
DeepFace: Face Generation using Deep Learning

Hardie Cate
ccate@stanford.edu

Fahim Dalvi
fdalvi@cs.stanford.edu

Zeshan Hussain
zeshanmh@stanford.edu

Abstract

We use CNNs to build a system that both classi-
fies images of faces based on a variety of different
facial attributes and generates new faces given a
set of desired facial characteristics. After introduc-
ing the problem and providing context in the first
section, we discuss recent work related to image
generation in Section 2. In Section 3, we describe
the methods used to fine-tune our CNN and gener-
ate new images using a novel approach inspired by
a Gaussian mixture model. In Section 4, we discuss
our working dataset and describe our preprocess-
ing steps and handling of facial attributes. Finally,
in Sections 5, 6 and 7, we explain our experiments
and results and conclude in the following section.
Our classification system has 82% test accuracy.
Furthermore, our generation pipeline successfully
creates well-formed faces.

1. Introduction

Convolutional neural networks (CNNs) are
powerful tools for image classification and object
detection, but they can also be used to generate
images. There are myriad image generation tasks
and applications, ranging from generating potential
mass lesions in radiology scans to creating land-
scapes or artistic scenes. In our project, we address
the problem of generating faces based on certain
desired facial characteristics. Potential facial char-
acteristics fall within the general categories of raw
attributes (e.g., big nose, brown hair, etc.), ethnic-
ity (e.g., white, black, Indian), and accessories (e.g.
sunglasses, hat, etc.). The problem can be stated as

follows: Given a set of facial attributes as input,
produce an image of a well-formed face as output
that contains these characteristics.

In our face generation system, we fine-tune a
CNN pre-trained on faces to create a classifica-
tion system for facial characteristics. We employ a
novel technique that models distributions of feature
activations within the CNN as a customized Gaus-
sian mixture model. We then perform feature inver-
sion using the relevant features identified by this
model. The primary advantage of our implemen-
tation is that it does not require any deep learning
architectures apart from a CNN whereas other gen-
erative approaches do. Our face generation system
has many potential uses, including identifying sus-
pects in law enforcement settings as well as in other
more generic generative settings.

2. Related Work

Work surrounding generative models for deep
learning has mostly been in developing graphi-
cal models, autoencoder frameworks, and more
recently, generative recurrent neural networks
(RNNs). Specific graphical models that have been
used to learn generative models of data are Re-
stricted Boltzmann Machines (RBMs), an undi-
rected graphical model with connected stochastic
visible and stochastic hidden units, and their gen-
eralizations, such as Gaussian RBMs. Srivastava
and Salakhutdinov use these basic RBMs to cre-
ate a Deep Boltzmann Machine (DBM), a multi-
modal model that learns a probability density over
the space of multimodal inputs and can be effec-
tively used for information retrieval and classifica-
tion tasks [14]. Similar work done by Salakhut-

1

dinov and Hinton shows how the learning of a high
capacity DBM with multiple hidden layers and mil-
lions of parameters can be made more efficient with
a layer-by-layer ”pre-training” phase that allows
for more reasonable weight initializations by in-
corporating a bottom-up pass [13]. In his thesis,
Salakhutdinov also adds to this learning algorithm
by incorporating a top-down feedback pass as well
as a bottom-up pass, which allows DBMs to bet-
ter propagate uncertainty about ambiguous inputs
[12].

Other generative approaches involve using au-
toencoders. The first ideas regarding the probabilis-
tic interpretation of autoencoders were proposed by
Ranzato et al.; a more formal interpretation was
given by Vincent, who described denoising autoen-
coders (DAEs) [10] [15]. A DAE takes an input
x ∈ [0, 1]d and first maps it, with an encoder,
to a hidden representation y ∈ [0, 1]d

′
through

some mapping, y = s(Wx + b), where s is a
non-linearity such as a sigmoid. The latent rep-
resentation y is then mapped back via a decoder
into a reconstruction z of the same shape as x, i.e.
z = d(W′y + b′). The parameters, W, b, b′, and
W′ are learned such that the average reconstruction
loss between x and z is minimized [9]. Bengio et
al. show an alternate form of the DAE: given some
observed input X and corrupted input X̃ , where X̃
has been corrupted based on a conditional distri-
bution C(X̃|X), we train the DAE to estimate the
reverse conditional P (X|X̃) [2]. With this formu-
lation, Vincent et al. construct a deeper network of
stacked DAEs to learn useful representations of the
inputs [16].

An alternate model has been posited by Gregor
et al., who propose using a recurrent neural network
architecture to generate digits. This architecture is
a type of variational autoencoder, a recent advanced
model that bridges deep learning and variational in-
ference, since it is comprised of an encoder RNN
that compresses the real images during training and
a decoder RNN that reconstitutes images after re-
ceiving codes [5].

Finally, another approach for estimating gener-
ative models is via generative adversarial nets [3]
[4]. In this framework, two models are simulta-

neously trained: a generative model G that cap-
tures the distribution of the data and a discrimi-
native model D that estimates the probability that
a sample came from the training data rather than
G. G is trained to maximize the probability that D
makes a mistake.

3. Methods
Our workflow consists of two steps. Firstly, we

finetune a pre-trained model to classify facial and
image characteristics for an input image. Secondly,
we generate faces given some description. We de-
scribe our approach for each step in the forthcom-
ing sections.

3.1. Notation

To facilitate the discussion of our methods, we
introduce some notation. Let D denote our set of
training images, and let F denote the set of 73 fa-
cial attributes. From this point forward, we use the
word attribute to refer strictly to one of the 73 facial
characteristics in our system.

3.2. Fine-tuning

For finetuning, we employ the VGG-Face net,
a 16-layer CNN that was trained on 2 million
celebrity faces and evaluated on faces from the La-
beled Faces in the Wild and YouTube faces datasets
[11]. Using the VGG-Face net as our base architec-
ture, we then attach 42 heads to the end of the fc-7
layer of the VGG-Face net, each of which consists
of a fully connected fc-8 layer and a softmax layer.
Each softmax head is a multilabel classifier for a
group of attributes that are highly correlated. For
example, one group of attributes includes hair color
(black, gray, brown, and blond); in general, some-
one usually only has one color of hair, which makes
grouping these particular attributes together as one
multilabel classification reasonable. Furthermore,
grouping together highly correlated attributes for
our classification task in lieu of having 73 binary
classifiers provides the network with implicit in-
formation on the relationship between grouped fea-
tures.

During training, we freeze certain layers in the
CNN and learn the weights and biases on the un-

2

Figure 1: Modified VGG-Face Architecture

frozen layers. To determine which layers to freeze,
we run several experiments with different sets of
frozen layers and choose the set with the optimal
performance. We describe the experiments to as-
sess our architecture and the results of the fine-
tuning in Section 5.

3.3. Generation

3.3.1 Baseline Approach

We begin the generation phase of our project with
a simple baseline approach that uses class visual-
ization. This approach begins with the mean im-
age M , which is the pixel-wise and channel-wise
mean of all images in our training set. We add small
Gaussian noise to M and use this image X as our
input to our baseline algorithm. Suppose we wish
to produce a face with a set of attributes C ⊆ F . In
each iteration of our algorithm, we do the follow-
ing:

1. Perform a forward pass with X as input;

2. Set the gradients at each softmax layer to ei-
ther 1 or 0, depending on our target attributes
C;

3. Perform a backward pass through the network
with these gradients;

4. Update X using stochastic gradient descent
(SGD) and regularization.

This baseline serves primarily to demonstrate that
our CNN correctly represents important facial
structures such as eyes, noses, mouths, etc., even
after fine-tuning on specific facial attributes. This
approach is not comprehensive enough because
boosting certain features from the last layer in the
network does not limit the number of facial struc-
tures that appear in the image. A more complete
discussion of the results of the baseline approach
can be found in the Section 5,6.

Our next and final approach uses a customized
variant of a Gaussian Mixture Model (GMM). We
opt for this technique over more traditional genera-
tive approaches discussed in Section 2 for two main
reasons. Firstly, to our knowledge, this method is
novel and has not been used in context of image
generation using CNNs. Secondly, this approach
does not require complex structures in addition to
our existing CNN, so the model is simpler and has
far fewer parameters to train.

3.3.2 Custom Gaussian Mixture Model

This approach behaves similarly to the baseline in
that we begin with an input image X that consists
of random noise and boost this image toward a set
of attributes C ⊆ F . The primary difference is
that instead of class visualization, we use feature
inversion with respect to a layer in the CNN. We
also begin with random noise instead of the mean
image.

3

Intuitively, feature inversion tries to minimize
the difference in the activations of an input image
and some target activations in a certain layer of the
CNN. These target activations are the activations
that we believe an input image with the desired at-
tributesC will have when passed through the CNN.

More formally, Let φl(I) be the activations at
layer lwhen an image I is passed through the CNN.
Let Tl denote the target activations for layer l and
suppose we have a way of determining Tl from C.
We wish to find an image I∗ by solving the opti-
mization problem

I∗ = arg min
I
‖Tl − φl(I)‖22 +R(I) (1)

where ‖ · ‖22 is the squared Euclidean norm and R
is a regularizer such as blurring and/or jitter. Given
Tl and X , feature inversion does the following:

1. Perform a forward pass with X as input up to
layer l;

2. Set the gradients at l by taking the gradient
of the objective function above with respect to
the activations in layer l;

3. Perform a backward pass from l with these
gradients;

4. Update X using SGD and regularization.

The challenge of this approach is determining
an appropriate set of target activations Tl given C.
To our knowledge, there is no established way to
automatically detect these target activations given
solely the desired facial attributes.

To address this problem, we introduce a cus-
tom Gaussian Mixture Model (cGMM), in which
we model the distribution of Tl for a given attribute
f as a multivariate Gaussian distribution. For each
f ∈ F , we estimate the mean and covariance ma-
trix of its Gaussian by sampling images in our train-
ing set that are positive examples for this attribute.
For computational simplicity, we assume the co-
variance matrix for each distribution is diagonal.
This assumption implies that we effectively treat
each multivariate Gaussian as a stacking of many
independent Gaussians that model the distribution
of activations for a single neuron in l.

Specifically, for each attribute f1, f2, . . . , f73 ∈
F , we select 73 random sets of images
S1, S2, . . . , S73 ⊆ D of equal size such that
for each i, every image in Si has attribute fi.
Then for each i, we compute a mean vector µi and
covariance matrix Σi based on the activations at
layer l of the images in Si. These mean vectors
and covariance matrices define 73 independent
multivariate Gaussian distributions.

Thus, according to our model, if we wish to pro-
duce possible activations at l of an image that has
attribute fi and no other f ∈ F , we can simply
sample from N (µi,Σi). More generally, we can
estimate the target activations for a set of attributes
by performing a weighted sum of samples from the
Gaussians, which we assume to be independent. If
we wish to estimate the target activations at l for a
subset C ⊆ F of attributes, we would produce a
sample s given by

s =
1

|C|

73∑
i=1

1iwizi (2)

where 1i = 1 if fi ∈ C and 0 otherwise, wi is
the weight assigned to the ith Gaussian, and zi ∼
N (µi,Σi) is a random variable. This s can be used
in place of Tl for feature inversion.

Now we must determine the weights vector w =
(w1, . . . , w73). In our approach, we learn this
weights vector by trying to find weights that min-
imize the difference between the target activations
produced by the sampling method above and the
actual activations for images. We wish to find these
weights by solving the optimization problem

w∗ = arg min
w

1

|D|

|D|∑
i=1

‖φl(Ii)− Φ‖22 + λ‖w‖22

(3)
where

Φ =
1

|Ci|

73∑
j=1

1i,jwjµj (4)

and 1i,j indicates whether fj ∈ Ci, the attribute
set for image i. We learn the weights by taking
derivatives of this objective function with respect
to w and iteratively updating w using SGD.

4

4. Datasets and Features

Figure 2: Variations in lighting conditions and
camera angles

We are currently using the PubFig dataset [8],
which is a collection of faces from public photos of
200 individuals. The dataset includes 58K images
scraped from various sources on the Internet, and
bounding boxes around the face for each of these
images. However, to avoid copyright issues, the au-
thors provide links to the images, instead of hosting
the images themselves. We have roughly 20, 000
images in our training set and 8, 000 images in our
test set. The missing images include those that do
not exist at the given links, those that have changed
and a few that had incorrect bounding boxes for the
faces.

Since these images are scraped from public pho-
tographs, there are several variations in faces. Most
faces are frontal, while some are at slight angles.
There is also a wide spectrum of lighting conditions
in the dataset.

For each image in the dataset, we also have a list
of 73 attributes including gender, eye color, face
shape and ethnicity. Many of these attributes are
interdependent. For example, only one of the at-
tributes within black hair, blond hair and brown
hair is positively labeled for each individual.

5. Experiments & Analysis
5.1. Finetuning Experiments

To understand the data better, we first run some
experiments to find out what the distribution of our
data looks like. For each image, we are given in-
formation about the presence or absence of 73 at-
tributes. In Figure 7 we see that the distribution
is quite skewed towards certain attributes. For ex-
ample, around 76% of the people in the dataset are

(a) Youth (b) Soft-lighting

Figure 3: 2D representation of fc-7 feature space

white, while only 3% are black. The number of
people of other ethnicities is even lower, so a large
portion of the images do not have any ethnicity la-
beling. Another prime example of such a disparity
is eyewear. Around 90% of the people in the dataset
have no form of eyewear in the photos. As another
example of the incompleteness of our dataset, only
60% of the people have age information associated
with their faces. These numbers give us a good idea
of the limits of the system we are building and how
certain attributes might generate better faces than
others.

As mentioned in Section 3.2, we use the VGG-
Face net as our base for finetuning. Before train-
ing the network, we perform some analysis to sup-
port the validity of VGG-Face net as our base
architecture. Specifically, we perform a forward
pass for a set of images from our dataset and ob-
tain activations at the fc-7 layer. We then trans-
form the space of these activations into two dimen-
sions using t-SNE. As evidenced by Figure 3(a),
we see clustering even when using the weights di-
rectly from VGG-Face net. This gives us con-
fidence that the network is a good candidate for
transfer learning. However, clustering does not
occur for all of the attributes, as seen in Figure
3(b). This is also expected, since the VGG-Face
net learned attributes that were important in distin-
guishing celebrity faces from each other, and cer-
tain attributes like soft-lighting may not provide the
discriminatory power to do so. After looking at the
overall results across the attributes, we decided that
we need to backpropagate our gradients into at least

5

Figure 4: Loss curve after unfreezing various
layers in the network

some of the layers in the network.
Next, we tune hyperparameters to get the best

results from transfer learning. We try a wide range
of learning rates, diagnosing the learning process
by looking at the loss curve. We also try various
configurations of freezing layers in the network.
As we can see from Figure 4, backpropagating into
more layers in the network helps the learning pro-
cess, but the final loss is very similar across all tri-
als. We also try different learning rates for the lay-
ers based on their distance to the heads. Results
were similar to the previous trials, with the network
converging to more or less the same loss.

5.2. Image Generation Experiments

We first run several experiments using our base-
line class visualization approach. For our pri-
mary experiment, we attempt to boost several fea-
tures that vary in frequency of appearance in our
dataset, including black (ethnicity) and black hair,
for which there are fewer images, and middle-aged,
smiling, and male, for which the frequency of im-
ages is much higher. A resultant image of this ex-
periment is shown in Figure 5. We see that the fi-
nal image has multiple facial structures, i.e. mul-
tiple sets of noses, eyes, eyebrows, etc. However,
the image also contains some semblance of black
hair and a facial structure that is more masculine.
Our baseline demonstrates that the trained CNN

has learned what these general structures in the im-
ages look like. Because class visualization seems

Figure 5: Target Image, Vanilla Feature Inversion,
cGMM Feature Inversion

to boost any part of the image whose activations are
close to the desired features, we shift our approach
to feature inversion. For some image with desired
attributes, there exist corresponding activations at
an arbitrary layer that we can use to generate the
image. To sanity check this idea, we perform an ex-
periment where we use the ground truth activations
at a convolutional layer for a Barack Obama image
and attempt to reconstruct Obama using these acti-
vations. We obtain these activations by performing
a forward pass on the image and stopping at the
desired convolutional layer. The resultant Barack
Obama image is shown in Figure 5. This result
shows that the feature inversion method is a rea-
sonable approach as long as we have access to the
”target” activations of an image with selected at-
tributes. As described in our methods, we use a
cGMM to estimate these target activations.

(a) Distribution of element
in fc-6 activations for black

attribute

(b) Distribution of element
in fc-6 activations for male

attribute

Figure 6: 2D representation of fc-6 feature space

To justify modeling each attribute by an inde-
pendent multivariate Gaussian, we take the images
in set Si for label fi and for each image, plot a sin-

6

gle element of the activation at the fc-6 layer. We
then plot the distribution of that particular element
in the activation across all the images for that label
i. Looking at two distributions representing two el-
ements of the fc-6 activation in Figure 6, we see
that the distributions are reasonably close to a nor-
mal distribution. In general, after plotting distribu-
tions for each element across a sample of images
for an arbitrary label, any arbitrary distribution of
element j of the fc-6 activation for label i seems
to be normal (not all graphs are shown). Thus, be-
cause we have some confidence that the true distri-
bution of the target activations is Gaussian, we can
proceed with our cGMM formulation.

Now, we perform experiments to learn the
weights in our cGMM. The forward and backward
passes of are written from scratch, so we use nu-
merical gradient checking to validate the analytic
gradients. To choose the learning rate and regu-
larization parameters, we start by arbitrarily setting
the learning rate and regularization parameter to 1e-
6 and 1e-5, respectively. Then, we incrementally
reduce the learning rate until the loss starts to de-
crease instead of diverging to infinity. Finally, we
use the trained model to generate several faces of
differing attributes.

6. Results

training set test set
fc-6 0.847 0.795

conv-5 0.867 0.815

Table 1: Average classification accuracy freezing
parameters beneath layers fc-6 and conv-5

Our final training parameters for the finetuning
are 5e-6 for the learning rate and 50 for the number
of epochs. As a form of regularization, we utilize
dropout after every layer. The average classifica-
tion accuracies are shown in Table 1. The classi-
fication accuracy for every facial attribute is above
0.5, while most are around 0.8 or 0.9.

For our cGMM training, our final learning rate
and regularization parameter are 1e-11 and 1e-5,
respectively. We generate faces for sets of attributes

person similarity %
Barack Obama 35

Clive Owen 27
Cristiano Ronaldo 45

Jared Leto 52
Julia Roberts 42

Mickey Rourke 22
Miley Cyrus 42

Nicole Richie 30
Ryan Seacrest 30

Table 2: Similarity Percentages for Different Faces

that are defined by several images in the test set
(i.e. we plug in these target attributes into our sys-
tem and compare the image we generate with the
ground truth image). One example of a generated
image is in Figure 8. To measure how ”reasonable”
our faces are, we use a similarity metric imple-
mented by the PicTriev software, which uses com-
mon facial features to measure similarity [1]. This
quantitative evaluation of our faces is shown in Ta-
ble 2.

7. Discussion

Although our classification accuracies are gen-
erally quite high, there are some facial attributes
such as lighting (e.g., soft lighting, harsh lighting)
and photo type (e.g., color photo, posed photo) that
have low accuracies (roughly 55-60%). We do not
attempt to improve these attributes, since they are
not as important as other, more face-related charac-
teristics, such as nose shape and forehead visibility,
that have high classification accuracies.

The most obvious result from our generation ex-
periments is that each resultant image is very close
to the mean image of our training set. Despite this,
the fact that we successfully generate a coherent
face from random noise indicates that our feature
inversion process could work if the activations for
each attribute were more discriminative.

We hypothesize several reasons why our activa-
tions are not discriminative enough. One possibil-
ity is that the distributions for different attributes
are very similar and clustered around the mean im-

7

Figure 7: Distribution of all attributes in our training dataset

Figure 8: Cristiano Ronaldo generated image

age in this abstract space. Another possibility is
that the distributions lie in different manifolds in
this space, but that they are not normal yet roughly
centered around the mean-image. This means that
the act of averaging these activations and approxi-
mating them as Gaussian blurs the distinctions be-
tween these distributions.

This bring us to the assumptions about the fea-
ture activations upon which the cGMM approach
relies. Our first assumption is that the distribution
of activations for each attribute in a given layer
is indeed Gaussian. Additionally, we assume that
these Gaussians are independent. This is perhaps
the least justified assumption the model makes, be-
cause clearly many attributes are correlated, such
as middle-aged and white hair. Despite this, we
hope that our model approximates the true distribu-
tion sufficiently for our purposes. We also assume
that the variables in the multivariate Gaussian are
themselves distributed normally and are indepen-
dent. We believe this assumption is valid because
we examined several of these distributions for indi-
vidual variables as described in Section 5.

One way to improve our cGMM technique
would be to estimate the target activations of a de-

sired image by taking a weighted sum of samples
from the Gaussians instead of a weighted sum of
the means of the Gaussians. We opted for the latter
approach because it was far more computationally
efficient, but the former approach could allow for
more variation from the mean image.

8. Conclusion & Future Work
In this work, we have trained an architecture

that classifies facial attributes of images with high
accuracy. We have also shown the effectiveness
of the custom Gaussian Mixture Model in gener-
ating well-formed faces from random noise. Al-
though the faces themselves were not discrimina-
tive enough for the desired features, we posit that
we can train a model that generates discriminative
faces if our dataset contained more diversity across
the attributes.

Alternatively, we might implement a variational
autoencoder structure as in [5] and compare the re-
sults with those of the cGMM. We expect that since
the variational autoencoder has a higher capacity,
it might give more discriminative faces but would
also take longer to train. More efficient generative
models open up exciting possibilities in other appli-
cations, including medicine and law enforcement.

8

References
[1] AppliedDevice. Pictriev: searching faces on the

web, 2010. [Online; accessed 2016-03-14].
[2] Y. Bengio, L. Yao, G. Alain, and P. Vincent. Gener-

alized denoising auto-encoders as generative mod-
els. In Advances in Neural Information Processing
Systems, pages 899–907, 2013.

[3] J. Gauthier. Conditional generative adversarial nets
for convolutional face generation. Class Project
for Stanford CS231N: Convolutional Neural Net-
works for Visual Recognition, Winter semester,
2014, 2014.

[4] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Ad-
vances in Neural Information Processing Systems,
pages 2672–2680, 2014.

[5] K. Gregor, I. Danihelka, A. Graves, and D. Wier-
stra. Draw: A recurrent neural network for im-
age generation. arXiv preprint arXiv:1502.04623,
2015.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,
J. Long, R. Girshick, S. Guadarrama, and T. Dar-
rell. Caffe: Convolutional architecture for fast fea-
ture embedding. arXiv preprint arXiv:1408.5093,
2014.

[7] E. Jones, T. Oliphant, P. Peterson, et al. SciPy:
Open source scientific tools for Python, 2001–.
[Online; accessed 2016-03-14].

[8] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K.
Nayar. Attribute and Simile Classifiers for Face
Verification. In IEEE International Conference on
Computer Vision (ICCV), Oct 2009.

[9] L. Lab. Denoising autoencoders (da). 2016.
[10] C. P. Marc’Aurelio Ranzato, S. Chopra, and Y. Le-

Cun. Efficient learning of sparse representations
with an energy-based model. In Proceedings of
NIPS, 2007.

[11] A. Z. O. M. Parkhi, A. Vedaldi. Deep Face
Recognition. In British Machine Vision Conference
(BMVC), 2015.

[12] R. Salakhutdinov. Learning deep generative mod-
els. PhD thesis, University of Toronto, 2009.

[13] R. Salakhutdinov and G. E. Hinton. Deep boltz-
mann machines. In International conference on ar-
tificial intelligence and statistics, pages 448–455,
2009.

[14] N. Srivastava and R. R. Salakhutdinov. Multi-
modal learning with deep boltzmann machines. In

F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 25, pages 2222–2230. Cur-
ran Associates, Inc., 2012.

[15] P. Vincent. A connection between score matching
and denoising autoencoders. Neural computation,
23(7):1661–1674, 2011.

[16] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and
P.-A. Manzagol. Stacked denoising autoencoders:
Learning useful representations in a deep network
with a local denoising criterion. The Journal of Ma-
chine Learning Research, 11:3371–3408, 2010.

9

