
Deep Convolutional Network for Handwritten Chinese Character Recognition

Yuhao Zhang
Computer Science Department

Stanford University
zyh@stanford.edu

Abstract

In this project we explored the performance of deep con-
volutional neural network on recognizing handwritten Chi-
nese characters. We ran experiments on a 200-class and a
3755-class dataset using convolutional networks with dif-
ferent depth and filter numbers. Experimental results show
that deeper network with larger filter numbers give better
test accuracy. We also provide a visualization of the learned
network on the handwritten Chinese characters.

1. Introduction
Deep convolutional neural network (CNN) has become

the architecture of choice for complex vision recognition
problems for several years. There has been a lot of research
on using deep CNN to recognize handwritten digits, En-
glish alphabets, or the more general Latin alphabets. Ex-
periments have shown that well-constructed deep CNNs are
powerful tools to tackle these challenges. As the recogni-
tion of characters in various languages has attracted much
attention in the research community, a natural question is:
How does deep CNN perform for recognizing more com-
plex handwritten characters? In this project, we will explore
the power of deep CNN on the classification of handwritten
Chinese characters.

Compared to the task of recognizing handwritten digits
and English alphabets, the recognition of handwritten Chi-
nese characters is a more challenging task due to various
reasons. Firstly, there are much more categories for Chi-
nese characters than for digits and English characters. As
a comparison, there are 10 digits for usual digit recognition
tasks, and there are 26 alphabets for English, while there are
in total over 50,000 Chinese characters and around 3,000 of
them are for everyday use. Secondly, most Chinese char-
acters have much more complicated structures and consist
of much more strokes compared to digits or English charac-
ters. Figure 1 shows a comparison of different handwritten
characters. Thirdly, handwriting style for Chinese charac-
ters varies hugely from person to person. Moreover, the

existence of joined-up handwriting makes the recognition
even more difficult. For example, Figure 2 shows the in-
fluence of different handwriting styles on the appearance
of handwritten Chinese characters. It is even a challenging
task for a well-educated Chinese to recognize all the hand-
written characters correctly.

In this project, we will focus on two specific questions:
1) How will the architecture and depth influence the accu-
racy of CNN on recognizing handwritten Chinese charac-
ters? 2) Does the extracted features make sense in terms of
visualization? The rest of the report is organized as follows.
We will first introduced the dataset and our network config-
urations in Section 2 and Section 3. Then we will introduce
how we implement and train our networks in Section 4. Af-
terwards we present our experimental results in Section 5
and analyze the results in Section 6. Finally, we will dis-
cuss the related work in Section 7.

(a) Digit (b) English (c) Chinese

Figure 1: Example of handwritten characters

2. Data
2.1. Dataset

For this project we use the CASIA offline database, as
described in [6]. The data consists of plain gray-scale im-
ages of isolated handwritten Chinese characters, as shown
in Figure 2. Specifically, we will use the HWDB1.1 dataset,
which totally includes 3,755 Chinese characters and 171 al-
phanumeric and symbols. As is presented in Table 1, each
category contains handwritten images from approximately
300 writers (with minor difference for some categories), and
each writer contributes one image to each category. As re-
leased, the full dataset is split into two parts: a training set

1



Figure 2: Different data examples in the same category. Examples on each row come from different writers and correspond to
the same Chinese character: 艾,斌, and棉 respectively. Very different handwriting styles across writers could be observed.

Dataset # Writers # Classes # Total Samples # Chinese characters # Symbols

CASIA HWDB1.1 300 3,755 1,172,907 1,121,749 51,158

Table 1: HWDB1.1 Dataset Information

and test set. Test set contains 60 randomly sampled images
for each category, and training set contains the rest (approx-
imately 240). In this project, for debugging and comparing
different models during training, we further split the origi-
nal training set into two parts: a training set and a validation
set, with training set containing 200 images for each cate-
gory and validation set contains the rest (approximately 40).

Training on the full dataset (over 1 million examples)
can take many hours or days even with the fastest GPU.
Constraint by the computation resources we have access to,
we ran our major experiments (for model comparison and
visualization) on a subset of the full dataset, which contains
200 randomly sampled classes. The size of training set, val-
idation set and test set for each class remains unchanged.

We also ran experiments on the full dataset to evaluate
the power of our best models. This full dataset contains all
the 3,755 classes. It is worth noting that there are much
more classes than examples for each classes in the training
set. The information about two datasets are listed in Table 2.

2.2. Preprocessing

The released dataset contains examples in binary format,
along with labels. So the first step of the data processing
is to convert the binary data into image format. Here we
use .jpg to encode the image and store the image files. The
converted images have background labeled as 255 and fore-
ground pixels in 255 gray levels (0-254).

As it is used in [2], here we followed a three-step prepro-
cessing approach: resizing, contrast maximization and im-
age mean subtraction. Given a raw input image describing

a handwritten Chinese character, we first resized the image
into a normalized size. After visual inspection of several
examples, we found 56 × 56 to be a proper size. The resiz-
ing was done uniformly, and the biggest dimension of each
character determined the resizing factor. We also added 4-
pixel white margins to the resized image, and centered the
character in the final resized image. Thus, a final resized
image has a size of 64 × 64. Secondly, we rescaled the im-
age values to maximize the contrast. In another word, we
forced the image to have values ranging from 0 to 255. Fi-
nally, we computed the mean image with all images from
the training set, and subtracted the mean image from each
example before we fed the example into the following mod-
els. A comparison of images after each step is shown in
Figure 3.

3. Network Configurations

To explore the performance of deep convolutional neu-
ral networks on classifying handwritten Chinese characters,
and answer the questions proposed in Section 1, we im-
plemented a few experiments with different sets of con-
volutional network configurations. Specifically, we evalu-
ated the performance of CNN on the task of 200-class clas-
sification, 3755-class classification, transfer learning from
full dataset to 200-class dataset, and a visualization of the
learned network. Now we presented network configurations
for each of the experiment and the reasons of our design
choices in the following subsections.

2



Dataset # Classes Training (per class) Validation (per class) Test (per class) # Total examples

Subset 200 200 40 60 59,711
Full 3,755 200 40 60 1,121,749

Table 2: Training set, validation set and test set information for the subset and full dataset

Figure 3: An example image (corresponding to the Chinese character “爱”) after each of the three steps. From left to right:
raw input image, resized image, and rescaled image (contrast maximized). Note that black borders are added to the images
to show the sizes. The final output with image mean subtracted is not included in this figure.

3.1. 200-class classification

We first ran experiments on the 200-class dataset with
the objective to compare the influence of different CNN
architectures on the final classification accuracy for hand-
written Chinese characters. Note that experiments on the
full dataset can give more precise and compelling results,
but running the experiments on the full dataset requires
much larger GPU computation power (1121749 examples
vs. 59711 examples) to complete in acceptable time. As
this is a class project, we have very limited GPU compu-
tation power, and have to share it across many groups of
students, we instead implemented our major experiments
on the 200-class dataset. Since we randomly sampled the
dataset from the full dataset, we assume that the results on
the 200-class dataset is representative enough to draw solid
conclusions. We would like to note the readers that exper-
iments on a larger dataset could be done in the future to
validate our findings.

During the design of the experiments, we keep the fol-
lowing questions in our mind:

1. How does the depth of the network influence the clas-
sification accuracy?

2. How does the number of filters in the convlutional lay-
ers influence the classification accuracy?

3. Does adding a convolutional layer help more or adding
a fully-connected layer help more in terms of the test
accuracy?

To explore these questions, following a similar approach
introduced in the VGGNet paper [7], we designed and im-
plemented 8 convolutional neural network architectures, as

it is shown in Table 3. These layers are named by the
number of weight layers (convolutional layers and fully-
connected layers). For example, model M5 has three convo-
lutional layers and two fully-connected layers. Minor vari-
ants of the architecture are also reflected in the name of the
network, e.g. M6- and M6+.

To explore the influence of depth on the classification
accuracy, we started by implementing a 5-layer network,
i.e. M5, and then added layer to this network step by step.
We finally pushed the depth of our model to 11 layers, i.e.
M11. The design choices are made based on several rea-
sons: A convolutional network with fewer layers than M5
is not expressive enough to achieve a very high accuracy on
the handwritten Chinese character recognition task, while a
convolutional network with more than 11 layers can give us
very limited extra performance, and requires significantly
larger effort to train. This insight is proved by our experi-
ment results presented in later section. While the depth of
our networks are increased from left to right as shown in Ta-
ble 3, we fixed the filter size of all the filters to 3. In order to
keep the size of the output, we consequently fixed the stride
size to 1 pixel and the zero padding size to 1 pixel. The
choice of uniform small filter sizes significantly reduces the
number of parameters in the network and makes the net-
works easier to train, while still keeps the expressive power
of the models. This is the same approach used in the VG-
GNet paper [7], and a more detailed discussion and com-
parison of filter sizes is shown in that paper.

To investigate the influence of the number of filters in
the network, specifically in the convolutional layers, on the
classification accuracy, we designed two variants for our 6-
layer model M6, i.e. M6- and M6+. Model M6- halves the
number of filters used in all the convolutional layers com-

3



CNN Configurations
M5 M6- M6 M6+ M7-1 M7-2 M9 M11

5 weight
layers

6 weight
layers

6 weight
layers

6 weight
layers

7 weight
layers

7 weight
layers

9 weight
layers

11 weight
layers

input data (64 x 64 gray-scale image)

conv3-64 conv3-32 conv3-64 conv3-80 conv3-64 conv3-64 conv3-64
conv3-64
conv3-64

maxpool

conv3-128 conv3-64 conv3-128 conv3-160 conv3-128 conv3-128 conv3-128
conv3-128
conv3-128

maxpool

conv3-256 conv3-128 conv3-256 conv3-320 conv3-256 conv3-256
conv3-256
conv3-256

conv3-256
conv3-256

maxpool

conv3-256 conv3-512 conv3-640
conv3-512
conv3-512 conv3-512

conv3-512
conv3-512

conv3-512
conv3-512

maxpool
FC-1024

FC-1024
FC-200 / FC-3755

softmax

Table 3: CNN configurations

pared to M6. M6+ increases the number of filters used in
the first convolutionial layer from 64 to 80, and doubles the
filter number in each subsequent convolutional layer. We
did not double the filter number from M6 to M6+ due to
the constraint of our GPU architecture: Doubling the fil-
ter number will cause the intermediate matrices to be over-
large, and our GPU does not allow this. All other aspects of
the network remain unchanged for M6- and M6+.

The third question is explored by our design of the two
variants of 7-layer networks, i.e. M7-1 and M7-2. For M7-
1, we added an extra convolutional layer right before fully-
connected layers compared to M6, and for M7-2, we added
a fully connected layers before the fully-connected layer in
M6. We expect the comparison of the results for M7-1 and
M7-2 provide us clues to answer the third question. For
model M9 and M11, we built them on top of 7-layer net-
works and used three fully-connected layers for both. The
difference exists in the number of convolutional layers: M9
used 6 convolutional layers, and M11 used 8 convolutional
layers.

During training, the inputs to our network are 64 × 64
gray-scale images, as discussed in previous section. Spa-
tial pooling is carried out by max-pooling layers denoted by
“maxpool” in the table. All the max-pooling is carried out
over a 2 × 2 pixel window, with stride of 2 pixel. Please
note that we used slightly different number of max-pooling
layers in the networks: Since the M5 model only includes

3 convolutional layers, we thus only use three max-pooling
layers for it; for all the subsequent models, we use four max-
pooling layers, and if the layer contains more than four con-
volutional layers, we stacked two convolutional layers be-
fore fed the output to a max-pooling layer, as shown in the
table.

All the hidden layers (convolutional layers and interme-
diate fully-connected layers) are followed by rectification
non-linearity (ReLU layer), which is not shown in Table 3.
We did not include Local Response Normalisation (LRN)
layers in our network. The inclusion of ReLU layers and
exclusion of LRN layers are explained at large in previous
research [7], and we do not provide details here. The out-
put of the last fully-connected layers are fed into a softmax
layer to compute the probabilities.

3.2. 3755-class classification

To evaluate our model not only on the subset of data, but
also on the full dataset, we also ran the 3755-class classi-
fication task. Constraint by time and computation power,
we only implemented four models for this task, i.e. M6,
M6+, M7-1, M7-2. The only difference is that we use 3755
neurons for the last fully-connected layer for each model in-
stead of 200 neurons. We did not include M5 and M6- mod-
els based on our experience on the 200-class classification
experiments that M5 and M6- are less expressive compared
to larger models. And M9 and M11 are less easier to train

4



over more than 1 million examples, and the learned model
provides us with very limited accuracy gain on the 200-class
classification, thus we did not include them in this part, ei-
ther.

All the other aspects of the networks remain the same for
the 3755-class classification task.

3.3. Visualization

Visualization is a natural way to learn about a neural net-
work and understand how a specific network succeeds or
fails at classifying an example. For convolutinal neural net-
work, visualizing the filters at convolutional layers and data
output after each layer is intuitive and helpful. Thus, we
focused on visualizing the filters and data output in the net-
work for this part of experiments.

In order to maximize the visual effect of the result and
make the visualization more intuitive, we did not restrict
our filter size to 3 in this part. Instead, we experimented
with different architectures with different filter sizes, and
set our final architecture to what is shown in Figure 4. This
network consists of four convolutional layers and two fully-
connected layers. We used filter size of 11, 7, 5 and 3 for
the four convolutional layer respectively, as a larger filter
can present more details after visualized. The data output
size and parameter size of each layer is also shown in the
figure for reference.

4. Classification Settings
In the previous section we introduce the architecture of

our convolutional networks for different experiments. In
this section, we present the classification settings in terms
of implementation of the networks, training and testing set-
tings.

4.1. Implementation

All the convolutional neural networks that we introduced
are implemented in Caffe [1]. Specifically, we used the
Caffe command line interface for model training and test-
ing, and we used the Caffe python interface for model en-
semble and visualization. We implemented the first two pre-
processing steps in MATLAB and the image mean subtrac-
tion is implemented in Caffe. Both the training and test-
ing of all the models were run on the Stanford Farmshare
machines, and specifically we used Rye machines to ex-
ploit the GPU power. The Rye machine contains 6 Tesla
C2070 GPU, each with a memory size of around 5GB. This
memory size is very limited for many modern deep learning
tasks, and restricted the design of our models.

4.2. Training

We used similar convolutional neural network training
procedures with [7]. Namely, the training is carried our by

optimizing the softmax objective using mini-batch gradient
descent with momentum. The batch size is set to 100 due
to the limitation of GPU architecture. The momentum is
set to 0.9 for all networks. The training is regularized by
weight-decay (L2 regularization) and dropout at each fully-
connected layer. We set the weight-decay to 0.0005 and
dropout rate to 0.5 for all the networks.

The evaluation during training is carried over the valida-
tion set, and we evaluated each model after 0.5 epoch. The
initial learning rate is set to 0.01 and we halved the learn-
ing rate after every 3 epochs. Model M5 through M7-2 are
trained for 15 epochs, and the learning rate was halved for
5 times in total. For deeper networks, i.e. M9 and M11, we
trained them for 18 epochs and the learning rate was halved
for 6 times as they requires more time to train.

The initialization of certain networks is a little bit tricky.
For model M5 through M7-2, initializing the weights by
sampling from normal distribution with zero mean and
a variance of 0.01 and initializing the biases with 0s is
enough. However, for deeper networks M9 and M11, ini-
tializing the weights randomly will result in a network that
learns very slowly or does not learn at all. Thus, we instead
initialized the M9 and M11 with the trained 7-layer network
and fine-tuned over the learned weights. This trick makes
the training process for M9 and M11 converge within 18
epochs.

Since the input to the networks is gray-scale handwritten
Chinese characters already centered in the image, we did
not use data augmentation such as random cropping, scaling
or shifting. Thus, the influence of data augmentation on
the handwritten Chinese character recognition task remains
undiscussed.

4.3. Testing

Testing is carried over the test set and is also imple-
mented in Caffe command line interface (with exception
to model ensemble). For each designed model, we tested
for two accuracies: top-1 accuracy and top-5 accuracy, with
top-5 accuracy representing the accuracy that the correct la-
bel presents in the top 5 predicted labels. In addition to the
designed models from M5 through M11, we also tested the
result of model ensembles. Model ensemble is implemented
in Caffe python interface and averages the predicted proba-
bilities generated by several different models to make a final
prediction over an example.

5. Experimental Results

Experiments were run following the network architec-
tures and classification settings introduced in previous sec-
tions. In this section we report the experimental results.

5



conv11-64
stride: 1
pad: 5

MP
conv7-128

stride: 1
pad: 3

MP
conv5-256

stride: 1
pad: 2

MP
conv3-512

stride: 1
pad: 1

MP FC-1024 FC-200

(64 x 32 x 32) (128 x 16 x 16) (256 x 8 x 8) (512 x 4 x 4)

Input

(1 x 64 x 64)

(64 x 1 x 11 x 11) (128 x 64 x 7 x 7) (256 x 128 x 5 x 5) (512 x 256 x 3 x 3)

Figure 4: Architecture of the network for visualization. The data output size of each layer is shown at the bottom, and the
paramter size of each layer is shown on the top.

Model Validation Accuracy (%) Test Accuracy (%)
Top 1 Top 5

M5 95.9 95.7 99.1
M6- 96.8 96.6 99.5
M6 97.0 96.9 99.5

M6+ 97.4 97.0 99.6
M7-1 97.3 97.1 99.6
M7-2 97.0 96.8 99.6
M9 97.4 97.2 99.6
M11 97.7 97.3 99.6

Ensemble N/A 98.1 99.7

Table 4: Classification results on the 200-class dataset

5.1. Classification results

The classification results for the 200-class dataset is re-
ported in Table 4. Here we also included the results for
model ensemble. The model ensemble makes predictions
by averaging the results from M6, M6+, M7-1, M7-2, M9
and M11. We did not include M5 and M6- in the model
ensemble because they gave relatively low validation accu-
racy compared to other models. The best test accuracies are
achieved by model ensemble.

The classification results for the 3755-class dataset is re-
ported in Table 5. We also included the results for model en-
semble. It makes predictions by averaging the results from
all single models (M6, M6+, M7-1, M7-2). Again, the best
test accuracies are achieved by model ensemble.

5.2. Network visualization

The visualizations of the filters and data outputs in net-
work described in previous section are shown in Figure 5
and Figure 6. We used an example of Chinese character
“祝” to demonstrate the visualization. Restricted by space
limitations, for conv2, conv3 and conv4, we only presented
visualizations for the first 100 filters. In addition, the visu-
alization of conv4 output is visually filled with black boxes,
thus we instead visualize the pool4 output.

6. Discussion
As it is shown in Table 4, the best test accuracy is

achieved by model ensemble on the 200-class classification
task. If we examine the models with the same filter size
but different depth (i.e. M5, M6, M7-1, M9, and M11), we
could find that the test accuracy increases as the depth of
the CNN increases. This is an interesting observation and it
aligns with the conclusion from the VGGNet paper [7]. If
we further examine the results achieved by different models,
we can easily find that the accuracy gain that a deeper net-
work can give us on top of a shallower network is shrinking
as the depth increases. For instance, the test accuracy gain
from M5 to M6 is 0.9%, the accuracy gain from M6 to M7-
1 is 0.2%, and the accuracy gain from M7-1 to M9 and M9
to M11 is 0.1%. In another word, the accuracy gain that the
increased depth of the network can provide us with follows
the law of “diminishing returns”.

If we compare the results for all the 6-layer networks, i.e.
M6-, M6 and M6+, it is easily found that larger filter num-
ber in the convolutional layer can provide us with larger test
accuracy (M6-:96.6% < M6:96.9% < M6+:97.0%). Though
the difference is quite intuitive and obvious, since we only
ran the comparison experiments for 6-layer networks, the
generalization of this observation still needs to be proven
by more experiments.

If we compare the results for M7-1 and M7-2, we could
easily observe that when we have a relatively small num-

6



Model Validation Accuracy (%) Test Accuracy (%)
Top 1 Top 5

M6 94.9 94.6 98.9
M6+ 95.1 94.9 99.1
M7-1 95.5 95.1 99.2
M7-2 95.3 95.0 99.2

Ensemble N/A 95.5 99.3

Table 5: Classification results on the 3755-class dataset

(a) conv1 (b) conv2 (c) conv3 (d) conv4

Figure 5: Visualization of network filters

ber of convolutional layers (4 in this case), adding an extra
convolutional layer can provide us with larger performance
gain compared to adding an extra fully-connected layer. In
fact, if we compare the result of M7-2 to that of M6+, we
can also observe that the benefit of increasing filter number
beats that of adding extra fully-connected layer. Note that
this conclusion is interesting but less generalizable since we
only ran our experiments on 7-layer networks.

For the 3755-class classification task, as shown in Fig-
ure 5, the best validation accuracy is achieved by model M7-
1 and the best test accuracy is again achieved by model en-
semble. The test accuracy of classifying over 3755 classes
is significant lower than that over 200 classes, but is still
very impressive, with an accuracy of 95.5%. This result is
possible to beat a human classifier after a Chinese reader
manually examined the test examples, but no experiment
can show this strictly. The top-5 accuracies are very high
for both cases. Adding layers, while helps increase the top-
1 accuracy, contributes little to the top-5 accuracy, since the
top-5 accuracy is already very high.

The visualization of the network filters and outputs is
very intuitive. The filter of the first convolutional layers
presents the appearance of small natural strokes. The filters
of later convolutional layers demonstrates patterns of the
characters on larger scales. This observation aligns very
well with our intuitions.

7. Related Work

Our work on exploring the performance of deep convo-
lutional neural network on handwritten Chinese character
recognition is inspired by a few related works. LeNet [5]
is the earliest work of applying convolutional neural net-
work to recognizing characters with noise. It demonstrated
that convolutional neural network system can achieve high
accuracy on vosual recognition of zip codes (digits) sym-
bols and English alphabets. However, the networks that
are used in the paper is relatively shallow and no results on
handwritten Chinese character recognition is reported in the
paper. Krizhevsky et al.’s work [4] on using convolutional
neural network (AlexNet) to tackle the ImageNet challenge
caught a lot of attention by increasing the depth of the net-
work and implementing many tricks to optimize the perfor-
mance of the convolutional network. Their work demon-
strated the potential of using deep convolutional network to
solve complex image recognition problems. Later, VGGNet
[7] further pushed the depth of the convolutional neural net-
works to 13 layers and shows that the deeper the network,
the better the performance can be achieved on complex vi-
sual recognition problems. It also proposed the preference
of small filter size (3) to larger filter sizes for deeper neural
networks.

In 2011, Chinese Academy of Science released the CA-
SIA dataset [6] of online and offline isolated handwritten
Chinese character images. Later, some attempts [2] [3] have
been made to explore the power of convolutional neural net-
work on recognizing Chinese handwritten characters. In

7



(a) raw input (b) mean subtracted

(c) conv1 output (d) conv2 output (e) conv3 output (f) pool4 output

Figure 6: Visualization of layer outputs

one project, researchers explored the possibility of trans-
fer learning from Latin characters to Chinese characters.
In another piece of work, a multi-column neural network
proposed in [?] is used to synthesize the predictions of sev-
eral different CNN architectures and make final predictions.
This idea is the origin of model ensembles. This work
shows that well-trained CNN can achieve high performance
on recognizing handwritten Chinese characters, especially
when CNNs are combined to form model ensemble. How-
ever, the CNN used in this work is relatively shallow, and
no discussion about the influence of architectural factors of
CNN on the final result is made in this paper. Moreover, no
visualization of the learned networks is presented.

8. Conclusion
In this project we explored the problem of recognizing

handwritten Chinese characters. Specifically we use deep
convolutional neural networks and achieved very impres-
sive performance. We ran experiments on a 200-class and
a 3755-class dataset using convolutional networks with dif-
ferent depth and filter numbers. Our main findings are that
for convolutional neural network with small filter sizes: 1)
the deeper the network, the larger the accuracy; 2) increas-
ing the depth gives us diminishing returns in terms of ac-
curacy but highly increases the difficulty of training; 3) in-
creasing the filter number in a moderate range can increase
the accuracy; 4) for networks with relatively few convolu-
tional layers, the benefit of adding extra convolutional layer
beats that of adding extra fully-connected layer. We also
find that using model ensemble of networks with similar

accuracies beats all single networks. Our visualization of
the learned network on the handwritten Chinese characters
is very intuitive.

References
[1] BVLC. Caffe. http://caffe.berkeleyvision.

org/.
[2] D. Cireşan and J. Schmidhuber. Multi-column deep neural

networks for offline handwritten chinese character classifica-
tion. arXiv preprint arXiv:1309.0261, 2013.

[3] D. C. Ciresan, U. Meier, and J. Schmidhuber. Transfer learn-
ing for latin and chinese characters with deep neural networks.
In Neural Networks (IJCNN), The 2012 International Joint
Conference on, pages 1–6. IEEE, 2012.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet clas-
sification with deep convolutional neural networks. In Ad-
vances in neural information processing systems, pages 1097–
1105, 2012.

[5] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[6] C.-L. Liu, F. Yin, D.-H. Wang, and Q.-F. Wang. Casia on-
line and offline chinese handwriting databases. In Document
Analysis and Recognition (ICDAR), 2011 International Con-
ference on, pages 37–41. IEEE, 2011.

[7] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

8

http://caffe.berkeleyvision.org/
http://caffe.berkeleyvision.org/

