
Classifying Marine Microorganisms using Convolutional Neural Networks

Michael Xie
Stanford University

Stanford, CA
xie@cs.stanford.edu

Gene Lewis
Stanford University

Stanford, CA
glewis17@cs.stanford.edu

Abstract

Plankton populations are a critical part of diagnos-
ing ocean health. Plankton and other ocean microorgan-
isms form the base of the marine food chain and join ma-
rine ecological processes[7]. An optical imaging approach
would make it possible to automate the process of measur-
ing plankton populations, and thus aid in expert diagno-
sis of ocean ecosystem stability. We propose a Convolu-
tional Neural Network system for classifying plankton im-
ages. Baseline testing with a simple 3-layer ensemble Con-
volutional Neural Network yielded 56.8% validation accu-
racy and 79% training accuracy over 30k training images
of 121 classes of marine microorganisms. A medium sized
neural network with 7 layers yielded 95.7% training accu-
racy and 69% validation accuracy over 12 epochs. A fine-
tuned network from the pretrained VGG 16 layer network
from ISLVRC 2014 achieved 80.6% training accuracy and
64% validation accuracy over 3 epochs, but provided the
best testing performance, with 1.13 log-loss on the test set
with unknown labels.

1. Problem Introduction
From the Kaggle National Data Science Bowl

website[5]:

Traditional methods for measuring and monitor-
ing plankton populations are time consuming and
cannot scale to the granularity or scope necessary
for large-scale studies. Improved approaches are
needed. One such approach is through the use
of an underwater imagery sensor. This towed,
underwater camera system captures microscopic,
high-resolution images over large study areas.
The images can then be analyzed to assess species
populations and distributions.

Our role, then, is to build an image classification system
that achieves as high of an accuracy on unseen zoological

data as possible with as high a confidence as possible. This
is a classification problem in which we have arbitrarily sized
plankton images as input and we output all class probabil-
ities for each image. This means that, for each image, we
output 121 probabilities, one for each class, which sum to
1. This notion is formalized by calculating the log-loss for-
mula over all M classes for each given test image:

log-lossexample = −
M∑
j=1

yj log(pj),

Taking the average log-loss over all training examples N:

log-losstotal =
1

N

N∑
i=1

log-lossexample

= − 1

N

N∑
i=1

M∑
j=1

yij log(pij)

This objective formalizes our intuition about the perfor-
mance of our classifier; even if we achieve 100% test ac-
curacy, we can still improve our log-loss score by having
pi,jcorrect be as close to 1 as possible, where i denotes the
ith test image and jcorrect denotes the correct class for the
given test image. This problem formulation carries the im-
plicit constraint that we cannot be 100% certain about the
class of a test image and be incorrect, as the log-loss would
go to infinity; as a generalization, we see that this loss pe-
nalizes being both highly confident about a probability dis-
tribution for the classes for a test image and being wrong
about the class with the highest probability.

2. Approach
To aid in our attempt to classify marine microorganisms

by analyzing images, we use a Convolutional Neural Net-
work pipeline with stochastic data processing techniques to
improve performance. After outputting class probabilities
at the end of this pipeline, we introduce a method for spar-
sifying the probability vectors in order to further minimize
the log-loss. We tested our pipeline using three networks,

1



a 3-layer baseline network trained using a CPU, a 7-layer
custom network, and finetuning the VGG 16 model from
ISLVRC 2014[4].

3. Challenges

The plankton image dataset poses several challenges spe-
cial to the dataset. First, the images are variably sized,
grayscale, and non-natural. This poses problems in using
a pretrained network to do transfer learning. Pretrained net-
works such as those that are trained on ImageNet [8] are
trained for natural, color images. Second, the plankton can
be pictured in all orientations, and we must generalize to
all these orientations. Third, the images have roughly the
same texture; pretrained networks such as VGG are partic-
ularly good at deducing the classification of an image from
texture, but this information do not particularly visually sep-
arate the plankton classes. The plankton classes are decid-
edly dependent on shape; some classes are subclasses of the
same species grouped by their shape only. Lastly, the pres-
ence of several “unknown” classes that semantically mean
“things that don’t fit into any of the other classes” are hard
to train for, as they can have large variation and are not nec-
essarily well represented in the training set. We will try to
address all of these challenges in our approach.

3.1. Data Processing

The data is provided by the Hatfield Marine Science
Center at Oregon University. The training data consists of
30336 images of 121 classes of marine microorganisms.
The images are grayscale (black on white background),
with varying dimensions. We first pre-process the data by
equally padding both sides of the smaller dimension of each
image to transform each image to be square. Since every
image is mostly centered and cropped to fit to begin with,
square padding preserves centering. We then scale the im-
ages to a uniform square dimension. Be rescaling from a
square image to a square image, we do not distort the shape
of the original data. This is important since the plankton
are highly differentiated by shape. For our baseline results,
we scaled the images to 64 by 64 grayscale images. For
our 7 layer neural network, we scaled the images to 128
by 128 grayscale images. For the VGG 16 network, we
scaled the images to 224 by 224, duplicating the grayscale
image across color channels. The dimensions of the orig-
inal images range from 30 pixels in the largest dimension
to 250 pixels in the largest dimension; thus, there is an
information-loss to computing time tradeoff when scaling
the images to a uniform dimension smaller than the largest
picture. For the baseline neural network, we store all the
training examples in a 30336 × 1 × 64 × 64-dimensional
matrix and the data class labels in a 30336× 1-dimensional
vector.

(a) Processed training example af-
ter square padding and resizing

(b) Randomly rotated training ex-
ample

Figure 1: Training data for the “echinoderm larva seastar
brachiolaria” class

3.2. Data Augmentations

We use data augmentations to add noise to the input.
These include random horizontal flips, vertical flips, and ro-
tations. This increases the invariance of the neural network
to different orientations of images. We decided against do-
ing random shifts as the pictures are centered and cropped to
fit on the whole and square padding preserves this centering.
We decided against color perturbations since This is par-
ticularly justified for the plankton dataset since the plank-
ton have no “normal” orientation and can be pictured from
many different orientations. We performed horizontal flips
with 50% chance, vertical flips with 50% chance, and two
random rotations, with rotation angles ranging from 10◦to
350◦, each with 50% chance. Images chosen to be in the
validation set were not augmented for use in the training
set. The augmented dataset for the 7 layer neural network
contained 87870 training images and 970 validation images.
The augmented dataset for the VGG 16 network contained
73049 training images and 1032 images in the validation
set. For the VGG 16 network only, the training images
and validation images used mean pixel subtraction, using
the mean pixel [103.939, 116.779, 123.68] provided by Si-
monyan and Zisserman.

3.3. Hardware and Software

The 3-layer neural network was trained on a CPU, using
the class implementation of Convolutional Neural Networks
using Python and Cython. This was done on the Rye ma-
chines on Farmshare. Training the bigger networks, which
had 7 and 16 layers respectively, proved to be much harder
on a CPU. We used the Caffe Convolutional Neural Net-
work library to train and specify our neural networks us-
ing a GPU [3]. We stored our augmented data and Caffe
models/snapshots on Amazon S3 storage and ran spot in-
stances on Amazon EC2. This enabled us to have enough

2



memory and enough stable computing power to run the net-
works. The Amazon EC2 instances had NVIDIA GRID
K520 GPUs.

3.4. Dropout and Neuron Activation

Inverted dropout regularization was employed in the
fully connected layers. Dropout introduces stochastic noise
as well as limits the number of active neurons in every pass,
increasing generalization to variation. Because we expect
the same species of plankton to have a some amount of vari-
ation between individuals, dropout is useful for generalizing
for this. We will use the ReLU activation as our default neu-
ron activation.

4. Inducing Sparsity in Probability Vectors
In the interests of the Kaggle competition, the objective

is not just to maximize the accuracy of the classifier but to
maximize the log-loss of the probabilities outputted for the
correct classes. In the setting of the Kaggle competition,
we are presented with a test set with unknown labels and
are asked to output class probabilities for each image. The
log-loss is

− 1

N

N∑
i=1

M∑
j=1

yij log(pij)

This is the sum of the logs of probabilities outputted for the
correct class. To minimize this, we must output 1 for each
image’s correct class. We can model the probability vector
p outputted by the softmax layer of the neural network to be
a noisy signal of the true class probability vector, which is a
standard basis vector. We observe that elements of the p are
frequently on the order of 1e−6 to 1e−15, with large prob-
ability mass on few classes. We want to aggregate as much
probability mass as we can, up to a certain confidence, to
the classes that we believe are correct. This is essentially
inducing sparseness of the probability vectors.
We discuss 3 approaches to the probability mass-
aggregation problem: Monte Carlo pruning, pairwise force
simulation, and formulation as a convex optimization prob-
lem. Each represents a step in the thought process leading
to the next.

4.1. Monte Carlo Pruning

The first approach is to use Monte Carlo sampling
method to prune small probabilities. In this method, we
take 1000 samples from the discrete distribution described
by p and renormalize the probabilities based on the ob-
served samples. Thus, classes with small probabilities will
be pruned as a result of not being observed in the samples.
We do this for a fixed number of iterations, according to
how sure we are about the original class probabilities; more
iterations results in more probability mass aggregation to
the larger classes.

Algorithm 1 Monte Carlo Pruning

1: Given p, n
2: for i = 0 to n do
3: Generate 1000 samples drawn from distribution p
4: Create p̃ distribution from observed samples
5: p← p̃
6: end for

While this procedure achieves the desired result, it is
computationally expensive to run Monte Carlo sampling in
each iteration. Furthermore, this does not allow for ad-
ditional information to be added beyond the noisy signal
from the neural network itself, as we will see in the later ap-
proaches. This approach does, however, allow the possibil-
ity of changing the maximum probability class (and chang-
ing our belief about the class). We pursue an approach that
incorporates outside structure into the problem, possibly en-
abling us to change beliefs in a non-random way based on
phylogenetic information.

4.2. Phylogeny Tree

Recognizing that our data was biological in nature, we
realized that a rich body of knowledge in the study of ma-
rine microorganisms could be leveraged to improve classifi-
cation predictions; that is, by providing outside knowledge
to our convolutional neural network, we could transform
our probability vector by viewing the output of our CNN
as a prior probability distribution between 121 classes, us-
ing some evidence to determine a likelihood function, and
then finally computing a posterior distribution over the 121
classes. This process can be attributed to Bayes’ rule, given
as

P (X|D) = P (X)
P (D|X)

P (D)

To define P (D|X)
P (D) , we turn to the use of a Computer Sci-

ence structure that has a natural isomorphism to the prob-
lem of relating seemingly unrelated biological species: the
graphical tree. When used to model ancestral relationships
among biological organisms, the graphical tree provides a
convenient structure for performing probabilistic inference
with observed evidence; we can have a node potential de-
fined between each pair of nodes that encodes our belief in
how strongly those two nodes are correlated. Taken over
all nodes, this structure would theoretically give us a way
to calculate P (D|X) by requiring us to only perform prob-
ability calculations along paths in the graph; however, this
method is computationally very expensive, and infeasible
for the number of images we would like to classify[6]. In
addition, locating the appropriate data to construct the tree
structure is difficult , and methods for estimating the appro-
priate probabilities are prone to severe inaccuracies.

3



4.3. Pairwise Gravitational Force Simulation

In this approach, we discuss how to exploit the above
phylogeny tree as a structure that provides additional in-
formation when attempting to induce sparsity in our prob-
ability predictions for a given image. We first establish the
notion of representing our probability prediction vector as
point masses. Consider the representation of our probabil-
ities as masses in a discrete, one-dimensional space with
121 locations, which is the number of classes. In addition
to a point mass, each class can also be represented as a leaf
node in the above described phylogenic tree, with each an-
cestral node denoting a common ancestor between a node’s
siblings. Classes are therefore separated in distance by the
prior knowledge of the phylogenetic tree structure of the
classes, where the pairwise distance dij = dji between
classes is the shortest path between the classes in the phylo-
genetic tree. We describe the force exerted by one mass pi
on another pj as

Fij =
pi ∗ pj
d2ij

The algorithm is as follows: for every class i, we consider
every other class and compute the scaled force between the
pair by multiplying the probability that we predict for the
two given classes and scaling down by the pair-wise dis-
tance as encoded by the tree; note that the distance is always
a positive integer due to it’s reliance on our discrete graph
structure, and so our force is always between 0 and 1 - thus,
when multiplied by a mass, the force will give how much
of that mass to move from the smallest node in a pair to the
largest node in a pair. We encode this intuition with a pair
of update equations for the probability masses of a pair of
nodes:

max{pi, pj} = max{pi, pj}+
pipj
d2ij

min{pi, pj}

min{pi, pj} = min{pi, pj} −
pipj
d2ij

min{pi, pj}

Where we move a fraction of probability mass (encoded
by the force) from the smaller mass to the larger mass.
To prevent masses from changing while calculating the
forces during an iteration, we define a simple algorithm
for performing a simultaneous update. We first store each
of the mass updates as given above. We then apply the
subtractive updates first; after all quantities have been
removed from their respective probability masses, all of the
additive updates are performed. Thus, each of the probabil-
ity masses are updated simultaneously and correctly.

This pairwise approach introduces new information,
namely the notion of distance between classes, that can be
used to calibrate beliefs; it also runs quickly, taking constant
time per image and linear time across all images. However,

incorrect phylogenic data and a poorly constructed tree has
the potential to horribly re-calibrate the probability predic-
tion vector; in addition, finding complete phylogenic data
for our specific subset of plankton has proved challeng-
ing. For these reasons, we search for a method that will
move probability mass independent of additional problem
insight; though such a method might not change our beliefs
about the most probable classification, it might strengthen
our confidence in our choice in a more reasonable fashion
than simply allowing the most probable estimate to have a
confidence of 100%.

4.4. As a Convex Optimization Problem

Finally, we formulate the probability mass-aggregation
problem as a convex optimization problem.

We would like to solve the optimization problem

minimize
p̃

card(p̃) + λ‖p̃− p‖2

subject to 1T p̃ = 1

p̃ � 0

where card(p̃) is the cardinality of p̃. The regularization
term is present to encourage the new probability vector p̃ to
be similar to the initial probability vector p. The l2 norm
is a convex quadratic term. The constraints ensure that p̃
is on the probability simplex, and is composed of linear
equalities and inequalities, and is thus convex. However,
cardinality problems are generally not convex, so we solve
a convex relaxation of the cardinality problem, inspired
by the earth mover’s distance metric for distance between
histograms, images, and probability distributions [9]. In
this formulation, we introduce the mover matrix S ∈ Rn×n

and the cost matrix C ∈ Rn×n, n = 121. We constrain
the mover matrix S such that S1 = p where 1 ∈ Rn

is a vector of all ones. This means that the columns of
S sum to p, the probability distribution outputted by the
softmax layer of the neural network. We will solve a
convex optimization problem to find S, and derive the new
(sparsified) probability vector p̃ from p̃ = ST1, which is
the sum of the rows of S. Intuitively, we want S to define
how to move the probability mass from each element of p
to each element of the new distribution. For example, the
first row of S defines how to distribute the mass of the first
element of p to each of the n = 121 classes of the new
distribution p̃. Because the first row of S adds to the first
element of p, mass is conserved in the movement. As an
aside, S is not a stochastic matrix as the rows do not add to
1, but rather 1TS1 = 1.

4



The convex relaxation of the original problem is

minimize
p̃

1T p̃+ λ‖p̃− p‖2

subject to 1T p̃ = 1

p̃ � 0

and with the relation p̃ = ST1 we have

minimize
S

1TST1+ λ‖ST1− p‖2

subject to Sij ≥ 0, i, j = 1, ..., n

S1 = p

where 1T p̃ = 1 is implicit from S1 = p. However, we see
that the first part of the objective function is always con-
stant, so the optimal value for this problem is p̃ = p. In or-
der to alleviate this, we introduce the cost matrix C, where

Cij =

{
pj

pi
i 6= j

0 i = j

is the cost of moving a unit of probability mass from class j
to class i. In other words, if we were to move 0.3 probability
from class pj to pi, the cost would be 0.3

pj

pi
. There is high

cost of moving probability mass from a pj with high proba-
bility and also high cost of moving probability mass to a pi
with a low probability. Thus, the cost encourages movement
of probabilities to higher probability mass classes. Our ob-
jective is then to minimize the cost of moving from p to p̃.
The final optimization problem formulation is as follows:

minimize
S

1TSC1+ λ‖ST1− p‖2

subject to Sij ≥ 0, i, j = 1, ..., n

S1 = p

The optimization problem is solved through CVX, a
package for specifying and solving convex programs [2][1],
which uses the SDPT3 infeasible path-following solver.
With λ = 0, the problem always outputs a standard basis
vector, where the class in p with the highest probability will
be attributed all the probability mass. Here, we show some
results for different values of λ on a random test a probabil-
ity vector where n = 10.

We have the original vector:

0.1525
0.1127
0.1527
0.0958
0.1346
0.0709
0.1340
0.0830
0.0036
0.0602



The following is the transformed probability vector via
solving the optimization problem for λ = 10:

0.1854
0.1236
0.1857
0.0918
0.1592
0.0322
0.1582
0.0639
0.0000
0.0000


The following is the transformed probability vector via

solving the optimization problem for λ = 2: :

0.3305
0.0000
0.3319
0.0000
0.1719
0.0000
0.1657
0.0000
0.0000
0.0000


For λ = 1

std(p) : 

0.1536
0.1133
0.1538
0.0961
0.1355
0.0705
0.1349
0.0830
0.0000
0.0592


We choose λ = 1

std(p) , with the intuition that extremely
peaky initial probability vectors p mean that we are initially
more sure of the classification, and thus we should care less
about matching the old output and more with maximizing
the largest class probability. When the initial probability
vector is diffuse, meaning we are less sure of out output,
we have a smaller standard deviation and thus care more
about just keeping the probability vector the same. We
see that this is the case in the above example, where there
are many classes with similar probabilities. Choosing
λ = 1

std(p) leads to a conservative sparsification policy in
these cases. Lambda can also be cross-validated to ensure
the right amount of sparsification occurs. One limitation
of the optimization approach as presented is that the class

5



with the largest probability mass will always remain with
the largest new probability mass, and so on for the rest of
the classes. If the classifier initially gets the classification
incorrect, then probability mass would be added to an
incorrect class. However, it is mostly the case that the
correct class is also one of the high probability mass
classes, and thus it will gain mass under this approach. We
see here a tradeoff between λ and the inherent accuracy
of the classifier. An interesting approach to alleviate this
would be to train a binary classifier over the validation set
for whether certain probability vector patterns correspond
with being correct; we sparsify those that we believe are
already correct. By training on the validation set, we add
new information to the sparsification process not seen in
training. Lastly, the notion of class distances from the
phylogeny tree can be encoded within the cost matrix C,
which adds new information not available during training
to the sparsification process.

Testing with our VGG 16 classifier increased our log-
loss from 1.13 to 2.2, roughly a 2 times increase. We con-
clude that our classifier had not gained enough accuracy
for sparsification to benefit the log-loss with the choice of
λ = 1

std(p) .

5. Results
The 3-layer Convolutional Neural Network was trained

using 1000 randomly sampled images from the training
set for the validation set and the remaining 29336 images
as the training set. The 7 layer network was trained on
87870 augmented training examples with 970 validation
examples. The VGG 16 layer network was fine-tuned from
existing weights from the BVLC Model Zoo[4][3]. The
test set contained 130400 images with unknown labels.

Training accuracy and Validation accuracy for three
sizes of CNN

Classifier Train acc. Val acc.
3 layer 0.786 0.568
7 layer 0.9573 0.690
VGG 16 0.806 0.64

The VGG 16 network achieved 1.13 log-loss on the un-
known label test set, through submission to the Kaggle com-
petition. The 7 layer network was not able to generalize
well, achieving a log-loss of 20.7.

5.1. Baseline Neural Network

For our baseline results, we used a simple 3-layer Convo-
lutional Neural Network. The 3-layer network was able to
fit the training data to 80% accuracy, which is surprisingly
expressive. Our baseline network accepted inputs of 64 by

Figure 2: Filters for the first convolutional layer of the 7
layer network after 12 epochs

64 images, using a CONV − RELU −MAXPOOL −
CONV −RELU −MAXPOOL−FC−SOFTMAX
architecture. Each convolutional layer use 32 3 by 3 filters
with stride 1. The max pooling layers use 2 by 2 pooling
areas with stride 2. Optimization by minibatch gradient de-
scent used the momentum update rule with 0.9 decay pa-
rameter and a batch size of 50.

We trained 3 models with varying regularization param-
eters and learning rate annealing schedule, each with 2
epochs through the data. For a form a self-transfer learn-
ing, we initialized each of the models (except the initial)
with the weights of the previous. The ensemble model over
the 3 trained models attained 56.8% validation accuracy.

The baseline network was trained using a CPU, which
limited the number of epochs that could reasonably be
trained. The baseline fit the training data surprisingly well,
but lacks generalization. This can be due both to represen-
tational power and to lack of data augmentation.

5.2. 7 Layer Neural Network

Inspired by the success of our baseline model, the 7
Layer Neural Network was an attempt to capitalize on the
gains made by boosting the expressive power of our net-
work by introducing more parameters. Outfitted with a
((CONV −RELU)×2−MAXPOOL)×2−(CONV −
RELU −MAXPOOL) × 2 − FC − SOFTMAX ar-
chitecture, the 7 Layer Neural Network was able to achieve
0.95 accuracy on the training set and 0.67 accuracy on the
validation set. However, this proved to be a case of dras-
tic overfitting, as the 7 Layer Neural Network ultimately
achieved a log-loss of 20.3 over 3 submissions. We believe
that this is due to the network not having the benefit of see-
ing a diverse range of images; as we discuss next, the filters
in VGG seem to represent much higher-level concepts than

6



Figure 3: Filters for the first convolutional layer of the VGG
16 layer network after 3 epochs

the specific, low level ones in the 7 Layer Neural Network.
The filters learned for the 7 layer network are unconven-

tional in that many of the filters represent curves as well
as straight lines. We can explain this by thinking about
the shape of plankton; they are generally closed ellipsoid
in shape, with varying semi-axes. This corresponds to cir-
cles, ovals, and, with enough eccentricity, stick shapes. We
can visually compare these weights to those in the VGG
16 set (right), where we see drastic differences. Ignoring
the differences in color (as the VGG 16 model was trained
on 3-channel images; discussed below), we can see that the
VGG 16 weights primarily picked up on higher-level fea-
tures, such as corners and gradients. We hypothesize that
this wealth of higher-level features, in juxtaposition to the 7
Layer Network’s fairly sharp, alien, plankton-specific fea-
tures, are what ultimately prevented VGG 16 model from
severely overfitting the plankton dataset and allowed it to
achieve much better generalization results than our 7 Layer
Network.

5.3. VGG 16

The VGG 16 network is finetuned from a pretrained net-
work from Simonyan and Zisserman’s ISLVRC 2014 sub-
mission, VGG 16 [4]. We utilize transfer learning from the
pretrained VGG network, although the pretrained network
was trained on natural, color images. We can see from the
filters of the VGG 16 model that some filters learned solid
colors, which is not present in the dataset. This is resid-
ual from VGG 16 having been pretrained on a color dataset
and then being applied to a grayscale dataset. The color
filters are not activated during finetuning and gradually be-
come solid. Thus, this could improve the generalization of
the VGG network by limiting the number of active neurons.
Networks that are trained on ImageNet [8] are also known

to be effective at using texture to deduce images; the plank-
ton images all have roughly the same texture, and this poses
a challenge to the VGG 16. Most of the curved edge filters
learned are close to grayscale; this aligns with the plankton
dataset and the usual curved shape of plankton.
Ensemble models generated from averaging the weights
from 1 epoch, 2 epochs, and 3 epochs of fine-tuning resulted
in a slightly lower log-loss on the unknown test set.

6. Conclusions
From the baseline results, we can see that plankton im-

age classification problem can be handled relatively effec-
tively with a very simple Convolutional Neural Network.
When we increased the complexity of the architecture of the
neural network and experimented with the stochastic data
processing and training techniques, we ran into challenges
with overfitting and learned the challenges of repurposing
a network trained for a vastly different dataset. We got ex-
perience with training datasets with GPUs using Caffe and
experimenting with CNN architectures. It is also interesting
to see that training a network trained on a colored dataset
learns to ignore or forget color features when fine-tuned on
a grayscale dataset. Going forward, we can try running dif-
ferent network architectures on a very wide variety of im-
ages, and see if different combinations of ensembled models
allows training on plankton to discern much higher, relevant
features. Anothing interesting avenue concerns sparsifying
the probability vectors; learning a classifier on the valida-
tion set to predict the lambda value or predict whether to
sparsify or not, as well as constructing a rigorous phylogeny
tree, could provide extra information needed to squeeze out
the last few percent.

References
[1] M. Grant and S. Boyd. Graph implementations for nonsmooth

convex programs. In V. Blondel, S. Boyd, and H. Kimura, edi-
tors, Recent Advances in Learning and Control, Lecture Notes
in Control and Information Sciences, pages 95–110. Springer-
Verlag Limited, 2008. http://stanford.edu/˜boyd/
graph_dcp.html.

[2] M. Grant and S. Boyd. CVX: Matlab software for disciplined
convex programming, version 2.1. http://cvxr.com/
cvx, Mar. 2014.

[3] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

[4] A. Z. K. Simonyan. Very deep convolutional networks for
large-scale image recognition, 2014.

[5] Kaggle.com. National data science bowl, 2014.
[6] D. Koller and N. Friedman. Probabilistic graphical models:

principles and techniques. MIT press, 2009.
[7] e. a. M. Sieracki, M. Benfield. Optical plankton imaging and

analysis systems for ocean observation, 2010.

7

http://stanford.edu/~boyd/graph_dcp.html
http://stanford.edu/~boyd/graph_dcp.html
http://cvxr.com/cvx
http://cvxr.com/cvx


[8] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg,
and L. Fei-Fei. ImageNet Large Scale Visual Recognition
Challenge, 2014.

[9] L. G. Y. Robner, C. Tomasi. The earth mover’s distance as a
metric for image retrieval, 2000.

8


