Real-Time Head Pose Estimation with Convolutional Neural Networks

Zhiang Hu

zhianghu@stanford.edu

Abstract

In this project, we seek to develop an accurate and ef-
ficient methodology to address the challenge of real-time
head pose estimation. Though there have been previous at-
tempts to apply convolutional neural networks to this fun-
damentally subtle task, to the best of our knowledge, there
exist no initiatives that have directly utilized Convolutional
Neural Networks (CNNs) in tandem with these methods for
a more comprehensive, thorough approach.

This project thus proposes a methodology that employs
CNNs to predict the location and orientation of a head in
3D space. We pursue classification and regression at vari-
ous degrees of fineness on high-quality data captured from
depth sensors, and evaluate our models by comparing our
performance to that obtained by state-of-the-art systems.

1. Introduction

The idea of head pose estimation is an inherently rich yet
open-ended task. In contrast to the well-explored domains
of face detection and recognition [8, 9], head pose estima-
tion additionally poses a unique challenge to computer vi-
sion systems in that it is identity invariant, and there are
fewer thoroughly evaluated systems that have been tested
within large ranges of contexts [2].

It also represents an integral part of a more refined frame-
work for 3D understanding, and contains a diverse range
of applications that are important in the analysis of human
behavior. For instance, one immediate application of head
pose estimation is the establishment of a driving assistance
system, where changes in the driver’s head pose or gaze may
yield information about the driver’s state of awareness. This
information in turn could be used to give feedback to the
driver about the presence of unsafe behavior.

There have been several approaches in the past that have
applied machine learning algorithms to the problem of head
pose estimation. Approaches based on 2D images have fo-
cused on either analyzing the entire facial region, or relied
on the localization of specific facial features (such as nose
tip). In 2D appearance-based methods, the head pose space
is often discretized, and separate detectors are learned for

subsets of poses [9]. Approaches that use 2D images are
generally highly sensitive to variation in illumination, shad-
ows, and occlusions, and are suitable for fixed, predictable
surroundings. Recently, the advent of 3D acquisition sys-
tems has allowed these problems to be overcome with the
use of additional depth information. Despite these advance-
ments, however, most existing 3D methods are neither ro-
bust to wide variations in head pose nor in real time.

Breitenstein et al. [[7] developed an algorithm for auto-
matic and real-time face pose estimation from 3D. Their
method involves offline pre-computation of reference pose
range images and the acquisition of range images of faces.
Head pose hypotheses are obtained from these images by
computing candidate nose positions and orientations. How-
ever, this method requires signifcant use of a GPU to com-
pare the reference pose range images to the input range im-
age and thus cannot generalize to applications where hard-
ware constraints limit computational resources.

Fanelli et al., in [4], presented one of the first approaches
to obtain actual real-time head pose estimation using ran-
dom regression forests from depth data. This initiative does
not rely on specific hardware such as a GPU, and obtained
superior performance on a publicly available dataset.

There have also been previous introductory methods that
have utilized Convolutional Neural Networks in order to si-
multaneously estimate face detection and orientation in real
time. However, these were applied only to a specific range
of testing conditions [6].

However, to the best of our knowledge, there have been
no approaches that have made significant use of Convolu-
tional Neural Networks (CNNs) for a more comprehensive
analysis of head pose estimation. We thus present a method-
ology utilizing CNNs for obtaining an efficient, accurate es-
timate of head pose from a single image in real time, under
a broad range of testing conditions.

2. Technical Approach

In this section, we begin our discussion of the various al-
gorithms we apply to the challenge of real-time head pose
estimation. Our approach to this task is twofold: we utilize
Convolutional Neural Networks (CNNs) with depth data
captured by a sensor to compute the location and orienta-



tion of a head in 3D space.
2.1. Dataset

In this project, we propose to use two dataset: a) the
depth dataset from Fanelli which is captured by kinect and
b) synthetic dataset which is generated using OSGRenderer
and CAD model from 3dwarehouse.

The kinect dataset is presented by Fanelli ez al., in [4].
This dataset contains around 15,000 depth images with their
head centers and head directions.

Another dataset is generated by CAD model from
3Dwarehouse. We have created 920,000 images with dif-
ferent head centers and head poses. Due to the limitation of
time, we are only using the kinect dataset to train the CNNs.
The Synthetic dataset will be used in the future.

Figure 1: CAD model of head

2.2. Convolutional Neural Network

Convolutional Neural Networks have recently become
an increasingly popular tool in computer vision related ap-
plications, often achieving state-of-the-art performance in
classification, regression, and segmentation. There has in
fact even been work applying CNNs to broader forms of hu-
man pose estimation [[10] while achieving superlative per-
formance. Thus, we believe that CNNs will be inherently
suited to our task of head pose estimation.

We now describe the way we configure the structure of
our network. Our input data once again consists of depth im-
ages captured from a 3D sensor. Our network architecture
will be based on existing networks that are pre-trained on
the ImageNet database by Krizhevsky et al. [1]]. We can use
these existing implementations to both improve efficiency
and accuracy in our predictions, since we can avoid hav-
ing to retrain the network on large amounts of new data
while making use of the weights learned from ImageNet.
We now present several ways of leveraging Convolutional
Neural Networks towards head pose estimation.

Method 1: The first approach would be to define the
ImageNet CNN as a regressor built on the same structure
as ImageNet network. We can accomplish this by simply
modifying the last fully connected layer (fc8-conv) of the
pre-existing network into a fully connected layer that re-
ports only 6 numbers (x, y, z, yaw, pitch, roll) instead of
the original 1000, corresponding to the number of classes
in ImageNet. We can also simultaneously change the de-
sired loss function from the standard Softmax-based loss to
Euclidean loss, and retrain the new last layer on our own
dataset (which we later describe in our results). The struc-
ture of ImageNet CNN is shown below, with euclidean loss
at the end of network.

(Conv—Relu— Pool—LRN ) x2—(Conv—Relu)x3— Pool
—(FC — Relu — Dropout) x 2 — FC

Figure 2: ImageNet Structure

Method 2: We could maintain the existing network
structure, and instead of posing a regression problem, we
could formulate a classification challenge by discretizing
possible head poses/locations into a grid of small bins, us-
ing the ImageNet CNN structure. We could then keep the
same loss function but replace the last layer with a fully-
connected layer with an output dimension equal to the num-
ber of bins. Thus, we once again reuse the structure of Ima-
geNet to predict categories of head pose.

Method 3: A third approach would be to use Shallowed
ImageNet CNN structure with fewer hidden layers to pro-
duce a prediction. The motivation of using this shallowed
version of ImageNet CNN is that: the kinect dataset has
only about 15,000 images, therefore a too deep network
would very easily overfit; 2) the task is to predict exact in-
formation out of an image, while the forward pass of pool-
ing layers is an information loss process, with less pool-
ing layers, the variance of prediction would be smaller. The
structures of the shallowd CNNs can be from two conv-relu-
pool sandwiches to four conv-relu-pool sandwiches. Below
is an example of two-sandwiched shallowd ImageNet CNN.

(Conv—Relu—Pool—LRN)x2—(FC—Relu—Dropout)x2—FC

3. Experiments

In this section we will describe the experiments we have
done for the three methods.



3.1. ImageNet as Regressor

We now discuss the results we have obtained from
performing initial testing with Convolutional Neural Net-
works.We have completed the first step of Method 1 and ,
in which we use a single ImageNet CNN fine tuned from
pre-trained Imagenet model as a regressor to predict the
complete pose of the head. Figure below shows the visu-
alization of predictions.

Figure 3: Example of prediction of a testing image

Figure 4: Example of prediction of a training image

However, for this report, we have first run preliminary
testing on locating the center of the head alone (we will
soon extend this into the actual orientation estimation, but
for now we only output the 3 coordinates). For our input
data, we train the new last layer of the network on a large
portion of the same non-synthetic dataset provided by Fan-
nelli e al. [4], as described earlier. We then test on a sep-
arate portion of the data. The accuracy of our results with
respect to different thresholds is shown in the figures below.

As we can see, there is a huge gap between training and
testing accuracy, which implies overfitting. This might be
due to the lack of sufficient data, or the need for a more

Accuracy of fine tune iteration 450000, train err

accuracy
o (=] o =
@™ ~ @ @

o
m

o
=

Figure 5: Training accuracy vs. threshold (cm).

Accuracy of fine tune iteration 450000, test err

o o o o
m o~ m @ =

accuracy
o
m

03r

0z2r

a1r

Figure 6: Testing accuracy vs. threshold (cm).

select choice of hyperparameters and layer modifications.
There are several techniques that are currently being ap-
plied to compensate for this, including increasing dropout
rate and enhancing the amount of regularization. We also
are attempting method 2 to see if discretization of our out-
put space will yield better results. In any case, it is clear that
we must first address the challenge of head center localiza-
tion before moving on to head orientation estimation. Fig-
ure 7 to 16 show the distribution of the error vector’s length
for the ImageNet CNN structure fine tuned with different
regularization terms.

As we can see, when regularization (Weight Decay in
Caffe) is about 1000, both testing and training distibution
have peak at around 7 cms.

3.2. ImageNet as Classifier

We have tested the classifier version of ImageNet net-
work on two kind of discretizations: 1) splitting the head



training errar distribution
0.25

02r q

IRES q

IR0 1

0.05H q

I L i
a &0 100 150 200 250

Figure 7: training distribution of error vector lengths for regular-
ization = 1

Testing error distribution

0025+ q

0.02F 1

0o1st q

001 F q

0.005 q

L L
a a0 100 150 200 250

Figure 8: testing distribution of error vector lengths for regulariza-
tion = 1

training errar distribution
0.05

0.045 1

0.04 - q

0.035 1

0.03 1

0025 1

0015 1

0.01 1

0.005 1

L L
o a0 100 150 200 250

Figure 9: training distribution of error vector lengths for regular-
ization = 500

center space into 32 cubes and 2) splitting the head center
space into two halfspaces.
The structure of the network is shown below.

(Conv—Relu—Pool—LRN)x2—(Conv—Relu)x3—Pool

Testing error distribution
0.03 T T

007 - q

008 - q

0.0s - q

004 - q

002 - q

001 - q

L L L
a a0 100 150 200 250

Figure 10: testing distribution of error vector lengths for regular-
ization = 500

training error distribution
0.08 T T

004t g

003r 1

001 - q

L L L
o a0 100 150 200 250

Figure 11: training distribution of error vector lengths for regular-
ization = 1000

Testing error distribution
007 - .

L L L
o 50 100 180 200 280
mm

Figure 12: testing distribution of error vector lengths for regular-
ization = 1000

—(FC — Relu — Dropout) x 2
—-FC

For the first kind of 32 categories, figures 17 and 18
below shows the visualization of confusion matrices. As
shown in the plots, both in training and testing there is bias



training errar distribution
D0.045 T T T T

0.04F q

00351 q

0.025 q

002k q

0015 1

0.005 q

L L L
a 50 100 150 200 250

Figure 13: training distribution of error vector lengths for regular-
ization = 3000

Testing error distribution
0.07 T T T T

0.06F q
0.05F 1

oo4f 1

0.02F q

001 F 1

L
a 50 100 150 200 250

Figure 14: testing distribution of error vector lengths for regular-
ization = 3000

training errar digtribution
0.04 T T T T

0035 q

0.025 q

002k q

0015 q

00 F q

0.005 q

L L
a &0 100 150 200 250

Figure 15: training distribution of error vector lengths for regular-
ization = 10000

towards some categories.

For the second discretization, we splitted the whole
space into up and down with respect to the vertical axis.
The experimental results shows that the training accuracy
is 73%, but the testing accuracy only has 47%. Also, the

Testing error distribution
009 T T T T

008 - q

007 - q

L
a a0 100 150 200 250
mm

Figure 16: testing distribution of error vector lengths for regular-
ization = 10000

Figure 17: visualization of confusion matrix for training classifer,
32 classes

35
30

25

Figure 18: visualization of confusion matrix for testing classifier,
32 classes

confusion matrix for testing shows that the CNN is predict-
ing all testing dataset as category up. This result implies
that, with the limited information provided to the CNN, the
model suffers serious overfitting problem.



3.3. Shallowed ImageNet

Currently we have done experiment for two conv-relu-
pool sandwiched version of shallowed ImageNet network.
The structure of the tested network is shown below.

(Conv—Relu—Pool—LRN)x2—(FC—Relu— Dropout) x2

—FC

The network is fine tuned from ImageNet network,
reusing the first two convolutional sandwiches. The input
dataset of this shallowd network is the kinect dataset as
mentioned earlier, with 14,000 images as training set, 1,000
images as testing set.

training errar distribution

0.0sF
0.04F
0.03fF
002k
001k
0 L

L L L
a 200 400 600 800 1000 1200
mm

Figure 19: training distribution of error vector lengths for 2-
sandwiched ImageNet Network

Testing error distribution

1 I Jv\
a 200 400 60O
i

0.045

0.04F

0035

0025}

0.02F

0015

0mE

0.005

L L
800 1000 1200

0

Figure 20: testing distribution of error vector lengths for 2-
sandwiched ImageNet Network

This result shows that two sandwiches of conv-relu-pool
is too shallow for the dataset, which leads to heavy under-
fit. To address this, we will reduce the dropout and the fully
connected layers, as well as increase the depth of the net-
work.

4. Conclusion

We have currently implemented and tested several struc-
tures of CNNs to detect the head center. It is important to
find the balancing point of the complexity of CNN so that
the network can learn useful features out of the depth im-
ages to predict the head poses. A too deep CNN can overfit
our tried dataset easily and lose position information be-
cause of the pooling layers, while a too shallow network
will result in underfitting.

4.1. Future Work

The experiments show that the ImageNet CNN is too
complicated for the kinect dataset and 2-sandwiched net-
work is too simple, therefore more structures of shallower
versions of CNN will be trained and tested, for example, 2
conv-relu-pool network without dropout layers, and three or
four sandwiched networks.

Also, we have just successfully generated synthetic data
from the CAD head model. The ImageNet CNN, as well
as other structures, will be trained and tested on the new
dataset. One possible approach would be to use Cascade
Convolutional Neural Networks to produce a more accu-
rate prediction. Inspired by the research completed by [10],
this approach seeks to partition off the challenge of head
pose estimation into separate networks, where each network
might be based on a structure similar to ImageNet. The first
network can produce an approximate guess as to values of
head pose and location, and this can be used to perform a
broad crop on the original image in order to focus purely on
the head. This new image can be fed into the second net-
work to obtain an even more precise prediction which can
further inform the first network. We can thus continue the
exchange between the two networks in this way until pre-
diction converges.

Additionally, we are currently making use of pure depth
data — it would be interesting to experiment with fusing
depth and RGB images and making a prediction based on
this joint information. Another approach we might later take
is the use of multiple sensors from different viewpoints, in
which we average out predictions from both the view points
(after normalizing the estimations appropriately). Since the
frames from our test sequence are continuous, we could also
apply forms of temporal constraints by adding a tracking-
based mechanism — however, our accuracies based on single
images would need to be higher before attempting this. An
ultimate compelling possibility would be to delegate head
center detection to the random forest, and use this to inform
the pose estimation output of the CNN.

In any case, however, our eventual goal is to finally train
and produce an algorithm that excels in real time head pose
estimation and is sensitive enough to be placed in a large
range of real-world applications.



References

[1] A. Krizhevsky, 1. Sutskever, and G.E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks.
In Advances in Neural Information Processing Systems 25,
pages 1097-1105. Curran Associates, Inc., 2012.

E. Murphy-Chutorian and M.M. Trivedi. Head Pose Esti-
mation in Computer Vision. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 607-626.

G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Van Gool.
Random Forests for Real Time 3D Face Analysis. Interna-
tional Journal of Computer Vision, 101(3):437-458.

G. Fanelli, T. Weise, J. Gall, and L. Van Gool. Real Time
Head Pose Estimation from Consumer Depth Cameras. 33rd
Annual Symposium of the German Association for Pattern
Recognition, September.
https://github.com/irvhsu/HeadPose.

M. Osadchy, Y.L. Cun, and M.L. Miller. Synergistic Face
Detection and Pose Estimation with Energy-Based Models.
Journal of Machine Learning Research, 8, 2007.

M.D. Breitenstein, D. Kuettel, T. Weise, and L. Van Gool.
Real-Time Face Pose Estimation from Single Range Images.
Computer Vision and Pattern Recognition, 2008.

P. Sinha, B. Balas, Y. Ostrovsky, and R. Russell. Face Recog-
nition by Humans: Nineteen Results All Computer Vision
Researchers Should Know About. Proceedings of the IEEE,
94(11):1948-1962, 2006.

P. Viola and M.J. Jones. Robust Real-Time Face Detection.
International Journal of Computer Vision, 57(2):137-154,
2004.

A. Toshev and C. Szegedy. Deeppose: Human pose estima-
tion via deep neural networks. CoRR, abs/1312.4659, 2013.

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9]
[10]

5. Supplementary materials

code for calculating distibution

end

figure

x = lxstep:step:Totxstep;
plot(x, acc/num);

xlabel ('mm’ ); % x—axis label
title (strcat(’Testing.error.distribution’));

% training error

num_train sum( hdf5 _sizes (1:22)) ;

% offset: 1, 6, 11, 16
offset = [ 0, sum(hdf5_sizes (1:5)), sum(hdf5_sizes (
diff_patch = zeros(5000,4);
for idx_file = 1:3
fname = strcat(fname_train_pre ,int2str (idx_file
data = hdfS5read (fname, ’/data’);
label = hdfS5read (fname, ’/label’);

num = size (data ,4);
diff = zeros (3 ,num);
diff (:,:) = data(1,1,:,:) — label(1,1,:,:);

diff_patch_tmp sqrt (diag (diff ’x diff));
diff _patch (:,idx_file) = diff_patch_tmp (:,1);
end

dist_train

zeros (num_train ,1);

curr_patch = 1;
=1
for i =1 num_train
j =1 — offset(curr_patch);

while (j >5000)
curr_patch curr_patch + 1;
j = 1 — offset(curr_patch);
end
dist_train (i) = diff_patch(j,curr_patch);

step = 4; end
Tot = 300;
acc = zeros(Tot,1);
fname_test_pref = *7; for i = 1:Tot
fname_train_pre = *’; acc(i) = sum((i—1)xstep<dist_train & dist_train
end
fname_test.=_fname_test_pref; figure
data._.=_hdf5read (fname_test ,.’/data ’); plot (x,acc/num_train):
label = hdfS5read (fname_test, ’/label’); xlabel (’mm’): % x—axis label
nu.m = size(data .4); title(strcat(’training.error.distribution’));
diff = zeros(3,num);
diff (:,:) = data(1l,1,:,:) — label(1,1,:,:); (ode for discretization
dist = sqrt(diag(diff «diff));
locations = [];
acc = zeros(Tot,1); input_name_pref = ’C:\ Users\harvyhu\Desktop\Ford\H
for i = 1:Tot for iter_idx = 1:24
Yoacc (i) = sum((1—1)x10<dist & dist<i*10); fname = strcat(input_name_pref, ’depth_data_’,i
idx = dist < i % step; label = hdfS5read (fname, ’/label’);
idx = dist(idx) > (i—1)xstep; % size: 3 N
acc(i) = sum(idx); locations = [locations , label];



true_label_val = []
end for folder_idx = 23:24
fname = strcat(’/scail/data/group/cvgl/u/zt

K= 2; curr_true_label = hS5read(fname, ’/label’ );
[idx , C] = kmeans(locations ’, K); true_label_val = [true_label_train, curr_tr
colors = [’y+’, ’k+’, ’b+’, ’bx’, “g+’, ’b+’, ’lend, 'mx’, ‘cx’, ‘rx’];
figure
hold on train_pred = [];
for i = 1:K val_pred = [];

tmp_idx = idx ==i; Y%for model_idx = st:en

plot3 (locations (1,tmp_idx), locations (2,tmpmdrgl_idacatioms (3,tmp_idx ) ,...
colors(i));
end model_file = strcat(model_prefix , int2str (1
hold off caffe(’init’, model_def_file , model_file);
caffe (’set_mode_gpu’);

Ass = zeros(size(locations ,2),1); % training set: I to 22
for i = l:size(locations ,2) pred_label_train = [];
Ass(i) = compute_cat(locations(1,i), locations (Xor) foldeatiadxs € ,1i:22 C, K);
end fname = strcat(’/scail/data/group/cvgl/
data = hSread (fname, ’/data’ );
% Convert head center cur_N = size (data ,4);
for i =1 : cur_.N
input_data = {data(:,:,:,1)};
for iter_idx = 1:1 scores = caffe(’forward’, input_data)
fname = strcat(input_name_pref, ’depth_data_’,int2str Citerlablel) =" sCdi®G30{.1H5");
fname_out = strcat(output_-name_pref, ’“depth_data_’, intRstd (liakelitdoajn’® =0 [1PO0Hd Habkl_train ,
data = hdfS5read (fname, ’/data’); end
label = hdf5read (fname, ’/label’); end
% size of data should be 227 227 3 N train_pred = cat(3, train_pred, pred_label.
new_label = zeros(1,size(label ,2));
for i = l:size(label ,2) % validataion set: 23:24
new_label(1,i) = compute_cat(label(1,i), lalale@_labellatd]l €3 [i]}, C, K);
end for folder_idx = 23:24
hdfSwrite (fname_out,’/data’,data,’/label’, new_labeFpame = strcat(’/scail/data/group/cvgl/
end data = h5read(fname, ’/data’ );
cur_N = size (data ,4);
code for computing scores pred_label = [];
for 1 =1 : cur_N
input_data = {data(:,:,:,1)};
st = 13 scores = caffe(’forward’, input_data)
en = 1; cur_label = scores{l}
pred_label_val = [pred_label_val, [ct
addpath (’/opt/caffe —master/ matlab/caffe’); end
% read true train labels end
% read true val labels val_pred = cat(3, val_pred, pred_label_val)
. Yoend
true_label_train = [];
for folder.idx = 1:22 save reg_005_GPU.mat train_pred true_label_train
fname =
strcat(’/scail/data/group/cvgl/u/Zhiqﬁﬁgéhéth&ﬁ@}agﬂﬁﬁgﬁta,227/depth,data,’,int2str(f01d
curr_true_label = hS5read(fname, ’/label’ );
true_label_train = [true_label_trainnameur? Gafife Natbel |;
end layers {



name: ~data”
type: HDF5DATA
top: “data”

top: “label”
hdf5_data_param {

bottom: “convl”

top: ”pooll”

pooling_param {
pool: MAX
kernel_size: 3

source: ”/scail/data/group/cvgl/u/zhianghu/b¢adpose2data_227/depth_data_list.txt”

batch_size: 140

}

include: { phase: TRAIN }

}

layers {
name: “data”
type: HDF5 DATA
top: “data”
top: “label”
hdf5_data_param {

source: ”/scail/data/group/cvgl/u/zhianghu/lbeadpo®eZ8ata_227/depth_data_test_list.txt”

batch_size: 140

}

include: { phase: TEST }

}
layers {
name: “convl”
type: CONVOLUTION
bottom: “data”
top: “convl”
blobs_1r: 1
blobs_1r: 2
weight_decay: 1
weight_decay: 0O
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
weight_filler {
type: “gaussian”
std: 0.01
¥
bias_filler {
type: “constant”
value: 0

}
}
}
layers {
name: “relul”
type: RELU
bottom: “convl”
top: “convl”
}
layers {
name: “pooll”
type: POOLING

}

}

layers {
name: “norml”
type: LRN
bottom: “pooll”
top: “norml”

Irn_param {
local_size: 5
alpha: 0.0001

}

}

layers {
name: “conv2”
type: CONVOLUTION
bottom: “norml”
top: “conv2”
blobs_lr: 1
blobs_Ir: 2

weight_decay: 1
weight_decay: 0
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
weight_filler {
type: “gaussian”
std: 0.01

bias_filler {
type: “constant”

value: 1
}
}
}
layers {
name: “relu2”
type: RELU
bottom: “conv2”
top: “conv2”
}
layers {

name: “pool2”
type: POOLING
bottom: “conv2”



top: “pool2” blobs_1r: 2
pooling_param { weight_decay: 1

pool: MAX weight_decay: O
kernel_size: 3 convolution_param {
stride: 2 num_output: 384

} pad: 1

} kernel_size: 3
layers { group: 2

name: ~“norm?2” weight_filler {

type: LRN type: “gaussian”

bottom: ”pool2” std: 0.01

top: “norm2”

Irn_param { bias_filler {
local_size: 5 type: “constant”
alpha: 0.0001 value: 1
beta: 0.75 }

} }

} }
layers { layers {

name: “conv3” name: “relu4”

type: CONVOLUTION type: RELU

bottom: “norm2” bottom: “conv4”

top: “conv3” top: “conv4”

blobs_1r: 1 }

blobs_lr: 2 layers {

weight_decay: 1 name: “conv5”

weight_decay: O type : CONVOLUTION
convolution_param { bottom: “conv4”
num_output: 384 top: “conv5”
pad: 1 blobs_1r: 1
kernel_size: 3 blobs_lr: 2
weight_filler { weight_decay: 1
type: “gaussian” weight_decay: 0
std: 0.01 convolution_param {
num_output: 256
bias_filler { pad: 1
type: “constant” kernel_size: 3
value: 0 group: 2
} weight_filler {
} type: “gaussian”
} std: 0.01
layers {

name: “relu3” bias_filler {

type: RELU type: “constant”

bottom: “conv3” value: 1

top: “conv3” }

} }
layers { }

name: “conv4” layers {

type : CONVOLUTION name: “relus”

bottom: “conv3” type: RELU

top: “conv4” bottom: “conv5”

blobs_1r: 1 top: “conv5”

10



} blobs_Ir: 1

layers { blobs_Ir: 2
name: “pool5” weight_decay: 1
type: POOLING weight_decay: 0O

bottom: “conv5” inner_product_param {
top: “pool5” num_output: 4096
pooling_param { weight_filler {
pool: MAX type: “gaussian”
kernel_size: 3 std: 0.005
stride : 2 }
} bias_filler {
} type: “constant”
layers { value: 1
name: “fc6” }
type: INNER_PRODUCT }
bottom: ”pool5” }
top: 7fc6” layers {
blobs_1r: 1 name: “relu7”
blobs_1r: 2 type: RELU
weight_decay: 1 bottom: " fc7”
weight_decay: 0 top: 7fc7”
inner_product_param { }
num_output: 4096 layers {
weight_filler { name: “drop7”
type: “gaussian” type: DROPOUT

std: 0.005 bottom: “fc7”
top: 7fc7”

bias_filler { dropout_param {

type: “constant” dropout_ratio: 0.5
value: 1 }
} }
} layers {
} name: “fc8_ford”
layers { type: INNER_PRODUCT
name: “relu6” bottom: “fc7”
type: RELU top: "fc8_ford”
bottom: " fc6” blobs_1r: 1
top: 7fc6” blobs_1r: 2
} weight_decay: 1
layers { weight_decay: 0
name: ~drop6” inner_product_param {

type : DROPOUT
bottom: “fc6”

num_output: 3
weight_filler {

top: “fc6” type: “gaussian”
dropout_param { std: 0.01
dropout_ratio: 0.5 }

} bias_filler {
} type: “constant”
layers { value: 0

name: “fc7” }

type: INNER_PRODUCT }

bottom: “fc6” }

top: "fc7” layers {

11



name: ~accuracy”

type: EUCLIDEAN_LOSS
bottom: ”fc8_ford”
bottom: “label”

top: “accuracy”
include: { phase: TEST }

}

layers {
name: “loss”
type: EUCLIDEAN_LOSS
bottom: ”fc8_ford”
bottom: “label”
top: “loss”

12



