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Abstract

Common computer vision classification models try to
classify images into objective object categories. Rather
than object classification, the goal of this paper is to learn
and detect abstract concepts and emotions in images using
FLICKR images and their tags. The baseline model is a
VGG-16 Convolutional Neural Network (CNN) which out-
puts binary predictions for each single concept. Further-
more, we present and evaluate two different methods to deal
with highly skewed data, a common problem in such specific
classification tasks. In addition to the classic cost weight-
ing, we propose a novel approach using entropy-based mini
batch sampling. Experimentally, we explore the ability of
our CNN model to learn these concepts. We also show that
our entropy-based mini batch model outperforms the base-
line and the model with modified weights, using F1-score
metrics. Finally, we investigate the tag noise level to fur-
ther detail our quantitative results.

1. Introduction
Most computer vision models try to classify and rec-

ognize an image without its surrounding (textual) context
and focus mainly on classifying defined object categories
(car, cat,...). Specifically in the context of social media, this
leads to a significant loss of information, particularly when
thinking about all the hashtags / tags that are used to give
a particular image post a specific sentiment and meaning.
E.g. instead of just posting an image with a cat, the social
media user would post this image together with tags such
as ”#cute kitty, #beautiful, #weekend with my puppy”.
Other example images together with their tags are shown on
Figure 1.

The goal of this project is to learn and detect conceptual
information using tags as labels for concepts using convo-
lutional neural networks (CNNs). Specifically, given an im-
age we are predicting whether a certain concept / emotion
out of a pre-defined list of concepts is contained in the im-
age.

Potential areas of application include social media profil-
ing, image sentiment analysis and image search. Ultimately
combining high level text semantic extraction with a pow-
erful visual object- & concept-classification framework will
be of high future interest to understand complex textual-
visual documents & media in the field of information re-
trieval.

One of the main challenges encountered is our sparse
data set. Because, each concept is only contained in a small
fraction of all images, concept labels highly skewed towards
the 0-class. Therefore, the initial baseline model tends to
have low detection recall. A lot of effort has been dedicated
to overcome this challenge and this paper summarizes the
approaches developed as well as the results obtained.

The rest of this paper is organized as follows: we first
review the existing related literature and compare it to our
specific task. Then, we present the data set with examples
and the specific related challenges. Third, we describe the
baseline model and present 2 different approaches to deal
with highly imbalanced data. Fourth, we present our results
analyzing the model performance on a per-tag basis as well
as the general data imbalance approaches. Furthermore, we
will investigate the noise level within our experiments as a
direct consequence of the very ’subjective’ nature of using
tags rather than using descriptive annotations. Finally, we
conclude by discussing further research opportunities and
challenges in this area.

2. Related Work
Over the past decade models using CNNs in computer

vision continuously pushed performance boundaries in clas-
sification tasks such as the large scale visual recognition Im-
ageNet challenges [1]. The most common discipline here is
object classification with its direct relevance for various ap-
plications in industry such as autonomous driving or image
search.

In recent years, hand in hand with the advances of deep
learning in Natural Language Processing (NLP) research
has been growing in the field of multimodal learning: com-
bining visual and textual information. One common field of
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Figure 1. Example images and their corresponding tags from the NUS Wide data set.

application is provided by social media where images are
mostly embedded in a textual context.

Chen et al. [2] as well as Xu et al. [3] focus on vi-
sual sentiment analysis tasks, similar to sentiment analysis
in NLP applications. They are incorporating tag sentiments
into the image classification pipeline. Other models try to
include comments or other social network metadata, mostly
using graphs, ranking approaches and complex image-text
pipelines (e.g. [4] or [5]).

Other models such as [6] relate semantics found in tags
and image semantics in a common representational vector
space and are able to provide a common search space be-
tween tags and images.

Most of these papers lack a general approach to learn,
predict and detect abstract concepts without a supporting
NLP pipeline. Besides that, the question what concepts or
emotions are actually ’learnable’ to which extent remains
largely unaddressed.

Besides exploring the field of learning abstract concepts
and emotions we are dealing with the issue of a highly
imbalanced data set for each concept. A straightforward
method to deal with highly biased data is sub-sampling
the majority class or duplicating the minority class(es) [7].
However, this approach is limited for multi-label classifi-
cation problems as we are dealing with as duplicating one
minority class would increase another majority class which
would result in counterproductive results.

Another common approach to address this issue that we
will explore our baseline to is training a ’cost-sensitive’
model [8] [9]. Other methods use ensemble methods such
as different SVMs [10] to overcome the class imbalance.

We propose propose a novel method in sampling mini
batches using an information theory approach. Maximizing
information gain for sampling is commonly used in the area
of selecting the most informative samples when data label-
ing is expensive, called active learning [11]. We see this

Figure 2. Distribution of the tags in the data set

new method as one of the main contributions of this paper
in computer vision / deep learning tasks.

3. Dataset

We used the publicly available dataset NUS-
WIDE [12] which contains 27,000 Flickr (https :
//www.flickr.com/) images and additional tags for each
image (appr. 4000 unique tags). Tags can be descriptions of
the image such as landscape, indicating that the image is
picture of a landscape. Or it could be more about the author
such as abigave, a seemingly popular Flickr user. Since
the objective of our task is to learn high level concepts, we
are more interested in the former type of tags. Examples of
the images with their respective tags are shown in Figure 1.

The first step is to select the tags we will learn. We
computed the frequency of the tags in the data set to se-
lect frequent tags that also include interesting concepts to
learn. Surprisingly, many of the most frequent tags, includ-
ing the most frequent one, abigave, refer to Flickr users or
groups. Based on this tag-frequency analysis, we narrowed
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Tag # examples Coverage
Landscape 1527 13.5%
Wildlife 591 5.2%
Travel 1036 9.1%

Vacation 476 4.2%
Sunrise 412 3.6%
Sunset 1486 13.1%
Night 1047 9.3%
Art 1224 10.8%

Architecture 1200 10.6%
Urban 707 6.25%

Abandoned 339 3%
Beautiful 711 6.3%

Cute 508 4.5%
Love 489 4.3%

Beauty 423 3.8%
Summer 786 6.9%

Fall 977 8.7%
Winter 727 6.5%
Spring 554 5%

Table 1. Summary of the 19 tags of interest: first column is the tag
text, the second contains the number of example for the tag and
the third its frequency in the filtered and final data set

our number of tags to learn to 19 tags using a hard threshold
of 300 examples for every one of them. The final tags are
shown in Table 1.

Despite our efforts to only select frequent tags to learn,
most of the images in the dataset do not contain any. Fig-
ure 2 shows how many images in the data set have tags in
them. The x-axis refers to the number of present tags out of
the 19 tags of interest. The y-axis shows the corresponding
number of example images in the data set.

Given the sparsity of this data set, we filter out the im-
ages which do not contain any of our 19 concepts of inter-
ests and obtain a training data set with 11317 images and
a validation data set with 3178 images. On a per-concept
basis, our data is still very sparse and skewed towards the 0-
class (concept not contained). Table 1 shows the final tags
selection as well as their respective number of examples and
frequency in the data set.

4. Methodology

We approach this problem as a multi-label classification
problem. Every tag is detected using a logistic regression.
All these classifiers are built on top of a shared CNN. As we
detail below, the CNN extracts the features from a given im-
age and feeds them to 19 binary classifiers to detect whether
the associated tag is present or not.

Figure 3. Structure of our learning model: a shared VGGNET-16
with 19 different logistic regression classifiers, one for each tag

4.1. Baseline Model: Finetuned VGGNET-16

Our baseline model is a VGGNET-16 [13] with 19 dif-
ferent logistic regression classifiers instead of the last soft-
max layer. Each of these classifiers corresponds to one of
our tags and predicts its presence in the image. The overall
structure is displayed on Figure 3. Formally, the top layers
we added to the VGGNET-16 have the following equations:

Li =
1

1 + e−θ
T
i x

for i ∈ landscape, wildlife, travel.... x refers to the the
features outputted by the previous fully connected layer of
size 4096. And θi refers to the weights of these features for
the tag i.

Because of the skewness of our training data, this base-
line model performed poorly overall as we will discuss in
the results section. Therefore, two methods were developed
and implemented to overcome the data imbalance issue.

4.2. Introducing Class Weights

The first approach to overcome class imbalance in the
data is to modify the cost function directly in the model.
Various papers such as [8] or [9] explored the implementa-
tion of such ’cost-sensitive’ models.

The cost in this case is multiplied by a weighting term
w1 for the non-zero classes, and w0 = 1 − w1 respectively
for the 0 class. The modified cross entropy cost function for
one aspect therefore results in:

Ea =
∑
i

wiyilog(ŷi) (1)

with the following constraints:∑
i

wi = 1 (2)

Intuitively, we aim to penalize the cost more when we
miss existing tags, forcing the model to increase tag-recall
(or tag-sensivity which describes the same). If the weight
assigned to w1 is smaller than w0, the resulting model will
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predicts only zeros as it will give the majority class an even
higher weight. On the other extreme, if w1 is much larger
than w0, our false positive rate can potentially be harmful.
Therefore, we need to be careful when setting these hyper-
parameters.

We select the weights based on the inverse frequency of
the tag. We also add a smoothing parameter k to avoid
putting too much weight on the minority class.

wlandscape=1 =
nlandscape + k

totaltraining + k
(3)

wlandscape=0 = 1− wlandscape=1 (4)

Following what appears to be a common practice [14],
we set k such as none of the classes weights more than
the double of the majority classes. We implemented this
method directly in Caffe Softmax layer by adding an op-
tional argument in the proto buffer and adding the adequate
equation in CPU as well as GPU forward/backward propa-
gation. We are currently starting an effort to push the result
for code review and contribute to the Caffe project.

4.3. Entropy-enriched minibatch sampling

We propose a novel approach to solve this problem. This
heuristic method is based on information-rich mini-batches.
Maximizing information gain for sampling is commonly
used in the area of selecting the most informative sam-
ples when data labeling is expensive, called active learning
[11, 15]. We are showing that this general idea can be used
in the area of minibatch sampling.

Each mini batch is created using the following proce-
dure:

1. Randomly sample candidates (examples) from the
training set

2. Choose the candidate that maximizes the entropy of
the current mini batch.

Entropy is the expected value of information contained in a
set. Therefore, maximizing this metric is likely to maximize
the information capability of each batch.

Formally, the entropy is defined as follows:

H(X) =
∑
i∈C

P (xi)I(xi) = −
∑
i∈C

P (xi)log2(P (xi)) (5)

Where C defines the set of classes, here a vector of length
19 where every index represents a tag. And the probabilities
are computed using the following:

P (xi) =
ni∑
j∈C nj

(6)

where ni is the number of times the class (tags) i appeared
in the data. However, when building the mini batches, we

Data: Y ,ncandidate,size,nbatches,replacement
Result: batches

1 batches← EmptyList();
2 for i = 1..nbatches do
3 c batch← EmptyList()
4 for j = 1..size do
5 candidates← sample(Y, ncandidate)
6 best← choose best(candidates, c batch)
7 c batch.add(best)
8 if replacement = False then
9 discard(Y, best)

10 end
11 end
12 batches.add(c batch)

13 end
Algorithm 1: Create Entropy-based mini batches

Data: candidates,c batch
Result: best

1 entropies = EmptyDictionary()
2 forall candidate ∈ candidates do
3 entropies[candidate]←

computeEntropy(c batch+ candidate)
4 end
5 best← argmax(entropies)

Algorithm 2: choose best procedure

start with an empty set. Therefore, initially all probabilities
are 0 and the entropy is not defined unless all the classes are
represented at least once. Following the convention on en-
tropy calculation, we compute entropy only on classes that
are already present in the batch. Adding a new class will al-
ways have a higher information gain than adding a sample
to an existing class. This will force the batch selection to be
as diverse as possible.

Algorithm 1 shows how we create these batches based on
the data: The inner loop (line 4) summarizes the creation of
a single batch: we select an arbitrary number of candidates
(line 5) to add the mini batch, generally between 5 and 10.
We find the best candidate using Algorithm 2 (line 6) and
add it to the batch. Note that this algorithm works with and
without replacement.

Algorithm 2 shows the procedure we use to find the best
candidate for the current mini batch: We will compute the
entropy of the current batch c batchwith every candidate in
the set. This process is analog to the information gain mea-
sure. If some classes are not present in the batch, we will
compute the entropy based on the present tags only. Finally,
once we compute the entropy of the current batch with all
candidates, we simply choose the one that maximizes it.

Figure 4 shows the the diversity in a batch using this
method and a regular random minibatch selection. We see
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Figure 4. Effect of entropy sampling on batch diversity. The x-axis
shows the batch size and the y-axis the number tags present in the
batch

that, following our intuition, the minibatches created using
the entropy-based sampling quickly achieve a higher diver-
sity and are able to catch all 19 tags within the 24-sized
batches we have. We selected 24 because it was the maxi-
mum the AWS machine was able to process before running
out of memory.

5. Experiments

5.1. Implementation

Due to our limited data size we choose to use a pre-
trained VGG model from the Caffe model-zoo. This model
has pretrained weights which will be used to initialize our
model. The VGG-16 net was trained on ILSVRC-2012 [16]
and achieved 13.1 error rate in the top 5 ImageNet chal-
lenge. Backpropagation will take place both in our cus-
tomized top layers as well as through the pretrained layers.

With respect to the infrastructure, we used a GPU-
powered AWS-EC2 instance with Caffe and Pycaffe.

Caffe requires either dumping image data into special
data formats (LMDB or HDF5) or constructing special data
layers. As LMDB only allows one label per image (com-
mon classification problem), we select to use HDF5. Data
had to be processed in batches to fit in our limited memory.
In addition, we subtract the mean image (calculated over the
training set) and reformat all images to be 224x224x3 in the
data layer.

As the model differs significantly from the Vanilla VGG-
16 Classification Net, changes to the solver and learning
parameters were made. Adagrad turns out to be the most
favorable learning policy. The base learning rate is cross-
validated to be 10−4. Finally, the batch size was 24, the
maximum we were able to use for the AWS GPU that has
only 4GB of memory.

Figure 5. Losses of baseline and mini batch enriched model

Figure 6. Sensitivity & Precision for labels with MB enriched
model

5.2. Results

First, we note the difficulty of the task at hand. Fig-
ure 5 shows the learning curves for the baseline model and
the entropy-enriched minibatch sampling which stays at a
higher loss as the minibatches contain more difficult infor-
mation. The weighted model results in a very similar curve
than the baseline model. Even if the mean is relatively
smooth, we see that the curves per label are very noisy. This
is partly due to the lack of training example per tag in every
batch. Since the batch size is only 24 and we have 19 tags,
most of the batches contain at most two examples for every
tag. The learning is therefore very noisy.

Second, our experiments showed that the models ca-
pability to learn varies strongly depending on the con-
cept. One can clearly see a correlation of the ’abstract-
ness’ and performance. Or in other words: Concepts that
are more ’object-related’ (landscape, wildlife, ...) are eas-
ier to detect in general, concepts that are very abstract
(beauty, cute, ...) are harder to detect. Another clear corre-
lation is that concepts with more positive training examples
result in better performance.

Figure 6 shows our quantitative results of the best model.
In order to analyze and compare our approaches, we

identify and highlight the top performing (top 5) tags that
the model can learn best, using the well-known F1-score
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Model F1-Score
Baseline 0.16
Weighted 0.14

Entropy enriched 0.18
Table 2. Model performance

Figure 7. Sensitivity progress progress for baseline & modified
models with avg. over top 5 concepts

(harmonic mean of sensitivity & precision). These tags are
highlighted in bold on Figure 6. Taking the mean value of
the top 5 tags, we now evaluate the performance of our 3
models.

We start the comparison between our approaches using
the F-1 metric on the top 5 tags. The result is shown in Table
2. Our entropy-enriched minibatch model outperforms the
baseline and the weighted model. Even though the weighted
model has good sensitivity performance, it lacks precision
which makes sense intuitively as it puts very high impor-
tance on detecting the 1-class.

Figure 7 shows the sensitivity versus iteration number
for these high performing tags.

6. Discussion

6.1. Tags Discrepancy

As we pointed out in the previous section, some tags
tend to perform much better than others. Highly abstract
concepts are not properly learned because they require a
lot more inference and the information present in the im-
age might not be enough. For instance, the spring tag just
refers to the date the picture was taken with no real evidence
on the image that it is the spring. On the other hand, winter
outperforms it because most the winter-tagged image con-
tain snow and ski trips photos.

On the other side of the performance spectrum, some
tags tend to perform relatively well. In particular, the
landscape tag seems to have high recall. The first example

Figure 8. Example of NUS WIDE image with ground truth and
predicted labels

image on Figure 1 shows a typical landscape image. These
images are easily recognizable by a human observer as op-
posed to cutewhere there is no typical image. This explains
the general discrepancy between high performing and low
performing tags.

The number of examples for a tag is another indicator
for this discrepancy. Obviously, more examples for a given
tags improves its prediction performance. For instance,
landscape and sunset are the tags with the largest number
of examples (appr. 1500) and they tend to perform much
better than abandoned that has only appr. 300 examples.

6.2. Noisy Data

Another challenge of this work relates to the level of
noise in the data. Tags do not necessarily describe the im-
age and even when they do so, people use different vocabu-
lary to express the same thing: for instance people can use
urban or city for the exact same image. We preprocessed
the tags to include synonyms such as fall and autumn
in the same tag. However, we weren’t able to map all
tags. This tends to hinder our quantitative results even if
the model performs relatively well. For instance, Figure 8
shows an image of Shanghai at night along with its ground
truth and predicted tags. We see that the ground truth does
not contain night nor urban, which could be good tags for
this image. The model seems to catch them along with other
low-performing tags. In this case, it would count as a false
positive for both urban and night tags decreasing the pre-
cision. That does not imply that the model for these tags
is very accurate, but the level of noise in the data seems to
be very high and therefore explains, at least partly, the low
precision numbers.
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6.3. Class Imbalance

With regards to the strategies used to deal with the class
imbalance in the data, weighting the cost function is not
able to overcome this issue for our model. We assume that
weighting the cost function requires more extensive cross
validation of parameters to add value to the learning pro-
cess. However, the entropy-sampled method outperforms
significantly the baseline (and the weighted method). In-
tuitively, this points out the opposite nature of these tech-
niques: the weighted cost function tends to force the classi-
fier to choose minority classes while the entropy-sampling
drastically balances the training set.

Specifically using different sampling parameters (called
ncandidate in Algorithm 1) indicating the number of exam-
ples the mini batch sampling method should sample from
gives more insights when and why the mini batch sam-
pling works best: A high parameter (> 10) gives too much
flexibility to the method and allows it to choose from a
small subset of the training data samples (which increase
the entropy but which are not a good representation of the
overall data). With a low parameter (< 3) the method
is not able to find good examples. A good trade-off lies
around ncandidate = 5 where the model has a good balance
between diversity and entropy-enrichment. Further work
should explore ways to automatically choose this parame-
ter.

7. Conclusion

In this paper, we compared various approaches to tackle
visual abstract concept detection. The tagged images add
two layers of complexity: The issue with very abstract and
conceptual noisy tags, often in the form of subjective emo-
tions and the issue of class imbalance for each concept.

With respect to the first issue we can conclude that, as
discussed in section 6.1 and 6.2, tags should not be con-
sidered as ground truth labels, but rather as a more loose
version of ’concept indicators’. We showed that concept
learning strongly depends on the type of concept and com-
pared the ability to learn these different types of concepts.

With respect to the high class imbalance, we conclude
that a highly biased data set requires creative solutions.
Therefore, we proposed and implemented two extensions to
overcome these challenges including a novel method based
on information gain which actually outperforms the base-
line model. We assume that weighting the cost function is
a suitable approach in general as shown in related work but
requires more extensive cross validation. Our novel concept
of entropy-based minibatch sampling seems very suitable to
deal with highly biased datasets.

We conclude by outlining a few areas for future work.
We mainly see the entropy-based sampling as an intelligent
sampling approach that seems very promising to explore

further. We propose investigating the effects of the entropy-
based sampling on the learning process and how it affects
accuracy on different visual classification problems. Using
the presented results, one may find an even better way to
optimize the training pattern for a more balanced classifier.
In addition, it would be fruitful to investigate efficient tech-
niques to optimize its hyper-parameters such as number of
candidates or batch size.
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