
Facial affect detection using convolutional neural networks

Sherrie Wang
Institute of Computational and Mathematical Engineering

Stanford University
sherwang@stanford.edu

Abstract

In this work, I present a convolutional neural network
(CNN) to classify human facial affect into seven basic emo-
tions. Classification using a three-layer CNN and rotation-
augmented data yields a test set accuracy of 38.1%, sig-
nificantly higher than the SVM benchmark of 12.1%. I also
extract features from the last layers of deeper networks, and
at best achieve 30.3% test set accuracy using features from
a network trained on data from the 2015 Emotion Recogni-
tion in the Wild competition.

1. Introduction

Emotions are an important part of human intelligence,
decision making, communication, memory, and more. In
order for computers to interact effectively with people, they
ought to be able to detect human affect.

Affect detection has historically been under-emphasized
in the field of artificial intelligence, but has important ram-
ifications in application. In medicine, it could be used to
detect pain during procedures, or monitor depression in pa-
tients; in education, teaching could be tailored to the emo-
tional state of the student, e.g. making the lesson easier if
the student exhibits frustration. In marketing, successful
affect detection can be extremely lucrative — last year, ad-
vertising giant M&C Saatchi began testing billboards with
hidden Microsoft Kinect cameras that read viewers’ facial
expressions and react accordingly.

In this paper, I explore the detection of emotions from
facial expressions using convolutional neural networks
(CNNs). The input to my algorithm are images from the
Cohn-Kanade AU-Coded Expression Database Version 2
(CK+), which includes both posed and non-posed (sponta-
neous) expressions, comes labeled with six basic emotions,
and was recorded in settings controlled for illumination and
angle. I then use an SVM, three-layer CNN, and deeper
architectures trained on ImageNet and other databases to
output a predicted emotion.

1.1. Classification of Emotions

The classification of emotions can be a difficult problem,
as there is no consensus whether emotions are continuous or
discrete, on which axes they can be measured, or, if they are
discrete, how many categories exist [16]. Recent research
classify as few as four emotions [8] and as many as hun-
dreds [17].

Thankfully, we do not need complete understanding of
emotions to produce useful results; just knowing whether
someone feels good or bad can steer a person’s — or com-
puter’s — response in vastly different directions. For sim-
plicity and familiarity, I choose to focus on the categoriza-
tion of facial affect into seven basic emotions as illuminated
by the work of Ekman and Friesen and built upon by Mat-
sumoto et al.: anger, contempt, disgust, fear, happiness,
sadness and surprise [6] [13]. Ekman’s categorization has
been popular since the 1970s, and seven categories provide
enough variety to be useful while remaining tractable.

1.2. Facial Expression

Facial expressions are one of the primary ways humans
communicate emotion. When humans communicate, we
look at each others’ faces; “emoticons” — pictorial repre-
sentations of facial expressions — play a significant if not
primary role in conveying mood and feeling in modern tex-
tual communication.

As early as the 1800s, Charles Darwin wrote that “facial
expressions of emotion are universal, not learned differently
in each culture” [3]. In the 1970s, the Facial Action Cod-
ing System (FACS) was created to taxonomize human facial
movements by their appearance on the face, and remains a
standard to systematically categorize the physical expres-
sion of emotions [7].

The universality of facial expressions has been contro-
versial since Darwin’s declaration, but for the purposes of
this work, we focus on the seven emotions as recognizable
via facial expressions by Americans.

I hypothesized that the CNN would learn facial expres-
sions for emotions that match closely with those found by
Ekman and articulated through FACS.

1



Figure 1. The Cohn-Kanade AU-Coded Expression Database Version 2 (CK+) contains 327 labeled recordings of posed and non-posed
sequences, and are coded for seven basic emotions. The last row shows the mean image in the dataset for each emotion.

2. Related Work

2.1. Facial Action Unit Detection

Much work has been done to detect the basic action units
(AUs) of the FACS. Tian et al. developed an automatic face
analysis (AFA) system to analyze individual AUs based
on both permanent and transient facial features in frontal
face image sequences [11]. Their recognition rate is 95.6%
on the Cohn-Kanade Database, Version 1 (CK). Donato et
al. were able to achieve 96.9% recognition using Gabor
wavelet decomposition [5]. Bazzo and Lamar invented a
pre-processing step based on the neutral face average differ-
ence and used a neural-network-based classifier combined
with Gabor wavelet to obtain recognition rates of 86.55%
and 81.63%, respectively, for the upper and the lower faces
[1]. In 2006, Chuang and Shih used independent component
analysis for feature extraction and support vector machine
for the pattern classifier to attain 100% recognition on the
CK dataset using the whole face [2].

2.2. Emotion Recognition in the Wild

Since 2013, the Emotion Recognition in the Wild
(EmotiW) challenge has been held at the ACM International
Conference on Multimodal Interfaces in Seattle. The chal-
lenge consists of two sub challenges, (1) video based emo-
tion recognition and (2) image based static facial expression
recognition. The task is to assign a single emotion label to
the video clip or static image from Ekman’s six basic emo-
tions and a seventh emotional state called “neutral”. Static
images come from the Static Facial Expressions in the Wild
(SFEW) dataset [4].

I will be focusing on static facial expression recognition
for this project, and a number of EmotiW entries in the 2015
challenge use deep CNNs with various preprocessing tech-
niques, transfer learning, and ensembles to achieve accura-
cies of around 50% on the validation set and 55% on the

test set [10] [14] (a large improvement over 36% and 39%
challenge baseline using SVM).

3. Methods
3.1. Baseline SVM

The model used to benchmark CNN performance is a
linear classifier trained with multi-class support vector ma-
chine (SVM) loss. The score function is defined as

f(xi,W, b) = Wxi + b

where xi is an image’s pixel data flattened to aK×1 vector,
W is a C ×K weight matrix, and b is a C × 1 bias vector.
The output of the function is a C × 1 vector of class scores,
where C is the number of classes. The score for a class
is the weighted sum of an image’s pixel values, so a linear
classifier can be interpreted as how much an image matches
the “template” for a class.

In training, once the class scores are calculated, we use
a loss function to quantify how well the classifier performs.
In multi-class SVM loss, the loss for the ith image is calcu-
lated as

Li =
∑
j 6=yi

max(0, sj − syi + ∆)

where yi is the correct class for xi. The SVM loss will be
non-zero for a class j 6= yi when the score for class j is
not at least ∆ lower than the score for the correct class yi.
A commonly used value for ∆, and one adopted here, is
∆ = 1.

To discourage the weights from taking on arbitrarily
large values, we add an L2 regularization term to the loss
function. The complete loss function is

L =
1

N

N∑
i=1

Li + λ

C∑
j=1

D∑
k=1

W 2
j,k

2



where Wj,k is the (j, k) entry of the weight matrix and λ is
a hyper-parameter determined through cross-validation.

The goal of training is to minimize the loss across train-
ing data. Each element of the weight and bias is initialized
as a Gaussian with mean zero and some small standard de-
viation. At each iteration, the derivative of the loss is cal-
culated with respect to W and b, and the parameters are
updated using stochastic gradient descent.

3.2. Three-layer CNN

Like a linear classifier, convolutional neural networks
have learnable weights and biases; however, in a CNN not
all of the image is “seen” by the model at once, there are
many convolutional layers of weights and biases, and be-
tween convolutional layers are non-linear functions that in
combination allow the model to approximate much more
complicated functions than a linear classifier.

A typical CNN architecture contains all or some of the
following layer types.

• Input layer. The input layer contains the pixel values
of the images that the network is training or testing on.
It is of size N ×D×W ×H , where N is the number
of samples, D is the dimension of each image (usually
3 for color images), W is the width of the image, and
H is the height of the image.

• Convolutional layer. Each convolutional layer has
many “neurons” — a set of weights and biases — that
are each connected to a small region of the layer be-
fore it. The filter size F of a neuron determines how
many pixels (if the previous layer is the input layer)
or elements of the previous layer’s output are “seen”
by the neuron at a time. For a square filter of width
F , a single neuron is comprised of a F × F × D
weight matrix and a 1 × 1 × 1 bias. Note that each
neuron extends through the full depth D of the input
volume. The output of the convolutional layer is the
dot product between its filters and the input as the filter
is “slid” across the height and width of the input. The
stride S dictates how many units the filter advances as
it convolves with the input, and the zero-padding P
describes how many layers of zeros are added around
the border of the input volume. Thus each filter of
size F requires

(
W−F+2P

S + 1
) (

H−F+2P
S + 1

)
neu-

rons sharing the same weights and biases to view the
entire input of width W and height H . Parameters are
shared across neurons of a filter under the assumption
that if a patch of features is of interest at one loca-
tion, it is also of interest at another. Thus we can think
of each filter as capturing some feature that is of in-
terest across spatial dimensions. The output volume
for an input of size N ×D ×Win ×Hin has dimen-
sion N ×K ×Wout ×Hout, where K is the number

of filters in the layer, Wout = Win−F+2P
S + 1, and

Hout = Hin−F+2P
S + 1.

• ReLU layer. This layer applies an element-wise ac-
tivation function, often the zero-thresholding function
max(0, xi,j), or rectified linear unit (ReLU). This in-
troduces a non-linearity to the CNN and does not
change the input volume dimensions.

• Pooling layer. The pooling layer down-samples along
spatial dimensions to reduce the number of parame-
ters and help combat overfitting. It does not act across
the depth dimension of the input volume. A layer that
pools with filters of size F retains the maximum value
in a F × F window, and discards the other elements.
Thus for an input of size N × D × Win × Hin, a
pooling layer with spatial extent F and stride S out-
puts a volume of size N × D ×Wout ×Hout, where
Wout = Win−F

S +1 andHout = Hin−F
S +1. A typical

filter size is 2×2; any larger and too much information
is discarded.

• Normalization layer. A normalization layer. Batch
normalization forces its input to become a unit Gaus-
sian output, and is usually inserted after convolutional
or fully-connected layers. Networks with batch nor-
malization are usually much more robust to bad ini-
tialization than those without. The input volume di-
mension does not change after a normalization layer.

• Fully-connected layer. A fully-connected (FC) layer
is comprised of “neurons” that each sees the entire in-
put volume and transforms it into a one-dimensional
vector. The weight matrix of an FC layer has dimen-
sion Dflat ×K, where Dflat is the dimension of flat-
tened input, and K is the number of neurons. The out-
put volume for an input of size N ×Din×Win×Hin

(Dflat = Din ×Win ×Hin) has dimension N ×K.

The CNN used in this project has the architecture

CONV - BN - ReLU - 2x2 POOL - FC - BN -
ReLU - FC - softmax

That is, images are first processed by a convolutional
layer, then normalized, rectified, and pooled, before being
seen by a fully-connected layer, normalized again, rectified
again, and seen by a second fully-connected layer. The loss
is then calculated using a cross-entropy loss for the Softmax
classifier; the loss takes the form

Li = − log

(
efyi∑
j e
fj

)
Unlike the SVM classifier, Softmax classification does

not stop at any threshold in its attempt to minimize fj , j 6=

3



yi relative to fyi . In practice, however, the two are compa-
rable in performance.

As discussed previously, an L2 regularization term was
also added to the Softmax loss to deter large weights and
overfitting in training.

To update the parameters across the network, I use the
Adam update, which smoothes the gradient at each iteration
and updates parameters at rates inversely proportional to the
size of their smoothed gradient. At each iteration,

m = β1m+ (1− β1)dx
v = β2v + (1− β2)dx2

x = x− l ∗ m√
v+ε

where dx is the gradient at a given iteration, m is the
smoothed gradient, v is the smoothed squared gradient, l
is the learning rate, and ε is some small term that prevents
division by zero.

3.3. Transfer Learning

Since deep convolutional neural networks can take
weeks to train and require large datasets, a popular tech-
nique is to take a CNN that has already been trained and
modify it slightly. This approach has the benefit of borrow-
ing basic features — for example, edges in various direc-
tions — from the pre-trained network rather than learning
them from scratch. This method is particularly appealing
given the small size of the CK+ database; rather than train-
ing a deep network on so little data and severely overfit, I
can extract features from a deeper network and train one
or more fully-connected layers atop the features. Here I
extract from four deeper networks using Caffe on Amazon
Web Services’ Elastic Compute Cloud (EC2):

• BVLC Reference CaffeNet. [9] This network is the
Berkeley Vision and Learning Center’s (BVLC) im-
plementation of an AlexNet trained on the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC)
2012 dataset, which contains 1.2 million images of ob-
jects belonging to 1000 different classes. It contains
five convolutional and three fully-connected layers.

• BVLC GoogLeNet. [18] The GoogLeNet is also
trained on the ILSVRC 2012 dataset. Its architecture
contains two vanilla convolutional layers, three “in-
ception” modules, and a fully-connected layer at the
end. Inception modules involve parallel layers of con-
volutional (sometimes pooling) layers whose filters are
then concatenated. Convolutions of filter 1× 1 are in-
troduced to reduce dimensions.

• VGG Face Descriptor. [15] This network was trained
on 2.6 million images of over 2,600 people and used
for face detection. It has 13 convolutional layers and
three fully-connected layers. The input is a 225-by-
225 pixel face image.

• EmotiW Network. [10] This network was trained on
the SFEW dataset for the 2015 Emotion Recognition
in the Wild (EmotiW) contest. It has five convolutional
layers and three fully-connected layers, like AlexNet,
and outputs class scores for six basic emotions: anger,
disgust, fear, sadness, happiness, and surprise — very
close to the classes of interest in this project.

Images from the CK+ dataset were convolved with each
network, and features were extracted from the last or near-
last fully-connected layers of the models. I then added one
to three fully-connected layers atop the extracted features to
classify them into the seven basic emotions. I expected that
networks trained on images of faces would perform better
than those trained on ImageNet.

4. Dataset and Features

4.1. Cohn-Kanade Database

The Cohn-Kanade AU-Coded Expression Database Ver-
sion 2 (CK+) [12] is the preeminent dataset used by re-
searchers in the development of facial action unit and ex-
pression recognition systems. The CK+ database contains
593 recordings (10,708 frames) of posed and non-posed se-
quences, which are coded for action units and the seven
basic emotions. The sequences are recorded in a lab set-
ting under controlled conditions of light and head motion,
which make them a good starting place but of limited use
for detection of facial expressions in the wild. In total, 123
subjects are represented in the dataset.

Of the 593 recordings, only 327 have corresponding
emotion labels — the rest were considered by researchers
compiling the database to contain unusual expressions of
the emotions (further limiting the generalization of any
model trained on CK+ data). Each recording contains
around 10 images: the first frame shows the subject in a
neutral expression, the last frame shows the subject exhibit-
ing a particular emotion, and the frames in between transi-
tion between the two states. Upon examining the frames,
I concluded that the emotion of interest was discernible on
the subjects’ faces in last 6 frames, to varying intensities, to
the human eye. Therefore rather than take a single frame
from each recording, I opted to take the last 6 frames. In
aggregate, the dataset was 1,962 images, representing 327
recordings. The dataset is visualized in Figure 1.

Each image was originally of width 640 pixels by height
490 pixels, with a 10-pixel black “header” at the top of each
file. In preprocessing I removed these 640-by-10 pixel re-
gions. When training a shallow CNN on my own CPU, I
decreased the images to 80 pixels by 60 pixels by sampling
every eighth row and eighth column of pixels. To the human
eye, emotions are still clearly recognizable at this resolu-
tion. When training and testing deeper models on Amazon

4



Figure 2. I change the rotation, brightness, and aspect ratio of the
images to diversify the features and increase the size of the training
set.

Web Services’ GPU, I left the images at their original reso-
lution.

Furthermore, of these 1,962 images, 1,758 were black
and white, and 204 in color. The color images were added
in the Version 2 update to the original Cohn-Kanade data.
Rather than throw away the color data in color images, I
tripled the grayscale data for black and white images to have
the same dimensions across input data. In hindsight, it may
have been better to make all images grayscale, as the dis-
tribution of classes for grayscale and color images are not
identical (see “contempt” in Figure 1).

The distribution of classes across all images is not en-
tirely even, but not terribly skewed: 14% anger, 6% con-
tempt, 18% disgust, 8% fear, 21% happy, 8% sadness, and
25% surprise.

Sixty-four percent of the dataset (1,254 images) was
used as training data, 16% (312 images) as validation data,
and the remaining 20% (396 images) as test data. Selection
of images for each set was randomized, but care was taken
to ensure that the 6 frames from each recording were not
split among different sets.

4.2. Data Augmentation

Because the dataset is relatively small — in comparison
to datasets like ImageNet that are comprised of millions of
images — I augmented the data with the following tech-
niques (Figure 2).

• Rotation. Each image was rotated by -30, -15, +15,
and +30 degrees, and any gaps appearing between the
image and the view window were padded with zeros.
This procedure should theoretically make the network
more robust to head tilts and different angles that fea-
tures (smiles, eyes) appear on the faces of different
subjects.

• Brightness. Each image was brightened by a factor
of 0.5, 0.7, 1.5, and 2.0. Although the CK+ dataset
was recorded in controlled environments, images vary

Figure 3. Visualizations of the three-layer CNN’s 64 convolutional
filters, trained on 1,254 images in the CK+ dataset.

in brightness and subjects vary in skin tone. We want
the network to learn facial expressions, not how dark
or light images are.

• Stretch and crop. Each image was stretched by
+12.5% and +25% in width and height, and then
cropped to 80 pixels by 60 pixels. We want the
network to learn prototypes of each emotion, which
should be independent of how thin or wide one’s face
is.

The augmented data was combined with the 1,254 non-
augmented training images to produce a total of 6,270 train-
ing images. The validation and test sets were not aug-
mented.

5. Results
I use the methods discussed above to classify images

from the CK+ dataset into the seven basic emotions. The
results from each model are evaluated on the accuracy of
emotion prediction on the test set.

5.1. Baseline SVM

A linear classifier trained on 1,254 images with SVM
loss yielded a test set accuracy of 12.1%, no better than ran-
dom guessing of 7 categories (Table 1). Weights were ini-
tialized from a Gaussian with mean zero and standard devia-
tion 0.001. A learning rate of 1e-7 and regularization of 5e4
were used based on coarse hyper-parameter selection. Vi-
sualizations of the learned weights clearly resemble faces;
interestingly, disgust has high weights around the subjects’
eyes, sadness around the mouth, happiness on the upper lip,
and surprise around the mouth.

I am a bit surprised that despite templates for each class
— especially “surprise” — picking up seemingly useful fea-

5



Model N Filters Filter size Augmentation Train acc Val acc Test acc
SVM 1,962 - - - 0.242 0.153 0.121
CNN 327 64 7x7 - 0.842 0.192 0.273
CNN 327 64 9x9 - 0.766 0.250 0.303
CNN 327 128 7x7 - 0.766 0.288 0.394
CNN 327 128 7x7 Mean subtraction 0.885 0.288 0.379
CNN 1,962 64 7x7 - 0.775 0.321 0.255
CNN 1,962 64 7x7 Rotation 0.768 0.407 0.381
CNN 1,962 64 7x7 Brightness 0.955 0.256 0.220
CNN 1,962 64 7x7 Stretch 0.687 0.369 0.250

Table 1. A three-layer convolutional neural network (CNN) was trained using a fully connected layer of size 500. After a grid search, the
learning rate was set at 1e-4 and the regularization strength at 1e-5.

tures, the classification accuracy is still no better than ran-
dom.

5.2. Three-layer CNN

Grid search on hyper-parameters yielded a learning rate
of 5e-5 when training on 327 images with a batch size of 20
and 1e-4 when training on 1,962 with a batch size of 100,
and a regularization strength of 1e-5. Loss curves over itera-
tions were a good shape with these hyper-parameters: steep
at first before tapering off. At first models were trained for
20 epochs; after observing that validation accuracy peaked
earlier, models were trained for only 6 epochs.

Results from the three-layer CNN are summarized in Ta-
ble 1. I first experimented with different filter numbers and
sizes on a three-layer CNN with no data augmentation, us-
ing a small dataset of 327 images. (Note that the images
are fairly centered, so one could argue that a CNN may not
have a great advantage over a network where parameters
are not shared among neurons at different spatial locations.
However, since facial features differ in location across indi-
viduals, it may nonetheless be better to share parameters in
a CNN architecture — given more time, I would also have
a vanilla neural network classification benchmark.)

The highest performing three-layer CNN had 128 filters,
each of which were of size 7. This is not surprising, as more
filters allow the network to learn more features with which
to discern an image class. Increasing the size of the filter
also seemed to improve classification accuracy, though not
by as much as doubling the number of filters. Visualizations
of the first convolutional layer filters (Figure 3) show that
the network was learning features that look like dots and
lines in various directions — parts of facial features oriented
in various directions, perhaps.

In the interest of training time, I used 64 rather than 128
filters of size 7 on the full dataset of size 1,962. The net-
work was clearly able to overfit the training data, achieving
a training accuracy of 76.6% at peak validation accuracy
(and eventually 100%). Validation accuracy was 32.1% and
test accuracy was 25.5%, better than random but not by

much.
Regularization was not enough to combat overfitting in

training. It often happened that validation accuracy would
peak at a training accuracy near 80%, and then decrease.
I stopped the training early at peak validation accuracy to
catch the model before it was too overfit to the training data.

5.3. Data Augmentation

Of the three data augmentation techniques, rotation
showed the greatest improvement in accuracy; validation
accuracy was 40.7% and test accuracy was 38.1% — signif-
icantly better than random. Changing brightness and aspect
ratio did not boost accuracy as much; brightness saw a vali-
dation accuracy of 25.6% and a test accuracy of 22.0%, and
stretching a validation accuracy of 36.9% and test accuracy
of 25.0%.

One can speculate why rotation seemed to help the most:
perhaps facial expressions appear on individuals’ faces at a
variety of angles, and rotating faces introduced the network
to smiles, furrowed brows, etc. with this variety.

Figure 4 shows the confusion matrix for the CNN trained

Figure 4. The confusion matrix for the highest performing CNN
model. True classes are the rows, and predicted classes are the
columns. Happiness and surprise are easiest for the CNN to learn.
Disgust and other emotions are often mistaken for happiness. Sad-
ness and fear prove challenging to classify.

6



Network Feature layer Train acc Val acc Test acc
BVLC Reference CaffeNet FC8 0.550 0.250 0.197
BVLC Reference CaffeNet FC7 0.794 0.212 0.288
BVLC Reference CaffeNet FC6 0.914 0.212 0.167

BVLC GoogLeNet Pool5 + FC 0.340 0.269 0.152
VGG Face Descriptor FC8 0.871 0.212 0.242
VGG Face Descriptor FC6 0.990 0.231 0.197

EmotiW Network FC7 0.895 0.269 0.303

Table 2. Fully-connected layers were trained atop features extracted from various layers of deep networks trained on millions of images.
The EmotiW network performed the best, while others were no better than random.

on rotation-augmented data. It seems that happiness and
surprise are by far the easiest emotions to classify — a
look at the mean images for these emotions makes this un-
derstandable. Surprise is characterized by an open mouth
and raised eyebrows, and happiness a smile showing teeth.
Meanwhile, every emotion except contempt is frequently
mistaken for happiness, an observation not entirely ex-
plained by the representation of the classes in the dataset
(surprise is the most common class, with happiness second).

5.4. Transfer Learning

In the interest of training time, I did not construct more
than three convolutional and fully-connected layers on my
CPU. I experiment with deeper networks only in the context
of transfer learning, running deeper networks on a GPU.

Table 2 summarizes the results of extracting features
from various fully-connected layers of deeper networks and
training fully-connected layers on top to classify them into
the seven emotions.

It is expected that networks trained on ImageNet would
not perform well classifying images of human faces into
emotional categories — ImageNet is comprised of 1000
classes ranging from dogs to cars. By the last fully-
connected layers of the networks, the network is close to
predicting what class of object the image falls in. These
features are understandably not good at differentiating be-
tween a sad face and a happy one.

I did however expect the VGG Face and EmotiW net-
works to perform better than they did. The VGG Face De-
scriptor did no better than random, and the EmotiW network
only slightly so, even though it was trained to recognize six
basic emotions and did so at 55% accuracy on its test set.
With more time I would like to figure out why the accuracy
is not closer to 50% (or higher, since CK+ data is taken un-
der controlled lab conditions). (I have not ruled out a bug in
my code.)

6. Conclusion

Convolutional neural networks are a promising method
for classifying human facial expressions into the seven basic

emotions. On the Cohn-Kanade dataset, a three-layer CNN
with rotation-augmented data is able to achieve a test set
accuracy of 38%, significantly better than the SVM baseline
and random guessing.

Adding fully-connected layers atop extracted features
from deeper networks did not yield high classification ac-
curacies. Transfer learning on the EmotiW network created
by Levi et al. gave the highest test set accuracy of 30%,
much lower than the 55% cited in their work.

A logical next step is to not only extract features from
deep networks but train their parameters using the CK+
dataset at a low learning rate. I expect this can dramatically
increase classification accuracy. Other future directions in-
clude trying more data augmentation methods as well — re-
flection, more rotation angles, cropping, obscuring parts of
the image, etc. Given more time I also would have liked to
visualize saliency maps and generate images for each emo-
tion class.

References
[1] J. J. Bazzo and M. V. Lamar. Recognizing facial actions

using gabor recognizing facial actions using gabor wavelets
with neutral face average difference. In Sixth IEEE Interna-
tional Conference on Automatic Face and Gesture Recogni-
tion, May 2004.

[2] C.-F. Chuang and F. Y. Shih. Recognizing facial action units
using independent component analysis and support vector
machine. Pattern Recognition, 39:1795–1798, 2006.

[3] C. Darwin. The Expression of the Emotions in Man and An-
imals. John Murray, 1872.

[4] A. Dhall, R. Goecke, S. Lucey, and T. Gedeon. Static fa-
cial expression analysis in tough conditions: Data, evalua-
tion protocol and benchmark. In Computer Vision Workshops
(ICCV Workshops), 2011 IEEE International Conference on,
pages 2106–2112, November 2011.

[5] G. Donato, M. S. Bartlett, J. C. Hager, P. Ekman, and T. J.
Sejnowski. Classifying facial actions. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 21(10):974–989,
October 1999.

[6] P. Ekman and W. V. Friesen. Constants across cultures in
the face and emotion. Journal of Personality and Social Psy-
chology, 17(2):124–129, 1971.

7



[7] P. Ekman and E. L. Rosenberg. What the Face Reveals: Ba-
sic and Applied Studies of Spontaneous Expression Using
the Facial Action Coding System (FACS). Oxford University
Press, 1997.

[8] R. E. Jack, O. G. Garrod, and P. G. Schyns. Dynamic fa-
cial expressions of emotion transmit an evolving hierarchy
of signals over time. Current Biology, 24(2):187–192, 2014.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. Ad-
vances in Neural Information Processing Systems, 2012.

[10] G. Levi and T. Hassner. Emotion recognition in the wild via
convolutional neural networks and mapped binary patterns.
Proceedings of the 2015 ACM on International Conference
on Multimodal Interaction, pages 503–510, November 2015.

[11] Y. li Tian, T. Kanade, and J. F. Cohn. Recognizing action
units for facial expression analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(2):97–115,
February 2001.

[12] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, and Z. Ambadar.
The extended cohn-kanade dataset (ck+): A complete dataset
for action unit and emotion-specified expression. In Com-
puter Vision and Pattern Recognition Workshops (CVPRW),
2010 IEEE Computer Society Conference on, 2010.

[13] D. Matsumoto, D. Keltner, M. N. Shiota, M. G. Frank, and
M. O’Sullivan. Handbook of emotions, chapter What’s in
a face? Facial expressions as signals of discrete emotions,
pages 211–234. Guilford Press, New York, 2008.

[14] H.-W. Ng, V. D. Nguyen, V. Vonikakis, and S. Winkler.
Deep learning for emotion recognition on small datasets us-
ing transfer learning. In Proceedings of the 2015 ACM on
International Conference on Multimodal Interaction, pages
443–449, November 2015.

[15] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face
recognition. In Proceedings of the British Machine Vision
Conference.

[16] R. Picard. Affective Computing. MIT Press, 1997.
[17] P. Shaver, J. Schwartz, D. Kirson, and C. O’Connor. Emo-

tion knowledge: Further exploration of a prototype approach.
Journal of Personality and Social Psychology, 52(6):1061–
1086, June 1987.

[18] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pages
1–9, 2015.

8


