

Abstract

Our project is meant to implement a full pipeline for
recognizing the text of any input image. We separate our
project into two parts, the segmentation of an image into
individual characters, followed by classifying these
images into their respective character labels. Our
approach builds upon Lecun et. al. in digit recognition,
and applies the techniques to characters recognition (a-z,
A-Z, 0-9). In particular, we use architectures involving
shallow as well as deep neural networks that expands on
the classifiers trained by de Campos et. al.

1. Introduction

Our project tackles the problem of character classification
in natural handwritten images. Previous work in the area
include utilizing several supervised learning algorithms
such as K nearest neighbors, support vector machine, and
stochastic gradient descent to classify the images. They
do not create any two layer or deep convolutional neural
networks, so this project extends their work by testing
several architectures in an attempt to decrease the
classification errors.. LeCun et al. (1998) on the other
hand does use several Convolutional Neural Networks
(CNNs) for their digit recognition work, giving us a basis
off of which to refer to and apply it to a more complicated
problem. In addition to the recognition of handwritten
characters individually, we create a pipeline that allows
any image of handwritten text to be passed in and
segmented into separate characters. Our final project will
allow essentially any image of a document or note to be
segmented and translated to a digitized version.

2. Background and Related Work

2.1. LeCun et. al. (1998)

This paper is the original inspiration and basis for the
improvements in accuracy we made to the character
dataset. The paper describes the process they used to
achieve up to a 99.1% accuracy on the MNIST dataset,
using both a 3-layer convolutional network and a 5-layer

network that failed to outperform the former.
Additionally, the paper discusses the problem of
segmentation, and how it cannot be decoupled from the
recognition of isolated characters. Essentially, making the
decision to segment an image with multiple characters
before the recognition of individual characters is not
optimal, as the process should be parallelized to test
multiple hypotheses at the same time. In terms of feature
extraction, LeCun et. al. argues that humans cannot
possibly capture all relevant information from images and
even coming close requires expert knowledge on the
subject, so instead they resorted to utilizing Gradient-
Based Learning to learn the useful features for the images.

2.2. De Campos et. al. (2009)

This paper introduces the Chars74K dataset that we used
to train and evaluate our convolutional network. While
the authors here did not implement conv nets for their
own problem, we will compare our results using the
techniques and architectures described in LeCun et. al. in
order to outperform the results presented in this paper.
Some of the features that DeCampos et. al. use to train
their classifiers include geometric blur, spin image, as
well as affine transformations. With a maximum accuracy
of 55.25% achieved by the paper, we can immediately see
that the problem of character recognition in addition to
simply digits is a much harder problem that potentially
requires a different approach.

2.3. Choudhary (2014)

The second part of our proposed problem is extending our
solution from beyond just individual characters and
recognizing words and multi-digit numbers. The classical
approach to optical character recognition (OCR) is
finding the next character image, extract distinguishing
attributes of the character image, and matching the given
symbol to a best match and outputting its identity. With
the previously designed neural network from the first part
of the problem, we will already have the solution to the
last part of the algorithm.

Recognizing Handwritten Digits and Characters

Vishnu Sundaresan
Stanford University

vishnu@stanford.edu

Jasper Lin
Stanford University

jasperlin@stanford.edu

From reviewing literature, there are three main strategies
for segmentation, plus numerous hybrid approaches.
These three approaches are dissection, recognition based,
and holistic methods. Dissection is the process of cutting
the image into meaningful components and passed
individually into our classifier. When using dissection, the
segmentation becomes the most crucial step in the
recognition process. By far the most common approach
used by researchers, this approach tries to find the
presence of ligatures (interconnections between
characters) and cut the word image through these
ligatures. Recognition based segmentation searches the
image for components that match a predetermined
alphabet. These approaches take advantage of the Hidden
Markov model (HMM), bypassing the need for complex
dissection algorithms. This approach has also been called
“segmentation-free” recognition.

3. Technical Approach

3.1. Character Recognition

For training on the MNIST dataset, we will implement
different neural networks and convolutional neural
networks architectures and compare the accuracy of the
different architectures. The large collection of examples
and potentially complex characters due to variability in
handwriting makes using multi-layer networks trained
with gradient descent an obvious candidate for
recognition tasks. LeCun et al. (1998) implemented a
seven layer convolutional neural network not including
the input layer that had an error rate of 0.9% on the
MNIST dataset. We will try to at least meet this error rate
and possibly improve on the result by implementing
newer concepts like dropout in our network. Like LeCun
et al., we will also implement a basic linear classifier and
k-nearest neighbors classifier to establish a minimum
baseline for our neural networks. We expect the digits
classifiers to outperform the characters classifiers due to
only 10 different classifications instead of 62.

Moving on to the character dataset, we plan on
implementing the supervised classifier models used in de
Campos et. al. (2009) and attain a similar accuracy, as
well as incorporate the techniques used in LeCun et al.
with respect to shallow and deep convolutional neural
networks. In particular, we can implement the convnet
architecture used in the Lecun et al. paper, use transfer
learning with a larger network, as well as implement and
train a common architecture discussed in class.

3.2. Convolutional Neural Networks

Our first goal was to use the same LeNet architecture used

for training and evaluating the MNIST dataset. This
architecture consisted of a (conv -> pool)x2 -> FC -> relu
-> FC -> Softmax (Figure 1 on next page) convnet that is
2 layers deep, meant to recognize characters from the 10
digit classes. Next, we chose to try a deeper, 8 layer
AlexNet, which would solve some of the problems related
to the shallower LeNet meant to classify only 10 digits.
Due to the large training time associated with such a large
network, we used transfer learning and fine-tuning to use
the weights of the pretrained AlexNet, and input our own
character images. We realize that the hyper parameters
and dropout rates used in AlexNet were likely not optimal
for our Chars74K dataset, so we tuned the learning rate,
momentum, and dropout percentage with a smaller set of
images, as well as between layers of the convnet.

Finally, we came to the realization that the smaller LeNet
could be improved in order to better recognize the larger
number of classes, as well as the larger AlexNet was
unnecessary and over fitted the training data due to the
fewer number of features associated with characters as
opposed to natural images. We then created our own
network that was based from models discussed in class,
specifically the (conv -> relu -> pool)x3 -> FC ->
Softmax architecture (Figure 2 on next page). As before,
we tuned the hyper parameters, experimented with
dropout rates, and used data augmentation as well as
rotation to best fit the model to our dataset and capture the
relevant features.

3.3. Segmentation

3.3.1. Image Preprocessing

Slope and slant correction of handwritten words are
necessary to reduce the variations in handwriting styles.
Careful estimation of the slope and slant can make the
following segmentation process much simpler. In the
ideal scenario, a word is written horizontally with
ascenders and descenders aligned in the vertical direction.
However, this is rarely the case. Slope is defined as the
angle between the horizontal direction and the direction of
the line the word is aligned. Slant is defined as the angle
between vertical direction and the direction of strokes
supposed to be vertical. Before segmentation occurs, we
should work to eliminate both of these angles.

To handle the slant estimation, we referred to the work
done by Papandreou et. al. First, the word’s core region is
found using black run profiles. From there, we can divide
the core region into vertical strips and determine the
centroid for each region and fit a straight line through the
centroids. In addition, this calculation also provides an
estimation of the average thickness of the stroke, which
will be used in slant correction.

Figures A and B – stroke thickness

Given a binary image, the core-region of a word is
defined as the region between the upper baseline and the
lower baseline (Figure A). To detect the core region, we
count the number of horizontal black runs in each line.
The horizontal black run profile H(y) is defined as
follows:

𝐻 𝑦 = |𝐵 𝑦 |! 𝑗
! !"

!!!

! !

!!!

Where B(y) is the number of black runs in horizontal line
(y) and L(i,y) is the length of the ith black run of line y.
We can convert this value to a Boolean horizontal profile
as follows:

𝐻! 𝑦 = 1 | 𝐻 𝑦 > 𝑇!

𝑇! =
0.15
𝐼!

𝐻 𝑦

!!!!

!!!

The result of this thresholding is shown in Figure B.
Lastly, we can determine the upper baseline (UB) and
lower baseline (LB) as:

𝑈𝐵, 𝐿𝐵 = 𝑠! , 𝑒!

𝑘 = argmax
!

𝐻(𝑦)

!!

!!!!

Through running these computations, we can also
determine the character stroke width by determining the
modal value of the lengths of horizontal black runs.
Next, we can correct the slant in a word by convolving
Gabor filters with our images. We can use the Gabor filter
to create different filters corresponding to different length
scales and orientations to determine the slant in the word.

A Gabor filter is a linear filter that is often used for edge
detection and is the product of a Gaussian function and a
harmonic function:

𝜆 is equivalent to the height of the core region of the word
and BW, the bandwidth, is assumed to be 1. We test
different Gabor filters from ±60 degrees for each word.

Figure C – Gabor filter correction

3.3.2 Word Segmentation

We chose to use a vertical projection of each image to
determine where the segmentation points in the word are.
The vertical projection is determined by the sum of all the
white pixels along a line in the vertical direction,
accomplished by passing the average thickness of each
stroke to the algorithm and using that as the threshold to
determine cutoffs. If, at any point in the image, there are
less black pixels in one vertical run than the stroke
thickness, this is likely the tailing end of a character or
white space. This technique has been previously explored
by Jagannathan et. al (2013) on datasets of license plates.

Figure 1 - LeNet Architecture

Figure 2 – Our Architecture

4. Experiments

4.1. Dataset

We are currently using the MNIST handwritten digit
database for the digit recognition, and the Chars74K
dataset for character recognition (sample characters
shown in Figure 3). All images will be of size 28x28
(256x256x3 for the character dataset), and we will use
transfer learning to train a neural network on the smaller
number of digits classes before training on the character
dataset. We have split each dataset into a train and test
portion, as well as running cross validation on 10% of the
train set in order to tune our hyper parameters and
determine which model works the best.

Figure 3 – sample images from Chars74K dataset

In addition, we will implement segmentation algorithms
and our trained CNN on the Street View House Numbers
(SVHN) dataset to test the recognition of numbers from a
harder, unsolved, real world problem (recognizing digits
and numbers in natural scene images). SVHN is obtained
from house numbers in Google Street View images.

4.2. Expected Results and Evaluation Criteria

We will evaluate our results based mostly on the accuracy
of character recognition for each of the different
algorithms we implement. Qualitatively, this will translate
these different accuracies and plot them with different
constraints such as size of training and test sets, learning
over time, and limiting to lowercase/uppercase alphabetic
characters. For each of our different models, we will
evaluate both a training error that utilizes cross validation,
as well as the test error on a separate set to avoid over
fitting our model. For the convolutional neural network
architectures that we are experimenting with, we will also
take into account the performance as a possible factor
given the time period of our project.

4.3. Linear Classifiers

We created a linear classifier that utilizes stochastic
gradient descent, taking in 30000 images from the
MNIST dataset and training the model with each image’s
respective digit label. We then took a different set of 5000
images also in our dataset as the test set, and calculated
the accuracy on both the train and test set of data. We
achieved a train accuracy of 88.03%, and a test accuracy
of 88.69%. This is a reasonable baseline for us to begin
with, with the possibility of increasing this accuracy. In
terms of the Chars74K dataset, we split the total of 8000
naturally occurring character images and split them into
6400 train and 1600 test images. This resulted in a test
accuracy of 30.15%, clearly far below that of the MNIST
dataset.

4.4. K-Nearest Neighbors

We created a k-nearest neighbors classifier that computed
the nearest 100 neighbors to each image, and classifies the
point based on those neighbors. Similar to the linear
classifier described above, we first fit the model using
30000 training images and labels, before testing on a
different set of 5000 images. We achieved a train
accuracy of 93.73%, and a test accuracy of 93.28%.
Likewise for the Chars74K dataset, we were able to
achieve a test accuracy of 35.47%. Comparing these
results in the linear and KNN classifiers to that in
DeCampos, our lack of extensive feature extraction
besides augmenting images and rotating to correct for
slant can clearly be seen. Each of our test accuracies
underperformed their respective counterparts by around
10%, leaving a huge room for improvement when
implementing our convolutional networks.

4.4. LeNet Architecture

The most similar problem to the one of character
recognition is that of digits, which was tackled by LeCun
with respect to the MNIST digits dataset. The
convolutional network presented in their paper is a 2-layer
network, tuned and fit to best represent the 10 classes of
digits in the dataset. We can see from Figure 4 that the
training and test error quickly reach a maximum of
99.05% accuracy in 10000 iterations for the MNIST
dataset. When using this same architecture (Figure 1) and
passing in the Chars74K dataset as input instead, we get
an accuracy of 45.36%, slightly better than the linear and
KNN classifier results above. The two-layer network
without any dropout is clearly is not deep enough to
capture all the features of each class of character,
suggesting that a deeper network is necessary to best
solve this problem

Figure 4 – MNIST accuracy
(train = blue, test = green)

4.5. AlexNet Architecture (Transfer Learning)

Going off the realization that the LeNet architecture was
too shallow and simple to fit the character dataset, we
looked next to use transfer learning and fine-tuning to use
the pretrained AlexNet model and utilize it for our
character recognition. Figure 5 below shows the plot of
training and test accuracy over 10000 iterations with
weights being initialized to that of the pretrained AlexNet.
The test accuracy a peak of 63.38%, but even with a
dropout ratio of 0.8 the model is clearly overfitting our
training data heavily. This suggests that the convnet is
larger than necessary, and that a smaller network may
result in a higher accuracy given that the problem of
overfitting can be resolved.

Another observation we made is that while pictures of
naturally occurring objects and creatures may have many
aspects that change from image to image, something that
AlexNet is meant to work well with, characters are less
diverse and follow some of the same patterns regardless
of how they occur. With such a deep network, certain
features of characters in the training set could have been
learned that are not indicative of the class overall, leading
to overfitting and misclassification of test data.

Figure 5 – Chars74K using AlexNet architecture
(train = blue, test = green)

4.6. Three-Layer Custom Architecture

We chose to implement the 3-layer architectures in Figure
1, and trained it using the Chars74K dataset. In tuning the
hyper parameters, we first began with a coarse granularity
search for an appropriate learning rate. Figure 6 shows
our experiment, with the loss decreasing most rapidly
around a learning rate of up to 0.001, and becoming
infinite at a higher rate.

Figure 6 – Learning Rate Tuning

In order to augment and extract the most useful features
from our dataset, we used Caffe’s built in data
augmentation ability, as well as creating additional
images that accounted for their slant using techniques
incorporated from the segmentation aspect of our project.
Initially, training our convnet for 10000 iterations
produced a similar result to that of the fine-tuned AlexNet
(Figure 7 below), but without any dropout layers
implemented.

Figure 7 – Dropout Rate = 0%

We then added a dropout layer before our fully connected
layer, and slowly increased the number of neurons being
zeroes out until the training accuracy began to align with
the validation accuracy (Figures 8 and 9).

Figure 8 – Dropout Rate = 50%

Figure 9 – Dropout Rate = 80%

Finally after close tuning of the learning rate, momentum,
dropout percentage, and appropriate data augmentation,
we achieved a maximum test accuracy of 71.69%, over
15% higher than the best results obtained by the
DeCampos paper. Below (Figure 10) are some of the
weights outputted from the first convolutional layer.
There is a clear structure to these weights, and the shapes
of certain characters can even be discerned, reinforcing
the notion that characters of the same class have very
similar structure and features. Additionally, if we use this
same architecture and train the convnet using the MNIST
digits dataset, we do not reach the same accuracy as the
LeNet architecture, thus supporting our observation that
certain architectures lend themselves better to certain
problems.

4.7. Segmentation

The first step to processing images in order to get
reasonable segments is the slant correction. Figure 11
shows a few examples of slope and slant corrected images

Figure 10 – Learned Weights
(First conv layer, first 16 outputs)

from the IAM dataset. These applied corrections are
essential to the segmentation process. Looking at the
“should”, we can see that without the slant correction, the
vertical projection would have only segmented the image
at the space between the “s” and the “h.” With the
corrected image, each character is better defined and the
vertical projection can more accurately distinguish the
characters.

Figure 11 – sample slant correction

One of the problems that arise with input word images is
the overlapping of characters. In Figure 12, we see that
the word “MOVE” is correctly segmented into four
separate letters. However, the algorithm only finds one
segmentation point in “Life.” This a problem due to the
presence of many overlapping letters in the handwritten
words. The lack of uniformity in handwritten text makes
it difficult to apply a simple vertical projection algorithm.

Figure 12 – sample segmentation

As a result of this possible source of error, many of our
segmented character images under-segmented the word
images. However, to test if the general segmentation
algorithm was correct, we filtered our image segmentation
outputs to only include words that had the same number
of segmentation points as number of characters before we
tested the individual images on our trained convnet. Of
the 1500 segmented characters that we tested, we had a
55.47% accuracy. This lower percentage in comparison
to the accuracy of the Chars74K data makes sense
because the learned weights from our convnet were
directly used, without any additional fine-tuning or
backwards passes to fit the network to our new data.

5. Conclusions

 MNIST Chars74K
KNN 0.9328 0.3547
Linear Classifier 0.8869 0.3015
LeNet 0.9905 0.4536
AlexNet ~ 0.6338
Our Convnet 0.9812 0.7169
DeCampos ~ 0.5526

Table 1 – Aggregation of Test Accuracies

Experimenting with different possible optimal
architectures has left us with the realization that even for
very similar datasets, the choice of a proper architecture is
extremely important. We saw that when using the LeNet
architecture on the Chars74K dataset, the performance
was far below the best accuracy we obtained. We also
saw that blindly using a deep and complicated network is
not the best choice either. While fine-tuning and data
augmentation, as well as feature extraction in slant
correction did improve our results, the complexity of the
network either in being unable to capture all features or
capturing unimportant features will result in the largest
improvements.

 Accuracy
Segmentation Accuracy 0.2316
Recognition Given Correct Segmentation 0.5547

Table 2 – Segmentation Pipeline Accuracies

One of the most important takeaways from this project
was discovering the importance of not separating the
segmentation and recognition processes. It is far easier to
develop a pipeline that utilizes the recognition system to
determine where the characters are located in a word
image. One solution would be to pass data to the neural
network by utilizing a sliding window. Using a softmax
classifier, the neural network return a certain probability
that a character exists. By finding a local maximum for

the probability in some search small space, we can
determine where the characters are.

6. References

[1] T. E. de Campos, B. R. Babu, and M. Varma.

Character recognition in natural images. In
Proceedings of the International Conference on
Computer Vision Theory and Applications, Lisbon,
Portugal, February 2009.

[2] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.

(1998). Gradient-based learning applied to document
recognition.

[3] Choudhary, A. A Review of Various Character

Segmentation Techniques for Cursive Handwritten
Words Recognition. International Journal of
Information & Computation Technology. 2014.

[4] Gupta, J., Chanda, B. Novel Methods for Slope and

Slant Correction of Off-line Handwritten Text Word.
Third International Conference on Emerging
Applications of Information Technology. 2012.

[5] Papandreou, A., Gatos, B., Slant estimation and core

detection for handwritten Latin words. Pattern
Recognition Letters. 2014.

