
Deep Neural Network for Deep Sea Plankton Classification

Yuming Kuang
Stanford University

ymkuang@stanford.edu

Abstract

Deep sea plankton classification is a competition on
Kaggle, named as ‘National Data Science Bowl’, aim-
ing at automatically identifying plankton. In the project,
we explored how to use deep convolutional neural net-
work, together with data augmentation and regularization,
to achieve the classification task. We also investigated us-
ing the ‘code vector’ (output of second last fully-connected
layer) of CNN models to do model assembly. We introduced
PCA, Ridge and Randomized Ridge model assembly meth-
ods and showed the Randomized Ridge model can outper-
form the simple probability averaging method. With single
VGG-like [6 Conv + 3 FC] CNN model, we can get 73.90%
accuracy and reduce log loss to 0.938 on test set. Using
model assembly methods, we can further push to 75.80%
accuracy and 0.857 log loss. Finally assembling 11 in-
dependent CNN models we achieved log loss 0.772707 on
Kaggle.com for the full unlabeled test set and ranked 107th
(1049 teams in total, top 1 log loss 0.560994).

1. Introduction
The project focuses on the National Data Science Bowl

challenge on Kaggle.com, which aims at building an al-
gorithm to automately identifying plankton using micro-
scopic, high-resolution images captured by underwater im-
agery sensor system. (Figure 1) The algorithm can be then
used by scientists at the Hatfield Marine Science Center to
study marine food webs, fisheries, ocean conservation and
other areas. The automated system has broad applications
for assessment of ocean and ecosystem health, and can con-
tributes to protecting the world’s oceans. The competition
has a reward of $175, 000 and 1049 teams compete for the
prize [3].

Convolutional Neural Networks (CNN) are a good fit for
the image classification problem. In this project, I explored
using the CNNs with architectures similar to VGG [6],
together with data augmentation, dropout regularization,
leaky and parametric ReLU [4] activations and various
model assembly methods, to achieve this classification task.

Figure 1. Plankton classification task[3]

The paper is divided into 3 parts. Section 2 focuses on the
methods of CNN modeling and training, as well as intro-
ducing PCA, Ridge and Randomized Ridge model assem-
bly. Section 3 introduces the data and evaluation criterion,
the results using a single CNN model and the model as-
sembly results. Section 4 gives a brief error analysis and
discussions.

2. Methods
2.1. CNN Architecture and Training

The bricks of building the VGG architecture are con-
volutional layers, ReLU layers, max-pooling layers, fully-

4321

Figure 2. Visualization of CNN: The architecture of [6 Conv + 3 FC] CNN (left); The output of 6 convolutional layers for an example input
(right); The t-SNE graph of code vector (the output of the second last FC layer) of the test set (top right).

connected layers and dropout layers. I used these bricks to
build VGG-like CNNs from shallow to deep. The architec-
ture can be separated into two parts:

Convolutional Part The convolutional part has structure
of ‘[[[conv - relu] x m] - maxpool] x n’. For the con-
volutional layers, I found that kernel size 3x3 with pad
1 works the best. The ReLu layer is placed after each
convolutional layer to introduce non-linearity. Max-
pooling layers reduce the size of the filter result and ag-
gregate the local information. I used 2x2 max-pooling
in the models. The number of [conv - relu] before each
max-pooling layer (m) is set to be 2 or 1.

Fully-connected Part The fully-connected part has struc-
ture of ‘[fc - relu - dropout] x k - fc - softmax’. The
dropout layer is placed after each fully-connected to
provide regularization and prevent over-fitting.

Since the key components of the CNN architectures are
convolutional layers and fully-connected layers, we use the

number of these 2 layers to specify the architectures. For
example, ‘6 Conv + 3 FC’ represents an architecture that has
6 convolutional layers and 3 fully connected layers, ‘[[[conv
- relu] x 2] - maxpool] x 3] - [fc - relu - dropout] x 2 - fc -
softmax’ in particular (Figure 2 left).

The models are trained with Caffe [7] using the Nesterov
optimization process [5] for Stochastic Gradient Descent.
We also mention a few other setup details:

Data Augmentation The input images are resized to
80x80 and then a random crop of 64x64 and random
flip are performed in the training process. I also tried
random rotation of a multiple of 90 degree.

Dropout The dropout ratio is set to be 0.5. To see the influ-
ence of dropout layer on convolutional layers, I tried a
model with adding a dropout layer after the last convo-
lutional layer.

Leaky and Parametric ReLU The leaky ReLU layer acti-
vation function is aIx<0 + Ix≥0. The negative slope

4322

Figure 3. Model assembly methods. Probability averaging (left); PCA and Ridge model assembly (middle); Randomized Ridge model
assembly (right).

a is set 0.1. As recently introduced by MSR [4], we
can learn a during the back-propagation. In this case,
I initialized a = 0.25.

2.2. Model Assembly

As introduced in the lectures, model assembly can re-
duce the variance of the result and thus improve prediction
accuracy. In this project, I investigated several way to per-
form model assembly for CNN models:

Probability Average The simplest model assembly
method is averaging the predicted probability of all
the models (Figure 3 left). This simple idea actually
works quite well since averaging greatly reduce
variance.

PCA Denote the output of the second last ‘[fc - relu]’ layer
as ‘code vector’, then code vector provides summary
of the features learned by the CNNs. The PCA model
assembly process first concatenates code vectors from
all the CNN models as extracted features, then com-
putes the first K principal components of the extracted
features, and trains a softmax classfier using the prin-
cipal components finally (Figure 3 middle). Since the
code vectors can be strongly correlated, the PCA step
provides dimension-reduced, uncorrelated summary of
the original code vectors, thus reduces the variance of
predictions.

Ridge The L2-penalty can be also use to cure correlated
feature, so the ridge model assembly process works
similarly to PCA model assembly, except for training
a softmax classifier with L2-penalty with all the code
vectors, instead of the principal components (Figure 3
middle).

Randomized Ridge The problem of PCA and Ridge
model assembly is that they end up with only one

classifier for prediction and the classifier might still
suffer from high variance. To solve this, randomized
ridge model assembly process trains many ridge soft-
max classifiers on subset of sampled features from the
code vectors and then the results of the classifiers are
aggregated to get more stable predictions (Figure 3
right). Subsampling the features makes each classifier
weaker but less correlated with each other, thus gives
better result when aggregating. Compared to Proba-
bility Average, the randomized ridge process can ag-
gregate many more models to further reduce variance.
This idea of aggregating many weak classifier is simi-
lar to the Random Forest algorithm [1], while replacing
decision trees with softmax classifiers.

3. Result
3.1. Data and Evaluation

The competition provides ∼30k labeled training images
from 121 classes and ∼130k unlabeled testing images. To
compare and evaluate different models and methods, I split
the labeled data into 3 parts, training set (∼26k), validation
set (2k) and test set (2k). As mentioned in the data augmen-
tation process, images are resized to 80x80 and then random
crop and flip are performed. The models are trained with the
training set and validation set, and accuracy and log loss are
evaluated using the test set. I will also report the loss result
of the entry in Kaggle competition using models training
from the full labeled training set.

We use both accuracy and log loss as evaluation crite-
rion. The log loss is

LogLoss = − 1

N

N∑
i=1

log(piyi
)

where N is the size of validation or test set, and yi is the

4323

Method Val Loss/Acc Test Loss/Acc
Softmax /45.63% /44.43%
2 Conv + 2 FC 1.180/65.15% 1.160/66.90%
5 Conv + 3 FC 0.922/72.10% 0.943/73.30%
6 Conv + 3 FC 0.936/72.65% 0.938/73.90%
6 Conv + 3 FC (w/ Leaky ReLU) 0.902/73.70% 0.959/73.55%
8 Conv + 3 FC 0.944/72.50% 0.988/73.10%
8 Conv + 3 FC (w/ dropout in last conv) 0.935/72.70% 0.9607/72.05%
8 Conv + 3 FC (w/ rand rotate & param ReLU) 1.708/53.05% 1.809/51.35%

Table 1. Log Loss and Accuracy Result for Single CNN models

true class label for sample i.

3.2. Result of Single Model

3.2.1 Result of Log Loss and Accuracy

The log loss and accuracy result of CNNs models with var-
ious architectures and the softmax linear classifier baseline
is summarized in Table 1. The baseline is trained with HOG
and color histogram features. We make the following anal-
ysis about the result:

• The CNN models perform much better then the linear
baseline. This shows that CNN extract and aggregate
the features of images in a better way than linear base-
line.

• Among different architectures, [6 Conv + 3 FC] per-
forms the best on the test set. The models with only 2
and 5 convolutional layers don’t provide enough repre-
sentation power, while the model with 8 convolutional
layers suffers from over-fitting.

• To solve the over-fitting problem of [8 Conv] model, I
tried adding dropout layer after the last convolutional
layer. The dropout layer helps improve the perfor-
mance of log loss a little, but doesn’t improve accu-
racy.

• Another way to solve the over-fitting problem is to
add random rotation in the data augmentation process.
I tried this with the [8 Conv] model with parametric
ReLU hoping the new ReLU layer can provide more
power and faster learning speed. However it leads to a
much worse performance. This might come from that
random rotation to a multiple of 90 degree adds too
much noise to the training set. Random rotation with
much smaller degree might work better in this case.

• To improve the performance of [6 Conv + 3 FC] model,
I tried using leaky ReLU layer to gain more represen-
tation power and faster learning process. It turns out to
get a better result in validation set, but doesn’t gener-
alize to the test set.

3.2.2 Visualization of CNN Output

To get a better idea of how the [6 Conv + 3 FC] model
works, we visualize convolution layers and fully-connected
layers in Figure 2. To visualize convolution layers, I col-
lected the output of each convolutional layer for an exam-
ple and plotted them out. It clearly illustrates how convo-
lutional layers capture image features from local to global
scale. For the fully-connected layers, I plotted the t-SNE
[2] graph for the code vector, i.e the output of the second
last fully-connected layer, to project and visualize the high-
dimensional features in 2d space. From the t-SNE graph,
we can see that the code vector provides good characteris-
tics to separate and represent each class.

3.3. Result of Model Assembly

To evaluate the model assembly methods, we take 4
models of structure [6 Conv + 3 FC] independently trained
on the training set. Then for training, validation and test
set, the code vectors of all the 4 models for each sample are
collected and concatenated as the extracted features. Then
we use the code vectors as input for the following model as-
sembly methods. The total dimension of the code vectors is
2048× 4 = 8192. For tuning hyper-parameter for PCA and
Ridge model assembly method, the log loss is used as cri-
terion, because we want to improve the loss which Kaggle
uses to rank teams.

3.3.1 PCA

For PCA model assembly method, the number of principal
components K for training the classifier is tried with 128,
256, 512, 768, 1024, 1536, 2048, 3072, 4096. The log loss
of validation and test test of the softmax classifier trained
with each K is shown in Figure 4 (left). We can see that
the loss achieves its minimum at around 768, which illus-
trates the intuition that too small K doesn’t extract enough
information from the code vector and leads to under-fitting,
while too large K doesn’t reduce the noise enough and thus
over-fitting. The result of K=768 is used in the final com-
parison.

4324

102 103 1040.900

0.905

0.910

0.915

0.920

0.925

0.930

0.935 PCA

val
test

10-5 10-4 10-3 10-2 10-1 100

0.90

0.95

1.00

Ridge

val
test

Figure 4. The log loss curve of validation and test set. PCA (left); Ridge (right).

3.3.2 Ridge

Similar to PCA, in ridge model assembly method, we need
to tune the L2-penalty regularization term λ for the softmax
classifier to achieve minimal loss. If λ is too small, the clas-
sifier suffers from correlated feature, while if λ is too large,
the regularization is too strong and results in under-fitting.
I tried λ with 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 5e-1 and plot-
ted the log loss for validation and test set shown in Figure
4 (right). The loss achieves its minimum at λ=1e-1, and we
use the model for λ=1e-1 for final evaluation.

3.3.3 Randomized Ridge

For randomized ridge model assembly method, each time
about 1

8 of the features in the code vector are subsampled
and feeded into a softmax classifier with regularization term
λ = 1e−4. We trained 100 softmax classifiers in total. Each
time a new classifier is trained, we updated the accuracy and
log loss for test set. Figure 5 shows the curve of accuracy
and log loss for test set compared to the result of probabil-
ity averaging of the 4 CNN models. We can see the clear
improving trend when aggregating more classifiers, and the
final result of aggregating 100 models outperforms the sim-
ple probability averaging.

3.3.4 Summary and Comparison

The result of the model assembly methods is summarized in
Table 2. We make the following comments:

• PCA and Ridge greatly improve the result over the sin-
gle model, although they are still predicting with one
softmax classifier. This implies that PCA and Ridge
method are helpful in reducing the model variance.

• The probability averaging baseline outperform PCA
and Ridge especially in log loss, which implies that
the single classifier of PCA and Ridge still suffer from
model variance.

• Randomized Ridge outperforms the simple probabil-
ity averaging baseline in both log loss and accuracy.
The reason behind is that the classifier with subsam-
pled features already has lower variance, and we can
aggregate with many of these weaker but more stable
classifiers, thus improve predicting power as well as
further reduce variance.

3.4. Result in Unlabeled Test data on Kaggle

We trained 11 different CNN models with the number of
convolutional layers 5, 6 or 8, using smaller training data
set or full labeled training data set. Then the models are
assembled using the simple probability averaging method
on the full unlabeled test data set (∼130k). The result was
uploaded to Kaggle.com as an entry for the competition.

4325

0 20 40 60 80 100
0.744

0.746

0.748

0.750

0.752

0.754

0.756

0.758 Randomized Ridge Accuracy

random ridge
prob average

0 20 40 60 80 100
0.85

0.86

0.87

0.88

0.89

0.90

0.91 Randomized Ridge Log Loss

random ridge
prob average

Figure 5. The accuracy (left) and log loss (right) curve on test set of Randomized Ridge model assembly methods.

Method Test Loss Test Acc
Single 6 Conv + 3 FC 0.938 73.90%
Probability Averaging 0.862 75.25%
PCA 0.901 75.2%
Ridge 0.870 75.00%
Randomized Ridge 0.857 75.80%

Table 2. Log Loss and Accuracy Result for Model Assembly Methods

The log loss I got is 0.772707 and I ranked 107th place (top
1 team got log loss 0.560994).

4. Error Analysis

We illustrate the following error sources with examples
in Figure 6:

• The image of plankton is just hard to identify. For
example, (b) is from ‘unknown blobs and smudges’,
however it just a dark spot and hard to identify, so the
classifier can’t predict it with certainty.

• The image is labeled as ‘unknown’ but the image looks
like some plankton. For example (a) is labeled as ‘un-
known sticks’, while it looks like a living plankton
with head in its front from the image.

• The image is obscure. For example (d) is from ‘appen-
dicularian s shape’, but the camera seems to take the

picture in a strange direction or the plankton is moving
fast that the image is obscure to determine.

• The image is taken from a different perspective that
is rare in the training set. For example (c) is from
‘chaetognath other’, while the image is different and
darker from other images in the same class, which im-
plies that the image might be taken from a rare per-
spective.

5. Conclusion

In this project, we demonstrate that convolutional neu-
ral network works well for image classification task from
its strong representing power and well-organized structure
to extract image features from local and aggregate to global
scale. Data augmentation and regularizations like dropout
are also important for CNN model to prevent over-fitting
and generalize better. We also investigate different model
assembly methods. PCA and Ridge softmax classifier can

4326

Figure 6. Example images for error analysis

be applied to the code vector and reduce model variance.
Simple probability averaging provides extremely good im-
provement of model assembly, while Randomized Ridge
model assembly performs better with training many more
reliable weaker softmax classifiers using the code vector of
CNN.

References
[1] L. Breiman. Random forests. Machine Learning, 45(1):5–32,

2001.
[2] L. V. der Maaten and G. Hinton. Visualizing data using t-sne.

Journal of Machine Learning Research, 9:2579–2605, 2008.
[3] Kaggle. National Data Science Bowl. http://www.

kaggle.com/c/datasciencebowl, 2014. [Online; ac-
cessed 15-March-2015].

[4] H. Kaiming and et al. Delving deep into rectifiers:surpassing
human-level performance on imagenet classification. http:
//arxiv.org/pdf/1502.01852v1.pdf, 2015.

[5] Y. Nesterov. A method of solving a convex programming
problem with convergence rate o(1/k2). In Soviet Mathematics
Doklady, 27:372–376, 1983.

[6] K. Simonyan and A. Zisserman. Very deep convolutional net-
works for large-scale image recognition[j]. arXiv preprint,
page arXiv:1409.1556, 2014.

[7] J. Yangqing. Caffe:an open source convolutional archi-
tecture for fast feature embedding. http://caffe.
berkeleyvision.org.

4327

http://www.kaggle.com/c/datasciencebowl
http://www.kaggle.com/c/datasciencebowl
http://arxiv.org/pdf/1502.01852v1.pdf
http://arxiv.org/pdf/1502.01852v1.pdf
http://caffe.berkeleyvision.org
http://caffe.berkeleyvision.org

