
 

 

 
Abstract 

 
Attentional models of computer vision present a 

biologically plausible and computationally inexpensive 
alternative to the deep learning pipeline popularized 
for image recognition in recent years. Although 
drawing inspiration from perceptual psychology, little 
research has attempted to leverage attentional policies 
inferred from human data in order to improve image 
classification for artificial intelligence. The purpose of 
this work is to compare the performance of a 
sequential classification model that learns a multi-
class scene classification task, after training on 
sequences of observations generated by humans, 
saliency-maps, and reinforcement learning. 
 

1. Introduction 

Computer vision has experienced a period of rapid 
growth in the past four years, as the introduction of 
deep convolutional neural networks (CNN) has 
advanced the state of the art in tasks such as object 
recognition [1]. However, the computational expense 
of such methods scales with the dimensionality of 
input images [2] and can become prohibitive for image 
processing with high-resolution or large datasets. 
Recent work has focused on attentional models of 
visual recognition as an alternative to processing entire 
images in parallel [2, 3]. 

 Attentional models recast computer vision as a 
sequential decision making problem, allowing an agent 
to deploy a sensor (i.e., an attentional window) to 
image data across multiple time-steps. This approach 
bears a resemblance to perceptual psychology, where a 
large amount of data has been gathered on human eye 
movements in visual search [4, 5]. Despite the parallels 
between attentional computer vision models and 
cognitive psychology, there is little past work that 
attempts to apply human attentional policies directly to 
image classification. 

This work treats human subject data as 
demonstrations from domain experts, which a visual 

agent can use to excel in image classification tasks, 
while viewing only partial images.  

A model is presented that takes inputs consisting of 
observation sequences generated from one of four 
policies (human observation, reinforcement learning, 
random sampling, or saliency maps). An observation 
sequence is defined as an array of 40x40 grayscale 
regions of interest (ROI), each centered at a fixation 
point given by the policy. The agent must then output 
one of 20 labels, identifying the category of the image 
from which the observation sequence was drawn (e.g., 
object, affective, outdoor, sketch, etc.) 

Because this model has much more limited information 
about the images it classifies, it is reasonable to expect 
that it will underperform the classic approach in terms of 
pure classification accuracy. But by processing only 
critical sub-regions of its inputs, it is hypothesized that the 
model will trade off accuracy for training and test-time 
efficiency.  

There are however some theoretical reasons to expect a 
qualitative difference in classification accuracy favoring 
the attentional model. For example, through 
experimentation on the salamander retinal ganglion cell, 
[28] demonstrated that frequent, fixational eye movements 
might decorrelate the retina’s response to visual inputs. By 
reducing the redundancy in data processed prior to 
classification, it is conceivable that the attentional model 
may come up with a more compact representation of the 
training data and outperform the baseline. The key is to 
produce an observation-selecting policy that picks out 
image sub-regions that are most critical to the 
experimental task (i.e., classification), while managing to 
decorrelate each observation in the sequence. 

The effects of the four policies on image 
classification are compared and recommendations are 
made for future work. 

2. Related Work 
Saliency maps have long found use in the cognitive 

science community as models of selective attention. Such 
models were first formalized by Niebur & Koch [6], who 
described saliency maps as topographically organized 
fields of visual processing, where low-level stimulus  
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features (e.g., colors, gradients, intensities, orientations) 
drive heightened neural responses. They have been used 
fruitfully in both basic research [7] in addition to technical 
applications, such as improving visual displays with 
variable resolution [8, 9]. 

Although predictive of where people look, saliency 
maps fail to capture the temporal order in which visual 
attention is deployed. Recent work suggests 
reinforcement learning as a viable alternative for 
creating attentional models that extend over time 
periods. Butko & Movellan [10] model visual search as 
a discrete action-space, partially observable Markov 
Decision Process, which accumulates reward by 
minimizing the entropy of a belief vector (i.e., a 
probability distribution over regions of the visual field 
indicating where a target might be). Similarly, Bandera 
et al. employ residual Q-learning to an object 
classification task in creating biologically plausible 
model of foveal vision [11]. 

Only very recently have reinforcement learning 
models of attention begin to enjoy popularity in 
general purpose, prescriptive, artificial intelligence 
tasks such as object tracking [12], digit classification 
[2], and image captioning [13]. 

Nevertheless, myriad approaches exist for 
representing hard attention in computer vision systems. 
Recently introduced spatial transformer networks 
present a fully-differentiable method of giving deep 
networks sequential control over focal regions [14]. 
Saliency maps have also adapted well to the deep 
learning paradigm, where some researchers now use 
internal activation patterns of CNNs in place of theory-
driven models of saliency [15]. 

Visual attention remains an open research question 
where reinforcement learning, saliency, and a wealth of 
human subject data all provide unique insights. This paper 
attempts to reconcile these approaches in a comparative 
analysis. 

3. Data 

The CAT2000 [5] dataset was used to train and evaluate 
all models. It includes 2000 images spread across 20 
object categories. Each image was viewed by up to 24 
human observers, whose eye movement patterns were 
used to generate the approximately 30,000 observation 
sequences that form each model’s training, testing, and 

validation sets. Furthermore, the CIFAR-10 [16] dataset 
was used to benchmark the baseline model, in order to 
provide a basis of comparison for the difficulty of 
CAT2000. To my knowledge, CAT2000 has never before 
been used for scene classification. 

CAT2000 also includes corresponding fixation density 
and saliency maps for each image. Fixation density maps 
are the smoothed locations of all 24 observers’ fixations 
on each image, which is used to induce a reward signal for 
reinforcement learning, described in 3.2. Prior to 
experimentation and observation-sequence extraction, all 
images were downsampled to 256x256 and converted to 
grayscale. 

 
Figure 2. The 20 scene categories of CAT2000 [17]. 

 

4. Methods 

Three neural network models were first implemented 
using the deep learning library Lasagne [18]. Two 
networks perform classification of the CAT2000 dataset, 
using either observation sequences or by processing whole 
images (to establish a baseline for comparison). The third 
network is trained on a regression task using 
reinforcement learning to generate sequences of 
observations to be used by the classifier. 

In addition to the reinforcement learning agent, three 
other methods of extracting observation sequences from 
static images were also compared, and described below. 

4.1. Observation sequence extraction 

For the purposes of this work, an observation sequence is 
defined as a tensor in ℝ!×!"×!", where each submatrix is a 
40x40 map of grayscale pixel intensities centered at some 
fixation point. The minimum number of fixation points 
generated by each human view per trial is close to 9 
elements. This value was chosen as the horizon of each 

Figure 1. From left to right: A typical image from CAT2000, a fixation density may, and corresponding saliency map. 



 

 

observation in order to maximize the usable amount of 
human subject data.  

Four methods of extracting fixation points were tested: 

Human fixation points were collected from CAT2000 
individual participant trials. Trajectories exceeding the 
horizon were clipped so that only the first 9 saccades of 
each trial were used. A participant’s trial was discarded if 
at any point the tracking went out of bounds of the image. 
After all invalid data were removed, approximately 16.5 
valid trials remained per image, leaving a final training set 
size of 16,550 sequences and 7,921 sequences for 
validation and testing. 

Random observation sequences were generated by 
uniform sampling of each image. A random sequence was 
created for each valid human trajectory in order to keep 
training and testing set sizes even between the 
experimental conditions. 

Saliency maps were also used to produce fixation 
points. Each CAT2000 stimulus image comes with the 
output image of a theory-driven model of visual salience, 
which was then treated as a landscape of candidate 
fixation points. 9 local maxima in the saliency map were 
sampled uniformly at random to serve as the center points 
for each observation in a training example sequence. If 
fewer than 9 maxima exist in the saliency map, the points 
are sampled with repetition. 

Reinforcement learning was also used to train an 
Attentional Agent to generate observation sequences. A 
population of 10 agents with the same neural network 
architecture was trained on a small subset of 60 CAT2000 
training images (2 examples from each of the 20 scene 
categories). During training, each agent learned to 
maximize reward received for attending to sub-regions of 
the image featuring high inter-observer fixation density. In 
this sense, the agents attempt to reproduce the spatial 
properties of human attention, but are free to learn their 
own temporal ordering of observations. After training to 
optimize reward, the agents’ function mapping image 
inputs to fixation points was used like any of the other 
methods in order to generate training, validation, and 
testing sets for classification. It should be noted that 
because the agent population consisted of only 10 models, 
the final dataset sizes were smaller (10,000 for training, 
5,000 for validation-training). 

Details of the reinforcement learning agents’ 
architecture and training algorithm are included below. 

4.2. Attentional Agent 

The first agent employs reinforcement learning to come 
up with an attentional policy, which is used to select ROIs 
to be processed by the downstream classifier. It is based 
on the Continuous Actor Critic Learning Automaton 
(CACLA) [19]. CACLA employs two function 
approximators: An “actor” 𝜋 parameterized by 𝜓! at 
timestep t that maps an observation of a system’s state to a 

continuous action. And a “critic” 𝑉 parameterized by 𝜃! 
that maps observations to the sum of expected future 
reward, weighted by a discount factor 𝛾. CACLA learns 
by perturbing the actor’s output action 𝜋(𝑠!;𝜓!) each 
timestep with Gaussian noise, producing a candidate 
action 𝑎!. If the temporal difference error between the 
critic’s estimate of a current observation’s value 𝑉! 𝑠!  
and the estimate for an observation that proceed 𝑎! is 
positive, then the actor network’s parameters are updated 
using backpropagation.  

 
Initialize  𝜃!  (below  𝑉! 𝑠 =   𝑉(𝑠; 𝜃!)), 𝜓!, 𝑠!.  
for  𝑡 ∈ 0, 1, 2,… ,9   do  

Choose  𝑎!~  𝜋(𝑠!;𝜓!)  
Perform  𝑎! ,  observe  𝑟!!!  and  𝑠!!!  
  𝛿! = 𝑟!!! + 𝛾𝑉! 𝑠!!! − 𝑉!(𝑠!)  
  𝜃!!! = 𝜃! + 𝛼! 𝑠! 𝛿!𝛻!𝑉!(𝑠!)  

                  i f   𝛿! > 0  then  
                 𝜓!!! = 𝜓! + 𝛽! 𝑠! 𝑎! − 𝐴𝑐 𝑠!;𝜓! 𝛻!𝐴𝑐(𝑠!;𝜓!)    
         i f   𝑠!!!  is  terminal  then  
            Reinitialize  𝑠!!!  

Figure 3. CACLA pseudocode. [20] 

In our case, the observation is the 40x40 grayscale ROI 
taken from the window of attention the agent learns to 
control. The actions are 2D vectors whose components 
consist of values between 0 and 1, representing the 
percentage of the total height and width of an input image 
where the agent focuses its attentional window (e.g., <0.5, 
0.5> represents image center, and <0.0, 1.0> represents the 
top left corner). The observation-value output by the critic 
is a scalar approximation of reward, which is defined as 
the mean human fixation density within the attentional 
window, after zero centering and division by its standard 
deviation. Reward is also “depleted” (pixels in the fixation 
density map are set to -1) in regions where the agent has 
already deployed its sensor, thus encouraging it to explore 
more of the image. 

 
Figure 4. Factored architecture of attentional actor and 

critic models. 



 

 

Both actor and critic are represented with factored 
regression networks, trained to minimize the mean-
squared error loss function. Because the actor must output 
values between 0 and 1, its output layer consists of two 
sigmoid neurons, whereas tanh nonlinearities are used in 
the hidden layer to keep the distribution of the data in a 
scale close to the sigmoid outputs. The critic is instantiated 
with a single, linear output neuron, allowing it produce a 
scalar approximation of the reward given some 
observation, without constraint. 

The factored design allows both actor and critic to use 
convolutions to process image-observations, while 
simultaneously accounting for flat “memory vectors”. 
Memory vectors are simply histograms counting the 
number of times the actor already visited an image 
quadrant during a single episode. Image and memory 
information are merged through elementwise 
multiplication of their respective hidden layers [21]. 
 

4.3. Sequential Glimpse Classifier (SGC) 

The second model is responsible for the actual 
classification of observation sequences. It accepts as input 
sequences generated by the human, random, saliency, or 
reinforcement learning methods. 

 
Figure 5. SGC Model Architecture. 

 Because the classifier performs sequential labeling of 
image data it consists of both convolutional and recurrent 
layers. Its architecture includes a series of convolutional 
layers followed by a single pooling layer. A fully-

connected layer is used to map the pooled outputs to an 
activation vector that serves as input to the recurrent layer. 

  The design of separating convolutional inputs from a 
recurrent representation of the hidden state with a fully-
connected layer is loosely inspired by [2]. The authors 
divide their model of visual attention into a “Glimpse 
Network” that maps image inputs to “glimpse vectors”, 
and a recurrent layer that maps glimpse vectors to hidden 
states and outputs. In the SGC, the layers preceding the 
recurrent layer can be thought as forming a Glimpse 
Network, except convolutions, rather than a foveal sensor 
and rectified-affine transforms, are used to create glimpse 
vectors.  

The recurrent layer itself is composed of 600 Long 
Short-Term Memory (LSTM) units. Like a traditional 
neuron, each unit of a LSTM stores some real-valued 
activation. However, incoming and outgoing connections 
to each LSTM unit is multiplied by the output of a 
weighted sigmoid function. Throughout backpropagation, 
weight configurations can be learned to “open” and 
“close” the cells by ensuring the values of the sigmoidal 
gates approach 1 or 0 respectively. As a result, each 
LSTM unit can perform three operations in response to 
every frame of a sequential input: They can read new 
activations into their memory, write their remembered 
value to the next processing layer, or erase their current 
activation [22]. 
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𝑠𝑖𝑔𝑚
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𝑡𝑎𝑛ℎ

𝑊 ! ℎ!!!!

ℎ!!!!  

𝑐!! = 𝑓⨀𝑐!!!! + 𝑖⨀𝑔 

ℎ!! = 𝑜⨀tanh  (𝑐!!) 
Figure 6. LSTM update equations. [23]. 

LSTMs are beneficial for sequential processing in that 
they allow the network to learn long-term dependencies 
between inputs at different timesteps. Because the 40x40 
attentional window is too small to capture entire objects in 
the 256x256 CAT2000 images, the presence of LSTM 
units is motivated by the need to allow the SGC to 
integrate information from many glimpses. 

 Although the network inputs are naturally thought of as 
sequences, it must be noted that the actual classification 
task demands one label for the entire series of inputs, as 
opposed to individual labels per time-step. Two labeling 
schemes were considered. An early version of the SGC 
forward-propagated the outputs of the LSTM layer every 
timestep through the remaining fully-connected network, 
storing all 9 network output vectors. When the trial 
concluded, a global pooling layer was used to produce a 
final score for each class as the average value of each 
dimension of the 9 output vectors. 

 However, stockpiling observations before making a 
calculated decision at the end of each trial is 



 

 

psychologically unrealistic [24] and appears to give 
empirically poor results. The final architecture follows the 
recommendation of [25], allowing only the final output of 
the LSTM to propagate to later layers. 

 The network’s output layer features softmax 
nonlinearities and minimizes categorical cross-entropy 
loss. 

 SGC Parameter Setting 

No. Conv. Layers 3 

No. Filters 10 

No. FC Layers 3 (including glimpse layer) 

No. Neurons per Layer 600 

Pool size/stride 2 

Regularization 1e-2 

Batchsize 10 
Table 1. SGC hyperparameter settings 

4.4. All-Convolutional Baseline 

The performance of the SGC was measured against a 
standard, deep CNN. The baseline model is structured 
similarly to AlexNet [1], featuring a variable number of 
alternating convolutional and pooling layers featuring 
dropout. Somewhat uniquely, this model includes only one 
fully-connected output layer and depends entirely on 
convolutional and pooling layers to create an internal 
representation of its inputs. 

 
Figure 7. Baseline model architecture. 

The baseline was first fine-tuned and evaluated on a 
well-understood dataset, CIFAR-10. After achieving 
satisfactory results, additional tuning of hyperparameters 
was performed for CAT2000. The major similarities and 
differences between the two baselines are reported below. 

 

 CIFAR-10 CAT2000 

No. Layers 6 5 

Pool size/stride 2 2 

Regularization 1e-1 2e-1 

No. Filters 32 32 

Dropout prob. 0.5 0.7 

Batchsize 5 5 
Table 2. Baseline hyperparameter settings. 

The main differences between the CIFAR-10 and 
CAT2000 models occurred in attempting to combat 
overfitting on the smaller dataset. More aggressive 
regularization (both in dropout and L2 penalty) were 
applied to the CAT2000 learner, which also featured fewer 
convolutional layers. Because the CAT2000 training set 
was significantly smaller than CIFAR-10 (1,000 training 
examples versus 15,000 training examples), a less 
complex model performed better. 

One of the largest challenges that emerged working 
with CAT2000 was the relatively small number of 
examples compared to the number of feature dimensions. 
This issue is explored further in the discussion. 

4.5. Other Hyperparameters 

Various other hyperparameter settings were found to be 
effective for all three models. All filters were sized 3x3, 
with a corresponding stride of 1, and pad 1. As a result, all 
image downsampling occurred during the dataset 
preprocessing stage or as the result of max pooling. 

Based on preliminary results, the elu function 
contributed to model performance by keeping neuron 
activations from zeroing-out. It was used as the default 
nonlinearity for all layers except where otherwise noted 
(e.g., output layers, tanh squashing in actor-critic hidden 
layers, and LSTM outputs). Given that no ReLU units 
were used in the making of these models, the Xavier 
initialization was employed to determine weight-scales. 

All updates were made using the Adam learning rule, 
which combines both momentum and gradient-scaling per 
feature. The learning rate 𝛼 was set to 0.0001, the first 
moment exponential decay rate 𝛽! was set to 0.9, the 
second moment decay rate 𝛽! was set to 0.99, and the 
normalization constant 𝜖 was set to 0.00000001, per 
recommendations given in the original paper [26]. 
Furthermore, All convolutional layers in both the baseline 
and SGC underwent spatial batch normalization [27]. 



 

 

5. Results 
Three experiments were performed in order to evaluate the 
difficulty of the CAT2000 scene classification task, the 
effect of different observation-extraction policies, and the 
role played by time information in observation-sequence 
classification. Each experiment took between 10-15 hours 
of training on a single-core machine. 
 

5.1. Experiment 1 

The All-Convolutional baseline was first fit to CIFAR-10 
and CAT2000. Hyperparameters were chosen to improve 
validation accuracy during hold-out cross validation. In 
both cases, the training set consisted of half the total data 
and the validation and testing sets consisted of the 
remaining two quarters.  

 The baseline trained for 100 epochs on CIFAR-10 and 
achieved a validation accuracy of 69.8% on the 60th 
epoch. CAT2000 consisted of much larger images (by a 
factor of 64) and was thus trained for only 10 epochs.  On 
the 5th epoch, it achieved a validation accuracy of 31.6%, 
but declined in performance with more training, as the 
model severely overfit the data. 

 
Figure 8. Baseline learning curves. Max marked with star 

marker. 

5.2. Experiment 2 

After establishing baseline accuracy for CAT2000, the 
four methods of observation-sequence extraction (human, 
saliency, random, reinforcement learning) were used to 
train and test the SGC. 

 Hold-out cross validation was again used to select 
hyperparameters to optimize performance on the 
sequences generated from human fixation points. 
Hyperparameters were not changed between experimental 
conditions. As in the first experiment, all learning was 
done on datasets split 50-25-25 between training, 
validation, and testing. However, for the human, saliency, 

and random conditions, the entire dataset consisted of 
approximately 32,000 examples. For the agent condition, 
there were 20,000 examples in the dataset. All four 
methods trained twice for 8 epochs. The mean of both runs 
and their standard deviations are shown below. 

 
Figure 9. SGC learning curves with error bars. 

 
All four methods performed close to, and in some cases 

above, the accuracy established by the baseline. With the 
exception of human data, the accuracy of each method 
improved every epoch. The sequence-extractor to obtain 
the highest validation accuracy was the saliency technique, 
achieving 35.27% validation accuracy, while experiencing 
some overfitting. The random extractor also performed 
well, achieving an accuracy of 34.03%, but managed to 
maintain a training accuracy in that same range. This order 
was preserved in the final test set evaluation, reported 
below. 

 
 Human Saliency CACLA Random 
Test Acc. 30.2% 37.82% 24.7% 33.1% 

Table 3. Final SGC accuracy on test set. 

5.3. Experiment 3 

Both human and reinforcement learning policies encode a 
sequence of particularly ordered observations. In contrast, 
the random and saliency methods select some arbitrary 
ordering of their selected observations. 

 Given that random and saliency outperformed the 
order-sensitive methods, it was natural to ask whether the 
recurrent layer of the SGC (included to capture time 
information) was actually playing an important role in 
classification.  

 A third network, the Long-Convolutional Network 
(LCN) was implemented in an attempt to imitate the 
general architecture and representational capacity of the 
SGC, without employing LSTM units. Instead of rolling 



 

 

over each observation in series, the LCN features a 
Reshape Layer that unfolds sequence inputs into one long, 
rectangular image. Inputs can then be treated as a normal, 
static image would. 

 
Figure 10. LCN Model Architecture. 

 
The same sample of CAT2000 used for experiment 2 

was again used to train and validate the LCN. In each 
condition, the LCN trained once for 8 epochs. 

 

 
Figure 11. LCN learning curves. 

 
On the validation set, the saliency method again 

emerged as the strongest approach by a considerable 
margin, achieving an accuracy of 23.63%, with very little 
overfitting. No significant difference was observed 

between the performance of the three other methods. Final 
test set accuracies for the LCN are reported below. 

 
 Human Saliency CACLA Random 
Test Acc. 18.73% 23.57% 18.95% 17.84% 

Table 4. Final LCN accuracy on test set. 

5.4. Qualitative findings 

A confusion matrix for the best model tested (SGC with 
saliency extraction) was also generated in order to assess 
per-class performance [29]. 
 

 
Figure 12. SGC confusion matrix using saliency maps. 

 The model proved to be most effective at classifying 
examples belonging to the action (93.16% accuracy), 
fractal (98.78%), black-white (96.77%), and to a lesser 
extent, the social (55.92%) categories. Good performance 
on the fractal category is unsurprising as each image is 
highly distinctive. Results with black-white are however, 
unexpected. Given that all images were converted to 
grayscale, the black-white images would seem to have 
little intra-group similarity, compared to other categories. 
One possible explanation for such high accuracy is that 
saliency maps were generated before conversion to 
grayscale, meaning that all observations in the black-
white category must rely on contrast, rather than 
chromaticity. As such, the SGC may be learning to 
classify patches with significant changes between dark and 
light as belonging to black-white. 



 

 

 
Figure 13. Observation sequence from black-white (top) 

and art (bottom) categories. 

Art (5.98%) examples proved to be the most difficult to 
classify, and were often confused with affective scenes. 
Pattern (8.13%) examples also incurred high 
misclassification, being most typically labeled as jumbled 
or noisy images. 

6. Discussion 

These results demonstrate that carefully chosen models of 
visual attention can increase not only the efficiency, but 
also the accuracy of scene classification. The observation 
sequences used by the SGC consist of only 14,4000 pixels 
but appear to contain as much information relevant to 
image classification as the 65,536 pixels of a 
downsampled CAT2000 image.  

Perhaps most valuably, the attentional approach allows 
for greatly increased sample efficiency. Whereas the deep 
CNN baseline overfitted the comparatively small 
CAT2000 training set, the attentional models were able to 
make the most of the 1,000 images by mining each for 10-
16 training sequences. In this respect, attention can also be 
viewed as a form of data augmentation. Future work could 
focus on determining the maximum number of sequences 
that can be mined from training images, without 
introducing too much redundancy into the dataset. 

Of the four attentional policies surveyed (human data, 
reinforcement learning, saliency maps, and random 
sampling), the simplest approaches proved the most 
effective. In particular, saliency maps appear to highlight 
important image sub-regions quickly, without the need to 
for lengthy model training (reinforcement learning) or 
human subject recruitment. Although the order for 
saliency-based observations was arbitrary, LSTMs still 
proved effective at modeling them in sequence. It is 
unclear if the SGC leverages time information specifically, 
or if LSTM units simply outperform the LCN due to 
having more representational “wiggle” than standard 
hidden units. 

6.1. Directions for reinforcement models of attention 

The CACLA-based attentional network succeeded in 
learning the reward signal from the human fixation data, 
but its final contribution to scene classification was 
disappointing. One possible explanation is that smoothed 
fixation density, unlike individual human trajectories, is 

strongly center-biased. The tendency for fixation density 
to occupy the middle of images is largely an experimental 
artifact caused by subjects instructed to begin each free-
viewing trial by focusing on the middle of the display. As 
a result, the CACLA agent learns to sample a 
disproportionate number of observations from the middle 
of each image, making it less successful at decorrelating 
its inputs, or at least generating a more diverse sample.  

However, CACLA may yet be a powerful algorithm for 
visual attention after adjustments have been made to the 
reward signal. Given the success of saliency-extraction, 
future work could train CACLA agents to optimize 
saliency instead of human fixation density. Using a 
reinforcement learning framework, rather than the simple 
saliency-maxima sampling presented here would have 
some advantages for artificial intelligence. In particular, 
an agent could be trained to attend to high-saliency areas, 
before being fine-tuned to a particular task (e.g., 
classification, object detection) using transfer learning. 

Center-bias may also explain why the human extractor 
underperformed as well. Because human trajectories were 
clipped to their first 9 saccades, important attentional 
information from late in the trial has been discarded. 
Future models should allow for variable length sequences, 
or at the very least, samples should be taken from different 
points in the individual trajectories. Eye-movements 
recorded during free-viewing could also be qualitatively 
different than those driven by a vision task, such as search. 
Subsequent work should focus on saliency datasets in 
which subjects perform tasks similar to computer vision 
systems. But at present, very few sizable datasets exist. 

7. Conclusion 
This work presents selective processing of image sub-
regions as an alternative to observing whole images for 
classification. Four policies for selecting ROIs were 
surveyed and random sampling of saliency map maxima 
emerged as the best. A relatively shallow convolutional, 
recurrent network featuring LSTM units learned to 
classify a heterogeneous dataset above the level of a fully 
convolutional network. 
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