
Detecting and Recognizing Text in Natural Images using Convolutional Networks

Aditya Srinivas Timmaraju, Vikesh Khanna
Stanford University

Stanford, CA - 94305
adityast@stanford.edu, vikesh@stanford.edu

Abstract

Detecting and recognizing text in natural images is a
challenging problem that has recently received attention.
Most methods attempting this have relied on elaborate mod-
els incorporating carefully hand crafted features or large
amounts of prior knowledge. All methods assume the
knowledge of a lexicon of 20-30 words that form the su-
per set of all possible words that can occur in a test image.
This makes the problem a lot easier than it would other-
wise be. In this report, we present a method of detecting as
well as recognizing text contained in natural images using
Convolutional Neural Networks (CNNs). We use two CNNs,
one trained for the character detection task and another for
the character recognition task, as building blocks for the al-
gorithm. Significantly, we do not assume any prior knowl-
edge of a lexicon, unlike all previous works. We demon-
strate state-of-the-art experimental results for three differ-
ent tasks: character detection, character recognition and
word recognition, while also showing qualitative results for
text recognition. We use the standard Chars74k and ICDAR
2003 datasets for the same.

1. Introduction
Being able to locate, detect and identify the text present

in any natural image presents us with many opportunities.
It finds application in many fields, ranging from brand de-
tection/recognition in images and videos to systems that aid
blind people navigate. A system that is capable of automat-
ically sifting through a set of images (from sources such as
Instagram/Pinterest) and identifying presence of a certain
brand is of immense monetary value to that brand. It al-
lows for targeted marketing/advertising to a highy selective
audience.

However, the task of text detection, localization and
recognition is a difficult problem, owing to a lot of vari-
ability present in natural images, in terms of illumination,
viewpoint, orientation and to a certain extent, even the intra-
class variability that is inherent in characters of different

fonts/styles and those written by different people. For this
reason, a lot of text detection and recognition systems rely
on cleverly hand-crafted features [2] [3] to represent im-
ages. Some state-of-the-art methods also rely on sophis-
ticated models like conditional random fields, on top of
the raw detection/recognition outputs in the end-to-end sys-
tems. In our work, given an image, we label the region of
interest containing text using a bounding box and find the
word predictions. A sample output of our full end-to-end
text recognition system is illustrated in Fig 1. All char-
acters occuring in the image are assumed to be in one of
62 possible classes (a-z, A-Z, 0-9). We make the follow-
ing contributions: 1) We show competitive results without
assuming the knowledge of a lexicon, which is too strong
an assumption for certain applications 2) We introduce the
novel concept of fuzzy character search (FCS), that circum-
vents errors due to bad character detections and also facili-
tates doing away with the lexicon. In a clever way, FCS uses
a dictionary but does not restrict the choice of word predic-
tions to words from the dictionary, since proper nouns could
also occur in images. We demonstrate with examples, how
the current state-of-the-art methods fail in the above cases
and how FCS helps in those cases.

2. Related Work
Until recently, the end-to-end text recognition problem

had only received a modest amount of interest from the vi-
sion community. In [6], the authors propose a recognition
pipeline comprising multiple feedback loops for hypothesis
validation. Briefly, they find Maximally Stable Extremal
Regions (MSERs) and then classify these regions as ei-
ther character or non-character regions. They form possi-
ble lines containing text and use character recognition, fol-
lowed by typographic and language modeling to refine the
recognition output. In [7], the authors use Random Ferns
for character detection and the HOG descriptor [1] to de-
scribe image patches. They evaluate the word detection and
recognition performance of a two-step approach comprising
a text detector and an OCR engine. They show that their
HOG-based system outperforms that using a conventional

1



Figure 1. Sample output of our end-to-end system. The red bound-
ing box localizes the text containing part of the image. The pre-
dicted word is labeled on the box

OCR engine.
In [8], the authors use the output score of a Convolu-

tional Neural Network (CNN) for character detection and
another CNN for recognizing characters that have been de-
tected. They use a multi-scale sliding window approach and
consider windows in different rows independently. They
make the assumption that text in the image occurs horizon-
tally. For each row, the detection scores of different sliding
windows are computed and NMS (non-max suppression) is
used to suppress spurious peaks. This way, bounding boxes
are constructed for rows with non-zero number of peaks.
Another NMS is performed to prune bounding boxes with
50% overlap or more. The character recognition CNN is
then used on each of these and beam-search is performed to
output words. They assume the knowledge of a lexicon of
about 20-30 words (which are different for different images,
and potentially procured using Geo-location and other meta
data), and they only output words from this lexicon. The
method used in [7] also assumes the knowledge of such a
lexicon.

3. Our Approach

Deviating from some of the above approaches that rely
on hand-crafted features, we use CNNs for this problem.
We now briefly give an overview of our system. We tackle
the problems of detection and recognition in two cascaded
stages. Given a novel image instance, we consider a slid-
ing window over the whole span of the image at multiple
scales (Figure 10). For each of these windows, we con-
sider the image patch within that window and pass it to the
character detection engine. We train the detection CNN in
such a way that this character detection engine outputs a
high score if there is a centered character in the input im-
age patch. For these firings from the detection engine, we
pass the corresponding patches to the recognition engine to

Figure 2. The first four images are augmented negative examples
and the fifth image is the original positive example, with a centered
B.

determine which character is present in them. We use two
Convolutional Neural Networks, one for the detection part
and another for the recognition part. Also, we do not make
the assumption that a lexicon which contains all words that
could occur in a given test image exists.

3.1. Detection CNN

The detection CNN takes as input a 32x32 image patch
and outputs the probabilities associated with two classes:
character present and character absent. We call the proba-
bility associated with the character present class as the ‘de-
tection score’ of that input patch. We use character con-
taining patches from Chars74k dataset [2] as positive ex-
amples and images from CIFAR-10 dataset [4] as negative
examples, in addition to synthetically generated images as
described in the following section on data augmentation.

3.1.1 Data Augmentation

Through our initial experiments, we observed that even
patches that contain non-centered characters were giving
reasonably high detection scores. However, this would be
a problem since it would lead to spurious detection peaks
when using a sliding window approach such as ours and
the one in [8]. So, we augmented our training data with
negative examples that contained characters pushed to the
left/right/top/bottom of the input patches, as illustrated in
Fig 2. We also augmented our training set with negative ex-
amples that contain parts of two characters in them (see Fig
3). The motivation is to prevent the detection CNN from
firing in windows that contain the transitions between two
adjacent characters in a word.

We now verify that our data augmentation trick indeed
works in the way it should. We input to the detection CNN,
a set of patches that contain characters on their periphery,
and also the same characters aligned in the center. For each
patch, we also enumerate their respective detection CNN
scores. These results have been illustrated in Fig 4 and
Fig 5. In Fig 6, an input word-containing image and its
detection CNN scores are depicted. Notice how the char-
acter containing regions in the image look red in the heat
map (i.e., higher detection CNN scores). Also, notice how
the score drops in the transitions between characters in the
word, as is desired.

2



Figure 3. Patches containing transitions between characters in the
same word. These are used as additional negative examples for the
character detection task.

Figure 4. Patches with non-centered characters and their corre-
sponding scores. As is expected, we see that they have very low
detection scores, validating our data augmentation trick.

Figure 5. Patches with centered characters and their correspond-
ing scores. In contrast to non-centered patches, we see that these
patches have very high detection scores

3.2. Text Bounding Box Detection

We now describe how exactly we propose to use the de-
tection CNN to locate the text bounding boxes in a given
image. In the detection CNN, we use two neurons in the
output layer, and their outputs correspond to the classes
“character present” and “character absent”. Given the cur-
rent sliding window portion of the image, we compute the
softmax probability for the “character present” class, as the
detection score for this portion of the image. In each row of

Figure 6. The first image contains the input word. The second
image depicts a plot of the detection CNN scores along one row of
the sliding window. The third image is a heat map of the detection
CNN scores for different positions of the sliding window in the
image (red indicates higher values).

the sliding windows, we concatenate this set of scores into a
vector. We apply non-max suppression (NMS) on this vec-
tor to locate peaks in it. We then ignore all peaks that are
less than 50% of the maximum peak. The peaks thus ob-
tained are expected to correspond to those sliding windows
that contain centered characters in them. We look for con-
tiguous peaks (that are within a threshold of each other) and
that defines our word-containing bounding boxes in the im-
age. Once the set of bounding boxes are computed for the
given image, another NMS is performed to prune bounding
boxes with 50% overlap or more. If two bounding boxes
exceed that level of overlap, the one with the lower average
detection score is eliminated and the higher one is retained.

We define the confidence margin of a given image patch
(that is known to contain a character) to be the difference
between the output class probabilities of the recognition
CNN of the top two classes, sorted in the decreasing order
of probabilities.

3.3. Fuzzy Character Search (FCS)

Once we arrive at the set of possible word-containing
bounding boxes using the method described above, we now
set out to recognize the words contained in them. For each
text-containing bounding box, we consider the peaks from
the detection CNN. After that, around each peak, we con-
sider shifted patches and compute the confidence margins of
each of those patches. For each peak, we consider the top 3
character proposals, which correspond to the three patches
with the highest confidence margins. If the detection score
corresponding to a peak is lower than a threshold, we also
add a blank character proposal in addition to the top 3. We
label these peaks as uncertain peaks. Once we have such
proposals for each detection peak, we consider all possible
words than can be formed. Among these words, if there is
a word that is in the dictionary, we pick it. If none of the

3



Figure 7. Pipeline of the proposed end-to-end system

Figure 8. Input Image

Figure 9. Plot depicting detection CNN scores for a sliding win-
dow along the word

words belong to the dictionary, we pick the word with the
highest average confidence margin score. This leaves room
for words that cannot be found in the dictionary (such as
proper nouns) to also be predicted.

Here, we underscore that unlike the dynamic program-
ming based approach that had to be applied to each word in
the lexicon in previous methods [8] [7] (that would be com-
putationally intractable at the scale of a full dictionary), we
only perform a dictionary look-up, as to whether or not a
given word exists. Also, this dictionary does not restrict the
choice of words, since FCS can also output words that are
not present in the dictionary.

We now show an example word recognition result, with
and without using FCS. Fig 8 contains the input image. The
plot of detection CNN scores for sliding windows across
this image is depicted in Fig 9. Without FCS, the spuri-
ous detection peak would have given rise to the prediction
“ENTERGENGY”. However, since the detection peak cor-
responding to the letter ‘T’ is uncertain, one of its character
proposals is a blank character. This allows the algorithm to
neglect it when constructing word proposals. Also, one of
the character proposals of the incorrect recognition ‘G’ is
found to be ‘C’. This lets FCS accurately predict the word
as “EMERGENCY”.

Figure 10. Sliding windows over the input image. We consider
these windows at multiple scales.

Layer Architecture
CONV1 filter:5; stride:1; pad: 2; depth:32
POOL1 (MAX) filter:3; stride:2
ReLU1 -
CONV2 filter:5; stride:1; pad: 2; depth:32
ReLU2 -
POOL2 (AVE) filter:3; stride:2
CONV3 filter:5; stride:1; pad: 2; depth:64
ReLU3 -
POOL3 (AVE) filter:3; stride:2
Affine output: 64
Affine loss: softmax

Table 1. CNN 1 Architecture

3.4. Network Architecture

As explained before, we use two CNNs, one for the char-
acter detection task and another for the character recogni-
tion task. We have used 2 CNN architectures in total, and
we label them as CNN-1 and CNN-2. The architectures are
enumerated in Tables 1 and 2. We use rectified linear units
(ReLU) as our non-linearities and use dropout as regular-
ization. An illustration of the proposed end-to-end system
is presented in Fig 7.

4. Datasets and Evaluation Metrics
We evaluate the two CNNs separately on the Chars74K

dataset [2]. The English dataset contains 74,000 images of

4



Layer Architecture
CONV1 filter:5; stride:1; depth:20
POOL1 (MAX) filter:2; stride:2
CONV2 filter:5; stride:1; depth:50
POOL2 (MAX) filter:2; stride:2
Affine output:500
ReLU -
Affine loss: softmax

Table 2. CNN 2 Architecture

Figure 11. Example images from the 74k dataset

characters from natural images, hand-drawn characters, and
characters of different computer fonts. The dataset com-
prises annotated characters from 62 classes (A-Z, a-z and
0-9). An illustration of images sampled from this dataset is
presented in Fig 11.

For the character detection task, we trained our CNN us-
ing the 74,000 images from the Chars74k dataset as positive
examples, and we used 64,000 images from the CIFAR-10
[4] dataset, along with augmented patches containing char-
acters on the periphery, as negative examples. The idea is
to get the CNN to learn whether or not there exists a cen-
tered character in the current input image it is fed. We used
128,000 images for training and 10,000 images for testing.

For the recognition task, we trained our CNN using the
74,000 images from the Chars74k dataset, and classified
each input image into one of the 62 possible classes. We
used 70,000 images for training and 4,000 for testing. We
also separately evaluated our character recognition CNN on
the ICDAR 2003 dataset [5].

For the word recognition task, we used a subset of the
ICDAR 2003 word dataset [5], which was released as part
of the “robust reading and text locating” competition. We
evaluate word recognition performance using two different
metrics. The first metric is the accuracy of the predictions,
and we consider a prediction to be correct only if it is iden-
tical to the word (including the letter-case). We then report
accuracy to be the ratio of correct predictions to the total
number of predictions. The second metric we use (which
we call LCS) is the ratio of the length of the longest com-
mon subsequence to the length of the longer word (between
the predicted and the actual words). We report the average
LCS over all word predictions.

Architecture Task Training Acc. Testing Acc.
CNN-1 Detection 98 92.72
CNN-2 Detection 98.4375 98.53
CNN-2 Recognition 100 86.52

Table 3. Summary of results

5. Experimental Results

We have used both CNN 1 and 2 architectures for the
character detection task and CNN 2 for the character recog-
nition task. The batch sizes during Stochastic (mini-batch)
Gradient Descent (SGD) were 64 images. The results have
been summarized in Table 3. We see that with architecture
2, our CNNs achieve higher accuracies than the state-of-
the-art method in [8], for both the character detection and
character recognition tasks. For the word recognition task,
we have achieved an accuracy of 69.697%. The average
LCS has been found to be 0.89.

Figure 12. Plot of training loss for the Character Detection task

Figure 13. Plot of training & test accuracy for the Character De-
tection task

5



Figure 14. Plot of training loss for the Character Recognition task

Figure 15. Plot of training & test accuracy for the Character
Recognition task

5.1. Analysis

The plots in Fig 12 and 14 depict variation of training
loss with the number of iterations, for the detection and
recognition task respectively. We can see that the decre-
ment in loss is neither linear nor does it saturate or over-
shoot, indicating the learning rate is neither too low nor too
high during the CNN evaluation. All the plots are for the
CNN 2 architecture.

From Table 3, we see that our detection CNN performs
remarkably well, and would be thus expected to barely con-
tribute to any impediment to the performance of an end-to-
end system. An output of our full-blown end-to-end text
recognition system is depicted in Fig 16.

6. Conclusion and Future Work

In this report, we have described a method to perform
end-to-end text detection and recognition in natural images.
We have demonstrated state-of-the-art results on character
detection and recognition tasks. We also introduce Fuzzy

Figure 16. Output of the end-to-end system

Character Search and circumvent the assumption of prior
knowledge of a 20-30 word lexicon, which the previous
methods make. However, there are more ways in which the
performance of text recognition can be improved.

In our experiments, we observed that the system gets
confused between 0 and O, 1 and I etc. To help resolve
these cases better, it would help to have a CNN dedicated
to predicting whether a given patch contains a letter or a
digit, and after that predict the character. Secondly, since
the letter I occupies lesser width than other letters, the slid-
ing window that contains I will also contain its preceding or
succeding letters. So, it would be helpful to train the recog-
nition CNN to recognize bi-grams that contain I, instead of
I alone.

Figure 17. The top image is the input image. The bottom image
is the detection CNN scores profile. Notice the spurious repeated
peak between positions 20 and 30.

Once we have text-containing bounding boxes, apart
from the confidence margins for each window, we also have
the detection and recognition scores. We can also compute
the variance in relative spacings between consecutive peaks,
which will be useful in pruning spurious detection peaks
that survive NMS, like the third peak in Fig 17. Each of
these metrics are useful features in determining the right
word. So, we can train a classifier to learn a complex func-

6



tion of these features, to predict the final word, given a
bounding box. We are confident that a more complex linear
function learned through a classifier can improve the fuzzy
search algorithm significantly.

References
[1] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, 2005.
[2] T. de Campos, B. R. Babu, and M. Varma. Character recogni-

tion in natural images. International Conference on Computer
Vision Theory and Applications, 2009.

[3] B. Epshtein, E. Ofek, and Y. Wexler. Detecting text in natural
scenes with stroke width transform. Computer Vision and Pat-
tern Recognition (CVPR), 2010 IEEE Conference on. IEEE.

[4] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Computer Science Department,
University of Toronto, Technical Report 1.4 (2009): 7.

[5] S. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and
R. Young. Icdar 2003 robust reading competition. ICDAR,
2003.

[6] L. Neumann and J. Matas. A method for text localization and
recognition in real-world images. In ACCV, 2010.

[7] K. Wang, B. Babenko, and S. Belongie. End-to-end scene text
recognition. Computer Vision (ICCV), 2011 IEEE Interna-
tional Conference on. IEEE, 2011.

[8] T. Wang, D. Wu, A. Coates, and A. Y. Ng. End-to-end
text recognition with convolutional neural networks. Pattern
Recognition (ICPR), 2012 21st International Conference on.
IEEE.

7


