarities between the graphics. It is one
of the most important subsections of digital image analy-
sis as it provides meaning behind each visual by analyzing
and interpreting the hue, saturation, and brightness of each
pixel within the image. When measuring an images com-
position, users refer use pixels, which are the smallest prop-
erty of data represented within pictures. This research study
centers on classifying images from TinyImageNet, which is
a subsection of ImageNet classes that contains a standard-
ized image set for image classification. Image Classifica-
tion takes an imperative role in navigating the internet and,
if accurate enough, will be an important part of allowing
computers to have a more direct interaction with the real

world. It is because of this that a large amount of highly es-
teemed organizations work toward making improvements in
image classification. Some advanced techniques by compa-
nies such as Microsoft and Google have already surpassed
humans when it comes to classifying images. When com-
pared with a humans computational potential, these tech-
niques are far more efficient and reliable. Seeing as how im-
age classification plays a significant part in todays society,
my desire is to learn more about how image classification
works and how it can be applied in many contexts. When
classifying an image into a certain category, it is assigned
a score that represents how similar it is to another visual.
There are many variables and techniques that can make a
system score better, such as techniques used to tuning pa-
rameters and features, which I find to be the most interest-
ing. As a result, I plan to experiment with several features
in order to classify the images. There were two features in
particular that I found quite intriguing. My primary focus
and goal for this project was to learn and explore these ap-
proaches, primarily working on sift descriptors and texture
features.

2. Background/Related Work

2.1. SIFT descriptors

A famous and influential feature that is commonly used
is SIFT features. I learned about these features from the pa-
per“Distinctive Image Features from Scale-Invariant Key-
points” by Lowe, D [3], as well as another paper that ex-
tends SIFT titled “Local Pyramidal Descriptors for Image
Recognition,” by Seidenari, L [1]. SIFT features as de-
scribed in Lowe’s paper [3] are based on creating a his-
togram of image gradients in order to see how often specific
image gradients appear, as shown in Figure 1. As it uses a
histogram, this feature is invariant to changes in illumina-
tion. Also, as the features are first rotated by the strongest
gradient, SIFT features are also rotation invariant.

In addition to these calculations, an improvement was
made by Seidenari [1], in which SIFT features are calcu-
lated for different scalings before being compared, as shown
in Figure 2. By comparing the SIFT features in this sort of

1

Figure 1. SIFT histogram of gradients from Lowe,D [3]

Figure 2. Pyramidal SIFT features from Seidenari, L [1]

pyramid, the feature set can also be scale invariant, mak-
ing it very strong in recognizing the same object in a wide
variety of different situations.

Due to SIFT’s prevalent use and usefulness at detecting
the same object, I decided to try and apply SIFT to TinyIma-
geNet. While SIFT is better at re-detecting the same feature
from different angles, such as following an object on video,
I was experimenting to see how it fares in detecting features
that are similar but not the same object. For example, how
well it can detect different sunglasses on different people’s
faces, when sunglasses are relatively similar objects, even
when they are not the same pair of sunglasses.

2.2. Image Texture

Another set of features is based on texture. I referenced
a paper called “Textural Features for Image Classification,”
by R. Haralick [2], which attempts to quantify how texture
would be conveyed in a digital image. While Haralick’s pa-
per was mainly a technique to classify landscapes, as seen
in Figure 3, it seems like it could be useful for object image
recognition as well. Haralick’s texture features were created
by calculating the contrast and correlation for regions at var-
ious degrees around a central region. While this is good for

Figure 3. Classes from Haralick, L [2]

classifying textures on a relatively flat background, such as
landscape on the ground, I found that it was a bit too sen-
sitive to texture changes that were not quite so repetitive,
such as scales wrapping around a fish.

3. Approach
I am planning to test these features on a image classi-

fication challenge provided by CS 231N at Stanford. This
project is called Tiny ImageNet and will provide a simple
way to access data and to see results. I primarily extended
the code from our assignments. Because of this, the fea-
tures that I used came from four categories. The original
image pixels, the pretrained models on TinyImageNet-A,
SIFT features, and texture features.

The SIFT features came from OpenCV, which is an open
source python library for image recognition that has func-
tions that calculate SIFT keypoints as well as does the his-
togram of gradients calculations to calculate SIFT features.
OpenCV has many parameters for SIFT that I used to at-
tempt to tune the model, such as the number of features, the
number of layers, and the contrast and edge thresholds.

The texture features I programmed in python based off
of the paper by Haralick [2]. I tried several different tech-
niques in attempting to find useful texture features.

For one feature attempt, I did a correlation with areas of
input images in relation to nearby areas. Where the corre-
lation with neighboring areas was highest, I would average
the area with the surrounding area, and return that as the
primary ”texture” for the image. One issue faced with this
feature selection was that the top texture was generally just
a monochrome background texture, such as blue sky or a
white wall. I attempted to correct for this by selecting the
top several textures, in which whenever a top texture was se-
lected, the correlation score between the top texture and ev-
ery other texture was subtracted from every other texture’s

2

Figure 4. Texture features from an image

Figure 5. Textures representative of their class

score, as seen in Figure 4. This made it so that different tex-
tures would be selected for the next highest texture. While
this did return interesting textures based on the image, it did
not seem to be able to help the scoring metric.

Another approach I attempted was to find textures that
represented a class, and would try to look for these textures
to classify the image. The way I did this was that I would
pick a random patch, call it a texture, and find its lowest L2
distance from every possible patch in a different image of
the same class. After several iterations to try and find better
patches, selected high scoring patches would be returned,
as shown in Figure 5. While these patches were able to
visually produce patches of images that looked very repre-
sentative of their class texture, I was unable to use this to
help increase classification accuracy.

While my original plan was to run my code against the
entire TinyImageNet, I hit several problems. One issue was
that TinyImageNet required a lot of RAM, and I was not
able to run the code on my laptop. Eventually, I ported

the code over to Terminal, but my code was not optimized
enough to run particularly fast, so I could only run it a few
times before I ran out of time on Terminal. Because of this,
I was unable to tune my code on the entirely of TinyIma-
geNet.

4. Experiment

The data set I am working with has 200 different classes
to classify images as. The data is already separated into
training, validation and test sets and will be used as such.
The data set is very large and has many classes compared
to data sets I have worked on previously, so it will provide
a relatively good example of how well specific features will
work in real life situations.

My original plan for evaluation was that the scores that
my algorithm outputs into an Evaluation Server provided by
the class in order to see how well the classifier does on scor-
ing. However, I was unable to run my code on the entirety
of tiny image net. In the end, I tried to evaluate my code by
just scoring it off of TinyImageNet-A or TinyImageNet-B.
This was a small enough set that my code would run on my
laptop, even though it took some time to run. This meant
that I was unable to tune my results significantly.

From the homework, my score using the pretrained mod-
els from TinyImageNet-A was about 36% accurate, and
my score using fine tuning of the pretrained models on
TinyImageNet-B was about 23% accurate. When I included
my new features added in right before the final output layer,
with the weights for them originally set to 0, my score was
still 36% accurate with TinyImageNet-A and about 22%
on TinyImageNet-B. Theoretically, With the weights set
to 0, the scores should have been identical to the original
scores. However, due to the inability to tune it as well, the
score on TinyImageNet-B suffered a bit and the score for
TinyImageNet-A did not change at all. Interestingly, at-
tempting to fine tune the pretrained model with additional
features made it perform worse. This could be because it
was much better tuned than how my algorithm could work,
and attempting to tune it more merely harmed it.

Interestingly enough, texture did seem to help the scor-
ing of the classes you would expect it to help, though it is
hard to tell whether it is luck due to the fact that there was
only 50 validation images per class. For example, The val-
idation score for lemons hovered at around 40% accuracy
before the texture features, and averaged over 80% after
texture. It could also just be that the ”texture” that defined
lemons was just a blotch of the color yellow, which would
not have shown up as much in many other images, making
my classifier just much more sensitive to regions of color.

However, adding in SIFT features did not seem to effect
validation scores for individual classes apart from just ran-
dom variance.

3

5. Conclusion
While the SIFT and texture features were interesting, I

was unable to run them for long enough to properly tune
them. Perhaps in the future if I had a stronger laptop or
had more free time on terminal, I could have gotten more
impressive results.

References
[1] Lorenzo Seidenar, Local Pyramidal Descriptors for Im-

age Recognition. IEEE Trans Pattern Anal Mach Intell.
2013 Nov 22

[2] Robert M Haralick, Textural Features for Image Classi-
fication. IEEE Transactions on Systems, Man and Cy-
bernetics Vol SMC-3 No 6 pp. 610-621 1973.

[3] David G. Lowe, Distinctive Image Features from Scale-
Invariant Keypoints. The International Journal of Com-
puter Vision, 2004.

[4] Bradski, G., OpenCV. Dr. Dobb’s Journal of Software
Tools, 2000

6. Supplementary Materials
import numpy as np
import scipy.signal as signal

def texture_features(X,F=2,HH=10,WW=10\
,iterations=10,compares=2,threshold=.5):
"""
Computer experimental texture features
Inputs:
- X: Input data of shape (C, H, W)
- F: Number of textures to find
Outputs:
- textures: (F, C, HH, WW) array of F
different textures detected, of height
and width HHxWW
"""
N,C,H,W=X.shape
textures=np.zeros([2*F,C,HH,WW])
texture_scores=[-1]*(2*F)
for iter in xrange(iterations):
for i in xrange(2*F):
if texture_scores[i]<threshold:
xx=np.random.randint(H-HH)
yy=np.random.randint(W-WW)
textures[i]=X[:,xx:(xx+HH),\
yy:(yy+WW)]
texture_scores[i]=0
for x in xrange(H-HH):
for y in xrange(W-WW):
texture_scores[i]=np.max(\

texture_scores[i],np.correlate(\
X[:,x:(x+HH),y:(y+WW)].flatten(),\
textures[i].flatten()))
index=np.argsort(texture_scores)
texture_scores=np.array(texture_scores)\
[index[::-1]]
textures=np.array(textures)[index[::-1]]
texture_scores[F:2*F]=-1
return texture_scores[0:F],textures[0:F]

def find_textures(X,F=10,HH=10,WW=10,\
iterations=10,compares=2,threshold=4e6):
"""
Computer experimental texture features

Inputs:
- X: Input data of shape (N, C, H, W)
OF THE SAME CLASS
- F: Number of textures to find PER CLASS

Outputs:
- textures: (F, C, HH, WW) array of F
different textures detected, of
height and width HHxWW
"""
N,C,H,W=X.shape
textures=np.zeros([2*F,C,HH,WW])
texture_scores=[-1]*(2*F)
for iter in xrange(iterations):
for i in xrange(2*F):
if texture_scores[i]==-1:
zz=np.random.randint(N)
xx=np.random.randint(H-HH)
yy=np.random.randint(W-WW)
textures[i]=X[zz,:,xx:(xx+HH),yy:(yy+WW)]
z=np.random.randint(N,size=compares)
texture_scores[i]=0
for x in xrange(H-HH):
for y in xrange(W-WW):
#was originally corr
if np.max(np.sum((X[z,:,x:(x+HH),y:(y+WW)]\
-textures[i])**2,axis=(1,2,3)))<threshold:
texture_scores[i]+=1
else:
z=np.random.randint(N,size=compares)
for x in xrange(H-HH):
for y in xrange(W-WW):
#was originally corr
if np.max(np.sum((X[z,:,x:(x+HH),y:(y+WW)]\
-textures[i])**2,axis=(1,2,3)))<threshold:
texture_scores[i]+=1
texture_scores[i]+=1
texture_scores[i]/=2

4

index=np.argsort(texture_scores)
texture_scores=np.array(texture_scores)\
[index[::-1]]
textures=np.array(textures)[index[::-1]]
texture_scores[F:2*F]=-1
return texture_scores[0:F],textures[0:F]

def score_textures(X,textures,threshold=2e6):
"""
Computer experimental texture features
Inputs:
- X: Input data of shape (N, C, H, W)
- textures: (F, C, HH, WW) array of F different
textures, of height and width HHxWW
Outputs:
- feature_scores: (N,F) array of N different
textures scores for F textures
"""
N,C,H,W=X.shape
F,C,HH,WW=textures.shape
feature_scores=np.zeros([N,F])
for n in xrange(N):
for f in xrange(F):
for x in xrange(H-HH):
for y in xrange(W-WW):
if np.sum((X[n,:,x:(x+HH),y:(y+WW)]\
-textures[f])**2)<threshold:
feature_scores[n,f]+=1
return feature_scores

Visualize some examples of the training data
from cs231n.classifiers.features import find_textures
from cs231n.classifiers.features import score_textures
classes_to_show = 5
examples_per_class = 10
class_idxs = np.random.choice(len(class_names), \
size=classes_to_show, replace=False)
for i, class_idx in enumerate(class_idxs):
train_idxs, = np.nonzero(y_train == class_idx)
scores,textures= find_textures(X_train[train_idxs.astype(int)]\
+ mean_img,examples_per_class)
print scores
for j, texture in enumerate(textures):
img = texture
img = img.transpose(1, 2, 0).astype(’uint8’)
plt.subplot(examples_per_class, \
classes_to_show, 1 + i + classes_to_show * j)
if j == 0:
plt.title(class_names[class_idx][0])
plt.imshow(img)
plt.gca().axis(’off’)
score_textures(X_train,textures)
plt.show()

5

