
 

 

Abstract
 
Our project is meant to implement a full pipeline for 
recognizing the text of any input image. We separate our 
project into two parts, the segmentation of an image into 
individual characters, followed by classifying these 
images into their respective character labels. Our 
approach builds upon Lecun et. al. in digit recognition, 
and applies the techniques  to characters recognition (a-z, 
A-Z, 0-9). In particular, we use architectures involving 
shallow as well as deep neural networks that expands on 
the classifiers trained by de Campos et. al. 

1. Introduction 

Our project tackles the problem of character classification 
in natural handwritten images. Previous work in the area 
include utilizing several supervised learning algorithms 
such as K nearest neighbors, support vector machine, and 
stochastic gradient descent to classify the images. They 
do not create any two layer or deep convolutional neural 
networks, so this project extends their work by testing 
several architectures in an attempt to decrease the 
classification errors.. LeCun et al. (1998) on the other 
hand does use several Convolutional Neural Networks 
(CNNs) for their digit recognition work, giving us a basis 
off of which to refer to and apply it to a more complicated 
problem. In addition to the recognition of handwritten 
characters individually, we create a pipeline that allows 
any image of handwritten text to be passed in and 
segmented into separate characters. Our final project will 
allow essentially any image of a document or note to be 
segmented and translated to a digitized version. 
 
2. Background and Related Work 
 
2.1. LeCun et. al. (1998) 
 
This paper is the original inspiration and basis for the 
improvements in accuracy we made to the character 
dataset. The paper describes the process they used to 
achieve up to a 99.1% accuracy on the MNIST dataset, 
using both a 3-layer convolutional network and a 5-layer 

network that failed to outperform the former. 
Additionally, the paper discusses the problem of 
segmentation, and how it cannot be decoupled from the 
recognition of isolated characters. Essentially, making the 
decision to segment an image with multiple characters 
before the recognition of individual characters is not 
optimal, as the process should be parallelized to test 
multiple hypotheses at the same time. In terms of feature 
extraction, LeCun et. al. argues that humans cannot 
possibly capture all relevant information from images and 
even coming close requires expert knowledge on the 
subject, so instead they resorted to utilizing Gradient-
Based Learning to learn the useful features for the images. 
 
2.2. De Campos et. al. (2009) 
 
This paper introduces the Chars74K dataset that we used 
to train and evaluate our convolutional network. While 
the authors here did not implement conv nets for their 
own problem, we will compare our results using the 
techniques and architectures described in LeCun et. al. in 
order to outperform the results presented in this paper. 
Some of the features that DeCampos et. al. use to train 
their classifiers include geometric blur, spin image, as 
well as affine transformations. With a maximum accuracy 
of 55.25% achieved by the paper, we can immediately see 
that the problem of character recognition in addition to 
simply digits is a much harder problem that potentially 
requires a different approach. 
 
2.3. Choudhary (2014) 
 
The second part of our proposed problem is extending our 
solution from beyond just individual characters and 
recognizing words and multi-digit numbers. The classical 
approach to optical character recognition (OCR) is 
finding the next character image, extract distinguishing 
attributes of the character image, and matching the given 
symbol to a best match and outputting its identity. With 
the previously designed neural network from the first part 
of the problem, we will already have the solution to the 
last part of the algorithm. 
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From reviewing literature, there are three main strategies 
for segmentation, plus numerous hybrid approaches. 
These three approaches are dissection, recognition based, 
and holistic methods. Dissection is the process of cutting 
the image into meaningful components and passed 
individually into our classifier. When using dissection, the 
segmentation becomes the most crucial step in the 
recognition process. By far the most common approach 
used by researchers, this approach tries to find the 
presence of ligatures (interconnections between 
characters) and cut the word image through these 
ligatures. Recognition based segmentation searches the 
image for components that match a predetermined 
alphabet. These approaches take advantage of the Hidden 
Markov model (HMM), bypassing the need for complex 
dissection algorithms. This approach has also been called 
“segmentation-free” recognition.  
 
3. Technical Approach 
 
3.1. Character Recognition 
 
For training on the MNIST dataset, we will implement 
different neural networks and convolutional neural 
networks architectures and compare the accuracy of the 
different architectures. The large collection of examples 
and potentially complex characters due to variability in 
handwriting makes using multi-layer networks trained 
with gradient descent an obvious candidate for 
recognition tasks. LeCun et al. (1998) implemented a 
seven layer convolutional neural network not including 
the input layer that had an error rate of 0.9% on the 
MNIST dataset. We will try to at least meet this error rate 
and possibly improve on the result by implementing 
newer concepts like dropout in our network. Like LeCun 
et al., we will also implement a basic linear classifier and 
k-nearest neighbors classifier to establish a minimum 
baseline for our neural networks. We expect the digits 
classifiers to outperform the characters classifiers due to 
only 10 different classifications instead of 62. 
 
Moving on to the character dataset, we plan on 
implementing the supervised classifier models used in de 
Campos et. al. (2009) and attain a similar accuracy, as 
well as incorporate the techniques used in LeCun et al. 
with respect to shallow and deep convolutional neural 
networks. In particular, we can implement the convnet 
architecture used in the Lecun et al. paper, use transfer 
learning with a larger network, as well as implement and 
train a common architecture discussed in class. 
 
3.2. Convolutional Neural Networks 
 
Our first goal was to use the same LeNet architecture used 

for training and evaluating the MNIST dataset. This 
architecture consisted of a (conv -> pool)x2 -> FC -> relu 
-> FC -> Softmax (Figure 1 on next page) convnet that is 
2 layers deep, meant to recognize characters from the 10 
digit classes. Next, we chose to try a deeper, 8 layer 
AlexNet, which would solve some of the problems related 
to the shallower LeNet meant to classify only 10 digits. 
Due to the large training time associated with such a large 
network, we used transfer learning and fine-tuning to use 
the weights of the pretrained AlexNet, and input our own 
character images. We realize that the hyper parameters 
and dropout rates used in AlexNet were likely not optimal 
for our Chars74K dataset, so we tuned the learning rate, 
momentum, and dropout percentage with a smaller set of 
images, as well as between layers of the convnet. 
 
Finally, we came to the realization that the smaller LeNet 
could be improved in order to better recognize the larger 
number of classes, as well as the larger AlexNet was 
unnecessary and over fitted the training data due to the 
fewer number of features associated with characters as 
opposed to natural images. We then created our own 
network that was based from models discussed in class, 
specifically the (conv -> relu -> pool)x3 -> FC -> 
Softmax architecture (Figure 2 on next page). As before, 
we tuned the hyper parameters, experimented with 
dropout rates, and used data augmentation as well as 
rotation to best fit the model to our dataset and capture the 
relevant features. 
 
3.3. Segmentation 
 
3.3.1. Image Preprocessing 
 
Slope and slant correction of handwritten words are 
necessary to reduce the variations in handwriting styles. 
Careful estimation of the slope and slant can make the 
following segmentation process much simpler. In the 
ideal scenario, a word is written horizontally with 
ascenders and descenders aligned in the vertical direction. 
However, this is rarely the case. Slope is defined as the 
angle between the horizontal direction and the direction of 
the line the word is aligned. Slant is defined as the angle 
between vertical direction and the direction of strokes 
supposed to be vertical. Before segmentation occurs, we 
should work to eliminate both of these angles. 
 
To handle the slant estimation, we referred to the work 
done by Papandreou et. al. First, the word’s core region is 
found using black run profiles. From there, we can divide 
the core region into vertical strips and determine the 
centroid for each region and fit a straight line through the 
centroids.  In addition, this calculation also provides an 
estimation of the average thickness of the stroke, which 
will be used in slant correction.



 

 

 

 

 

 
Figures A and B – stroke thickness 

 
Given a binary image, the core-region of a word is 
defined as the region between the upper baseline and the 
lower baseline (Figure A). To detect the core region, we 
count the number of horizontal black runs in each line. 
The horizontal black run profile H(y) is defined as 
follows: 
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Where B(y) is the number of black runs in horizontal line 
(y) and L(i,y) is the length of the ith black run of line y. 
We can convert this value to a Boolean horizontal profile 
as follows: 
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The result of this thresholding is shown in Figure B. 
Lastly, we can determine the upper baseline (UB) and 
lower baseline (LB) as:  
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Through running these computations, we can also 
determine the character stroke width by determining the 
modal value of the lengths of horizontal black runs.  
Next, we can correct the slant in a word by convolving 
Gabor filters with our images. We can use the Gabor filter 
to create different filters corresponding to different length 
scales and orientations to determine the slant in the word. 

A Gabor filter is a linear filter that is often used for edge 
detection and is the product of a Gaussian function and a 
harmonic function: 

  
 
 
 
 
 
 
 
 
𝜆 is equivalent to the height of the core region of the word 
and BW, the bandwidth, is assumed to be 1. We test 
different Gabor filters from ±60 degrees for each word.   
 
 
 
 
 
 
 
 
 
 

Figure C – Gabor filter correction 
 
3.3.2 Word Segmentation 
 
We chose to use a vertical projection of each image to 
determine where the segmentation points in the word are. 
The vertical projection is determined by the sum of all the 
white pixels along a line in the vertical direction, 
accomplished by passing the average thickness of each 
stroke to the algorithm and using that as the threshold to 
determine cutoffs. If, at any point in the image, there are 
less black pixels in one vertical run than the stroke 
thickness, this is likely the tailing end of a character or 
white space. This technique has been previously explored 
by Jagannathan et. al (2013) on datasets of license plates. 
 

Figure 1 - LeNet Architecture 

Figure 2 – Our Architecture 



 

 

4. Experiments 
 
4.1. Dataset 
 
We are currently using the MNIST handwritten digit 
database for the digit recognition, and the Chars74K 
dataset for character recognition (sample characters 
shown in Figure 3). All images will be of size 28x28 
(256x256x3 for the character dataset), and we will use 
transfer learning to train a neural network on the smaller 
number of digits classes before training on the character 
dataset. We have split each dataset into a train and test 
portion, as well as running cross validation on 10% of the 
train set in order to tune our hyper parameters and 
determine which model works the best. 

 
Figure 3 – sample images from Chars74K dataset 
 
In addition, we will implement segmentation algorithms 
and our trained CNN on the Street View House Numbers 
(SVHN) dataset to test the recognition of numbers from a 
harder, unsolved, real world problem (recognizing digits  
and numbers in natural scene images). SVHN is obtained 
from house numbers in Google Street View images. 
 
4.2. Expected Results and Evaluation Criteria 
 
We will evaluate our results based mostly on the accuracy 
of character recognition for each of the different 
algorithms we implement. Qualitatively, this will translate 
these different accuracies and plot them with different 
constraints such as size of training and test sets, learning 
over time, and limiting to lowercase/uppercase alphabetic 
characters. For each of our different models, we will 
evaluate both a training error that utilizes cross validation, 
as well as the test error on a separate set to avoid over 
fitting our model. For the convolutional neural network 
architectures that we are experimenting with, we will also 
take into account the performance as a possible factor 
given the time period of our project. 
 
4.3. Linear Classifiers 

 
We created a linear classifier that utilizes stochastic 
gradient descent, taking in 30000 images from the 
MNIST dataset and training the model with each image’s 
respective digit label. We then took a different set of 5000 
images also in our dataset as the test set, and calculated 
the accuracy on both the train and test set of data. We 
achieved a train accuracy of 88.03%, and a test accuracy 
of 88.69%. This is a reasonable baseline for us to begin 
with, with the possibility of increasing this accuracy. In 
terms of the Chars74K dataset, we split the total of 8000 
naturally occurring character images and split them into 
6400 train and 1600 test images. This resulted in a test 
accuracy of 30.15%, clearly far below that of the MNIST 
dataset. 
 
4.4. K-Nearest Neighbors 
 
We created a k-nearest neighbors classifier that computed 
the nearest 100 neighbors to each image, and classifies the 
point based on those neighbors. Similar to the linear 
classifier described above, we first fit the model using 
30000 training images and labels, before testing on a 
different set of 5000 images. We achieved a train 
accuracy of 93.73%, and a test accuracy of 93.28%. 
Likewise for the Chars74K dataset, we were able to 
achieve a test accuracy of 35.47%. Comparing these 
results in the linear and KNN classifiers to that in 
DeCampos, our lack of extensive feature extraction 
besides augmenting images and rotating to correct for 
slant can clearly be seen. Each of our test accuracies 
underperformed their respective counterparts by around 
10%, leaving a huge room for improvement when 
implementing our convolutional networks. 
 
4.4. LeNet Architecture 
 
The most similar problem to the one of character 
recognition is that of digits, which was tackled by LeCun 
with respect to the MNIST digits dataset. The 
convolutional network presented in their paper is a 2-layer 
network, tuned and fit to best represent the 10 classes of 
digits in the dataset. We can see from Figure 4 that the 
training and test error quickly reach a maximum of 
99.05% accuracy in 10000 iterations for the MNIST 
dataset. When using this same architecture (Figure 1) and 
passing in the Chars74K dataset as input instead, we get 
an accuracy of 45.36%, slightly better than the linear and 
KNN classifier results above. The two-layer network 
without any dropout is clearly is not deep enough to 
capture all the features of each class of character, 
suggesting that a deeper network is necessary to best 
solve this problem 



 

 

 
Figure 4 – MNIST accuracy 
(train = blue, test = green) 

 
4.5. AlexNet Architecture (Transfer Learning) 
 
Going off the realization that the LeNet architecture was 
too shallow and simple to fit the character dataset, we 
looked next to use transfer learning and fine-tuning to use 
the pretrained AlexNet model and utilize it for our 
character recognition. Figure 5 below shows the plot of 
training and test accuracy over 10000 iterations with 
weights being initialized to that of the pretrained AlexNet.  
The test accuracy a peak of 63.38%, but even with a 
dropout ratio of 0.8 the model is clearly overfitting our 
training data heavily. This suggests that the convnet is 
larger than necessary, and that a smaller network may 
result in a higher accuracy given that the problem of 
overfitting can be resolved. 
 
Another observation we made is that while pictures of 
naturally occurring objects and creatures may have many 
aspects that change from image to image, something that 
AlexNet is meant to work well with, characters are less 
diverse and follow some of the same patterns regardless 
of how they occur. With such a deep network, certain 
features of characters in the training set could have been 
learned that are not indicative of the class overall, leading 
to overfitting and misclassification of test data. 

 

Figure 5 – Chars74K using AlexNet architecture 
(train = blue, test = green) 

 
4.6. Three-Layer Custom Architecture 
 
We chose to implement the 3-layer architectures in Figure 
1, and trained it using the Chars74K dataset. In tuning the 
hyper parameters, we first began with a coarse granularity 
search for an appropriate learning rate. Figure 6 shows 
our experiment, with the loss decreasing most rapidly 
around a learning rate of up to 0.001, and becoming 
infinite at a higher rate. 

 
Figure 6 – Learning Rate Tuning 

 
 
In order to augment and extract the most useful features 
from our dataset, we used Caffe’s built in data 
augmentation ability, as well as creating additional 
images that accounted for their slant using techniques 
incorporated from the segmentation aspect of our project. 
Initially, training our convnet for 10000 iterations 
produced a similar result to that of the fine-tuned AlexNet 
(Figure 7 below), but without any dropout layers 
implemented. 
 

 
Figure 7 – Dropout Rate = 0% 

 



 

 

We then added a dropout layer before our fully connected 
layer, and slowly increased the number of neurons being 
zeroes out until the training accuracy began to align with 
the validation accuracy (Figures 8 and 9).  

 
Figure 8 – Dropout Rate = 50% 

 
Figure 9 – Dropout Rate = 80% 

 
Finally after close tuning of the learning rate, momentum, 
dropout percentage, and appropriate data augmentation, 
we achieved a maximum test accuracy of 71.69%, over 
15% higher than the best results obtained by the 
DeCampos paper. Below (Figure 10) are some of the 
weights outputted from the first convolutional layer. 
There is a clear structure to these weights, and the shapes 
of certain characters can even be discerned, reinforcing 
the notion that characters of the same class have very 
similar structure and features. Additionally, if we use this 
same architecture and train the convnet using the MNIST 
digits dataset, we do not reach the same accuracy as the 
LeNet architecture, thus supporting our observation that 
certain architectures lend themselves better to certain 
problems. 
 
4.7. Segmentation 
 
The first step to processing images in order to get 
reasonable segments is the slant correction. Figure 11 
shows a few examples of slope and slant corrected images  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 – Learned Weights 
(First conv layer, first 16 outputs) 

 
from the IAM dataset. These applied corrections are 
essential to the segmentation process. Looking at the 
“should”, we can see that without the slant correction, the 
vertical projection would have only segmented the image 
at the space between the “s” and the “h.” With the 
corrected image, each character is better defined and the 
vertical projection can more accurately distinguish the 
characters. 

Figure 11 – sample slant correction 
 
One of the problems that arise with input word images is 
the overlapping of characters. In Figure 12, we see that 
the word “MOVE” is correctly segmented into four 
separate letters. However, the algorithm only finds one 
segmentation point in “Life.” This a problem due to the 
presence of many overlapping letters in the handwritten 
words. The lack of uniformity in handwritten text makes 
it difficult to apply a simple vertical projection algorithm. 
 

 
Figure 12 – sample segmentation 

 



 

 

As a result of this possible source of error, many of our 
segmented character images under-segmented the word 
images. However, to test if the general segmentation 
algorithm was correct, we filtered our image segmentation 
outputs to only include words that had the same number 
of segmentation points as number of characters before we 
tested the individual images on our trained convnet. Of 
the 1500 segmented characters that we tested, we had a 
55.47% accuracy. This lower percentage in comparison 
to the accuracy of the Chars74K data makes sense 
because the learned weights from our convnet were 
directly used, without any additional fine-tuning or 
backwards passes to fit the network to our new data. 
 
 
5. Conclusions 
 

 MNIST Chars74K 
KNN 0.9328 0.3547 
Linear Classifier 0.8869 0.3015 
LeNet 0.9905 0.4536 
AlexNet ~ 0.6338 
Our Convnet 0.9812 0.7169 
DeCampos ~ 0.5526 

Table 1 – Aggregation of Test Accuracies 
 
Experimenting with different possible optimal 
architectures has left us with the realization that even for 
very similar datasets, the choice of a proper architecture is 
extremely important. We saw that when using the LeNet 
architecture on the Chars74K dataset, the performance 
was far below the best accuracy we obtained. We also 
saw that blindly using a deep and complicated network is 
not the best choice either. While fine-tuning and data 
augmentation, as well as feature extraction in slant 
correction did improve our results, the complexity of the 
network either in being unable to capture all features or 
capturing unimportant features will result in the largest 
improvements. 
 
 Accuracy 
Segmentation Accuracy 0.2316 
Recognition Given Correct Segmentation 0.5547 

Table 2 – Segmentation Pipeline Accuracies 
 
One of the most important takeaways from this project 
was discovering the importance of not separating the 
segmentation and recognition processes. It is far easier to 
develop a pipeline that utilizes the recognition system to 
determine where the characters are located in a word 
image. One solution would be to pass data to the neural 
network by utilizing a sliding window. Using a softmax 
classifier, the neural network return a certain probability 
that a character exists. By finding a local maximum for 

the probability in some search small space, we can 
determine where the characters are. 
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