
MIML Learning with CNNs: Yelp Restaurant Photo Classification

Pulkit Agrawal
Stanford University

Stanford, CA
pulkital@stanford.edu

Raghav Gupta
Stanford University

Stanford, CA
rgupta93@stanford.edu

Abstract

We present the conditions of a data science challenge
from Kaggle, which can be viewed as a multi-instance multi-
label learning problem in the image domain, and describe
the official training dataset provided. We discuss our techni-
cal approach, and address the challenges in using transfer
learning and with finetuning, trying out different strategies
to tackle the multi-instance aspect of the problem. Lastly,
we present our results, and analyze in depth the quantita-
tive and qualitative performance of our models.

1. Introduction
In this work, we tackle the problem of automatically

tagging restaurants with multiple labels corresponding to
restaurant attributes using unlabeled photos mapped to
restaurants. Specifically, we work with the dataset provided
by Yelp through a competition hosted on Kaggle.com [1].
Automatic attribute prediction from images can serve as a
valuable source of business information for Yelp, helping
them categorise businesses correctly and make better
recommendations to users. Even in general, solutions to
this problem open up further innovations in image-based
categorization of entities, wherever automatic tagging
would be valued and image labels aren’t available for all
the images.

About the setup - we have multiple unlabeled images
for each restaurant, and each restaurant can in turn have
some (or none or all) of 9 binary attributes. We model this
problem as a Multiple Instance Multiple Label (MIML)
classification problem, upon which we elaborate more in
Section 2.

Broadly speaking, our models use feedforward neural
networks and/or SVMs, which are trained using transfer
learning, on top of a finetuned pretrained convolutional
neural network for an image classification task. The input
to our model is a set of images corresponding to a single

restaurant, and our prediction is a subset of the set of 9
attributes, which describe the underlying entity (restaurant).

As mentioned, we explore transfer learning and fine-
tuning techniques to train our classification models. For
transfer learning, we build on a pre-trained VGG16 net [2]
initially as a fixed feature extractor by removing the fully
connected layers and using the hidden layer activations as
features to train an MIML classifier. Depending on the re-
sults thus obtained, we further finetune the higher layers of
the pretrained network to learn activation functions specific
to our problem, and report results for each experiment.

The rest of the report is organized as follows - we present
our formulation of the underlying classification problem -
multi instance multi label (MIML) classification. We then
describe related work on multi instance as well as multi la-
bel approaches to classification problems, in the image do-
main as well as other domains. After that, we describe the
dataset in detail, including examples. Then, we write about
our methods and algorithms, providing a brief theoretical
background to these. We then describe our experiments,
followed by a quantitative and qualitative discussion of our
results. We end with conclusions and ideas for future work.

2. Problem Description: MIML Classification
The multi instance multi label (MIML) classification

paradigm seeks to assign a variable-sized bag of features
representation one or more labels from a given set of
ground labels. Like a regular classification problem, there
are two phases - training and testing.

During the training phase, our input is a set
of labelled data points {Xi, Yi}Ni=1, where each
Xi = {xi1, xi2, . . . , xiki} is a set of ki instances (ki
could be different for each of the N training examples)
corresponding to an entity and each label Yi ⊆ Y is a set
of attributes, which is a subset of the ground label set i.e.
Y = {y1, y2, . . . , yn}, which consists of n attributes. How
Yi attaches to each of the xiki

s is a choice of method.

1

During the testing phase, we are provided a bag of features
X∗ = {x1, x2, . . . , xk} supposed to correspond to a single
entity, and our output must be a set of attributes Y ∗ ⊆ Y
for this entity. The goal is to learn a classifier f : X → 2Y

which, given a bag of instance features, predicts the set of
attributes corresponding the underlying entity.

For our problem, a restaurant corresponds to an entity,
say X = {x1, x2, . . . , xk}, and each xi in X corresponds
to an image of the restaurant. For our problem, we deal with
9 attributes (more in Section 4), thus Y = {y1, y2, . . . , y9}.

3. Related Work
There has been a lot of work on MIML classification

problems in general and their application to image clas-
sification tasks in particular. Typically, MIML classifiers
are used for classifying images containing multiple objects.
The image is divided into several segments, where each
segment serves as an instance, and is associated with a a
semantic label corresponding to the object it contains. The
image usually gets labels of all the objects present in it.

[3] discusses two different MIML approaches for scene
classification from images. Their first approach, called
MIMLBOOST transfers all the labels of the entity (scene)
to the instances (image segments) and learns instance level
classifiers for each instance which are combined using
an AdaBoost like algorithm. In their second approach,
called MIMLSVM, they perform a k−mediod clustering
to transform the multiple instances of an entity into a
numerical vector which encodes structural information
about the entity data, particularly what fraction of the data
represents each of the several sub-concepts corresponding
to the k mediods (each representing one of the labels to
be learnt). They then train a multi-label SVM in this
transformed feature space. Both of these approaches are
iterative in nature and not easily extensible to a neural
network scenario.

[4] extends logistic loss function for a single instance
single label classification problem to an MIML setting by
training a separate classifier for each label and assuming
that a label is not assigned to an entity only when all its
instances suggest that it should not be assigned. They also
introduce a Trace Norm regularization term in the loss
which tends to learn a shared sparse weight matrix for the
different label level classifiers, thus learning correlated
multi-label classifiers instead of pure binary classifiers
for each label. They apply their methods to an object
recognition task where multiple objects may be present in
a single image. They focus on linear models trainable by
SGD and do not extend their results to a neural network
setting. One of our MIML strategies (Weak-Or, see 5.4)

is inspired from this work leaving out the regularization
aspect.

Multi-instance learning has been applied to image classi-
fication tasks in CNN settings as well. In [5], the authors de-
velop a sliding window detector which efficiently searches
for an object over an image across multiple positions, scales
and aspect ratios. Each window serves as an instance and
the window which responds maximally to the classifier is
used to compute the loss which is then used for training the
deep CNN. We adapt this approach and it’s slight variations
in some of our MIML models (Mean, Max, Weighted Mean,
see 5.4).

4. Dataset Description and Preprocessing

We use the dataset provided by Yelp through the Yelp
Restaurant Photo Classification competition hosted on
Kaggle.com at [1]. The full dataset is comprised of approx-
imately 234, 000 untagged RGB images corresponding to
2, 000 restaurants. The number of images corresponding to
each restaurant ranges from 1 to 2, 974 across restaurants,
with about 117 images per restaurant on average. Each
business can have nine self-explanatory attributes, namely

• 0: good for lunch
• 2: takes reservations
• 4: is expensive
• 6: has table service
• 8: good for kids

• 1: good for dinner
• 3: outdoor seating
• 5: has alcohol
• 7: ambience is classy

The images themselves are of variable size, ranging
from icon-size to 500 × 500. However, almost all of them
are larger than the required input size (224 × 224) to our
pretrained VGG16 net (to be elaborated later). For prepro-
cessing, we resize all images to 224 × 224 and perform
per-channel mean image subtraction for our experiments.

Figures 1, 2 and 3 contain examples of restaurant
pictures from the dataset. While these pictures do not
reflect this, almost all pictures are of food items, which
can be good for labels 0, 1 and potentially 4, but not
really for the others. Outdoor seating may be reflected
by chairs and the exterior co-occurring in the picture,
which is generally represented in the businesses having
that property. Some other labels (5 and 6) may also gain
from the fact that we use a pretrained CNN trained on
the ImageNet classification task, since alcohol and tables
correspond to certain ImageNet classification categories.

We found the full dataset too large to work with and, opt-
ing to try out a larger variety of models instead, we chose to
work with only 1000 businesses, and randomly selected 16
images for each business as our data. Of these 1000 selected

2

businesses, we chose 80 − 20 train-val split i.e. 800 busi-
nesses (800 × 16 images) for training and 200 businesses
for validation.

4.1. Evaluation Metrics

In a multi-label setting, traditional evaluation metrics
like classification accuracy do not immediately make sense
because even a subset of correctly identified attributes is
better than all incorrectly predicted attributes. Hence, based
on past work [6], we report the following evaluation met-
rics to test the performance of our models: hamming loss
and mean F1 score. Both these metrics are defined below
for a classifier f over a test set T = {Xi, Yi}mi=1.

• Hamming Loss: The hamming loss over the set T is
given by hloss(f) = 1

m

∑m
i=1

1
|Y| |f(Xi)∆Yi|, where

∆ is the symmetric difference between the sets f(Xi)
and Yi. For each item-label pair, it measures the
number of incorrect predictions and missed attributes.
Smaller hamming loss indicates better prediction.

• Mean F1 Score: The mean F1 score simply computes
the arithmetic mean of the F1 score obtained for each
of the 9 labels individually i.e. from the precision and
recall values calculated by considering the correctness
of each label individually. This is the metric used to
rate the submissions to the Kaggle competition.

One thing to note is that both these metrics attach an equal
importance to classification performance on all 9 of the at-
tributes, even when some labels can be much harder to clas-
sify than the others.

5. Methods
In this section, we first describe the basic building blocks

of our models - convolutional neural networks (CNNs) and
transfer learning. After that, we describe our models, with
motivation and figures.

5.1. Preliminaries

Neural Networks- A neural network (NN) is a biolog-
ically inspired model of computation comprising of nodes
(storing the initial/intermediate inputs, called activations)
which are interconnected (each connection with it’s own
weight). NN computation is commonly represented in lay-
ered fashion, with one layer serving as an input to the next
layer. The most common layer is the fully connected (FC)
layer, which performs the computation f(X) = WX + b
(W and b - layer’s parameters). ReLU layer, a nonlinear
activation function f(X) = max(0, X) - typically follows
each FC layer. Non-linearity ensures only a few input nodes
are ’activated’. Convolutional layers, an integral part of

CNNs, perform a forwarding function similar to FC, but re-
lying on spatial locality of images. Details are omitted here.

Transfer learning- CNNs can get huge and slow to
train, especially on regular hardware. Thus, it is common
to pretrain a CNN on a very large dataset and then either
use the CNN as a fixed feature extractor, or finetune parts
of the CNN for the task at hand. This technique is called
transfer learning.

5.2. Pretrained model

Relying on transfer learning, we use the pre-trained
16-layer VGG network, trained on the ImageNet, from
the Caffe Model Zoo, to extract basic image features
(CNN codes), and replace layers towards the top of the
network. The ImageNet contains 1.2 million images with
1000 categories, and thus CNNs trained on the ImageNet
are common for transfer learning. Instead of trying out
various pretrained nets, we chose to perform more MIML
experiments instead.

An overview of the architecture of VGG16 is shown in
Figure 4. It consists of 5 [CONV-CONV-ReLU] blocks sep-
arated by 2 × 2 max pooling layers, followed by 3 fully
connected layers before classification, with dropout layers
in between the FC layers.

5.3. Baseline - SVM on CNN codes

As a quick baseline, and to verify the results presented
in [7], we trained for each label one-versus-rest SVM clas-
sifiers on CNN codes i.e. activations of the input images
when forward passed through the VGG16 net, using scikit-
learn [8]. To train the SVMs, we perform 4 different exper-
iments, using CNN codes from different layers -

• CONV4 - Output of fourth [CONV-CONV-ReLU]
block after max pool
• CONV5 - Output of fifth and final [CONV-CONV-

ReLU] block after max pool
• FC1 - Output of first FC layer
• FC2 - Output of second and penultimate FC layer

The locations of these layers within the VGG16 net are also
shown in Figure 4. Our motive behind this experiment is to
verify activations at which stage are better for off-the-shelf
usage with simple classifiers, earlier or later.

5.4. MIML Classifiers

We now talk about the loss functions we use, adapting
from single-instance single-label classification to the
MIML setting.

3

Figure 1: Photos of a sushi-tequila restaurant, with images indicative of alcohol, outdoor seating and expensiveness

Figure 2: Photos of a classy family restaurant that has table service and takes reservations

Figure 3: Photos of a restaurant with outdoor seating that is good for lunch and serves alcohol

Many of the MIML learning algorithms proposed in
literature like MIMLBOOST and MIMLSVM [3] are
iterative algorithms which cannot be easily integrated
with CNN architectures. Therefore, we use differentiable
loss functions for MIML classifiers which can be easily
integrated with a traditional CNN architecture at the top
layer and learnt using backpropogation.

For learning multiple attributes for each inastance, we
train a binary classifier (using SVM/Softmax/Logisitc loss)
for each attribute independently (9 binary classifiers for our
task). We define the label vector Y i = [Y i

1 , . . . , Y
i
|Y|] for

each instance Xi, where Y i
j = 1 if the jth attribute lies in

the set Y i and 0 otherwise. The loss for Xi is given by,
Li =

∑|Y|
j=1 Lij , where Lij is the loss of the jth classifier

on the instance Xi. Different images of a restaurant are
indicative of the presence or absence of different attributes.
As a result, it becomes crucial how the inputs to each
attribute’s classifier are selected or aggregated and how
Lij is computed. Below, we describe the different strate-
gies (referred to as example selection strategies) that we
experimented with for selection/aggregation of the input
presented to each classifier and the overall loss function for
each scenario.

• Mean- At the classification layer, say our activations
are of size N × |Y| where N is the number of im-
ages for the restaurant and |Y| is the number of at-
tributes. Let’s call this activation Xi for the ith in-
stance. An average selection basically takes the mean

4

Figure 4: Overview of the VGG16 network (each conv block includes 2 conv layers followed by a relu layer), along with the
locations from which CNN codes were used to train baseline SVMs

of the N × |Y| activations across the first dimension,
averaging out the features for each constituent image.

Thus, Xi∗
j =

∑N
k=1 Xi

kj

N where Xi∗
j is the final activa-

tion over which the loss Lij is computed.

Lij = Y i
j log

(
eX

i∗
j

1 + eX
i∗
j

)
+ (1− Y i

j)log
(

1

1 + eX
i∗
j

)
Note that this is same as the binary softmax loss.

• Max- This strategy lets each classifier select the image
it responds maximally to i.e. we take the max of the ac-
tivations over the first dimension to get our input to the
classifier. Thus, Xi∗

j = maxk(Xi
kj). The remainder is

similar to the previous strategy of taking the mean.

• Weak Or- In this strategy suggested in [4], each image
is fed to the classifier and a prediction is made based
on each image. The label for the overall restaurant
is negative iff the prediction for all the constituent
images turns out to be negative. If any of the image
leads the classifier to return that the label should be
in the label set, then the label is added to the final
prediction.

The loss Lij is computed here as

Lij = Y i
j log(p(Y i

j = 1|Xi))

+ (1− Y i
j)log(p(Y i

j = 0|Xi))
(1)

Note that this is same as the binary logistic loss
or entropy loss. We further define a vector
[yi1j , y

i
2j , . . . , y

i
Nj] for the jth attribute for Xi, where

each element yikj indicates whether the jth attribute

should be present in Y i based on the kth image/feature
vector xik in Xi. Thus,

p(yikj = 1|xik) = σ(xik) =
1

1 + e−x
i
k

(2)

Xi is labeled negative with respect to the jth at-
tribute only when all the instances suggest that the la-
bel should be negative. Thus,

p(Y i
j = 0|Xi) =

N∏
k=1

(1− p(yikj = 1|xik))

=

N∏
k=1

(1− σ(xik))

p(Y i
j = 1|Xi) = 1− p(Y i

j = 0|Xi)

(3)

• Weighted mean- Taking inspiration from neural at-
tention models [9] being used for a soft search over
the input space to discover the inputs most relevant to
the downstream task, we implement a very basic ver-
sion of the technique that takes a weighted mean of the
N ×H activations across the first dimension with the
following equations

c = XW,α = cw,X∗ = XTα (4)

where W is a projection matrix, W ∈ RH×H , w is a
weight vector, w ∈ RH , both trainable.

Clearly, we will train different parameters for different
labels, since the importance of each inherent feature in
the activations for each label would differ.

5

(a) Position of mean layer for
baseline SVM classifier

(b) Position of max/weighted
max/mean layer

(c) Position of weak-or layer

Figure 5: Overview of multi-instance example selection models and CNN code + SVM architecture

5.5. Putting it together

Figure 5(b) and (c) describe the selection strategies we
described in Section 5.4.

For the max, weighted mean and mean selection tech-
niques, we add these operations on top of a two layer
feedforward neural network (with final outputs of size
N × |Y| for the N images) which in turn gets its inputs
from the forward pass of the images through the full
VGG-16 network except the last softmax classification
layer which we cut off. Figure 5(b) describes this - an
FC-ReLU-FC-input-selection sequence on top of the
penultimate (7th) fully connected layer of the VGG16
network. For classification, as discussed, we use a per-label
softmax loss.

The architecture with the weak-or, shown in 5(c),
is more or less similar in terms of the two-layer feed-
forward NN after the VGG16, except the classifier is
applied to each of the N images and the probability of
each label being in the true label set is computed as
described in Section 5.4, followed by a entropy or logisitc
loss on this probability distribution, summed over all labels.

Note that for all these models, we treat an entire ‘bag’ of
16 images as a single entity and pass it through the network
for training.

5.6. Implementation

We used Torch for implementation, and ran initial
experiments on a CPU before moving to an AWS instance
with 1 NVIDIA GPU with 4GB memory and 8 Intel Xeon
CPU cores, with CUDA 7.5 and CuDNNv3 installed.

While running experiments, since we previously select
16 images per business (owing to memory concerns), we
run our models providing as input 16 images of the same
business. Since this is just one instance being processed, it
is equivalent to pure stochastic gradient descent (SGD) with
momentum. We use momentum 0.9 for all our experiments.

6. Results
We now go through our results, presented in Table 1, for

each set of experiments that we perform, section by section.

6.1. CNN code SVMs

We trained one-versus-rest SVMs for each label on the
CNN codes on the input activations from the CONV4,
CONV5, FC1 and FC2 layers. The results are presented in
the first four rows of Table 1.

We observe that an SVM trained on the FC layer features
provides a simple yet very competitive baseline for the
task. The SVMs trained on FC1 and FC2 layer features
achieve good mean F1 scores of 0.77 and 0.79 respectively,
achieving 0.8+ F1 scores for 4 of the 9 labels in the task.
The activations at both these layers are of hidden dimension
4096 for each image, and mapping these many features to a
9 binary label space is seemingly tractable.

In contrast, the SVMs trained on CNN codes from the
later convolutional layers (after CONV4 and CONV5)
perform miserably, performing worse than random on 3
of the 9 labels. The activations on these layers are of size
512 × 14 × 14 ∼ 100k and 512 × 7 × 7 ∼ 25k per image
respectively. These correspond to image features that are
highly sparse and spatially local in nature, and it is very
likely that a single linear layer is unable to combine these

6

activations in order to get meaningful semantic information
about the image - deeper and more structured computation
would be required for that.

Another thing to note is that the difference between the
SVMs trained on FC1 and FC2 is minor (0.77 versus 0.79).
Other than a big jump in the performance of SVM-FC2 on
label 3 (outdoor seating), the two are neck-to-neck in terms
of classification F1 scores. This suggests that the convo-
lutional layer activations, after having been put through a
single fully connected layer, already begin to represent rel-
evant semantic information that enable the simpler SVMs
to classify the images with reasonable accuracy, and that
(possibly) one or two FC layers on top of the CONV lay-
ers in VGGNet might be similar in performance to the three
layer version, which could lead to massive parameter sav-
ings : the FC layers contain most of the parameters of the
network. This also indicates sparsity in these layers and
opens up the possibility to prune the FC portions of these
networks using self-pruning techniques [10].

6.2. Example selection strategy FFNNs

The next four columns of Table 1 present our numbers
on different example selection strategies for multi-instance
classification, on top of a 2 layer FC-RELU-FC network.
We used a learning rate in the ballpark of 6 × 10−5 to
1 × 10−4 to train the FFNN, with a relatively strong
regularization constant of 1× 10−3 in each case.

Contrary to our expectations, we report the best numbers
on plain old averaging of all the image activations (2NN-
MEAN), which gives us an F1 score of 0.79, equivalent to
our best SVM baseline, but slightly ahead on Hamming loss
(0.206 versus 0.211). The max strategy, designed to most
clearly separate the classification of each label, performs
below par on labels 0 and 1 : good for lunch/dinner. This is
quite possibly because of our network underlying the max
layer being fairly shallow - we believe a deeper network
would allow the max to perform better. The weighted mean
model is likely hurt by the same problem - a shallow depth.

The weak-or model, in retrospect, comes with a very
strong bias towards adding labels to the prediction. While it
does fine on labels with over 50% majority on the validation
set, it gives poor numbers on other labels - particularly 0
and 4 (good for lunch and expensive, respectively).

A peek into the internals- Figure 6 shows the training avg
softmax loss and train/val mean F1 scores (averaged across
labels) versus training epochs, for the 2NN-Mean model.
Surprisingly enough, the loss fluctuates a lot (indicating a
downward trend, but still very strange), but the training and
validation mean F1 scores are reasonable.

6.3. Other models

Based on these, we also tried an ensemble of three
of our best models (2NN-MEAN, SVM-FC2 and 2NN-
WMEAN), employing a majority voting mechanism to
make the overall classification decision for each label.
However, we could not achieve any significant improve-
ment over the individual SVM-FC2 and 2NN-MEAN
models, achieving an average F1 score of about 0.79 using
the ensemble.

In addition, we also tried finetuning the VGG16 net
for the task - precisely, the fifth and final CONV-CONV-
RELU block, by incorporating it into the trainable part of
the network, but using at all stages for this part of the net-
work a learning rate which was a hundredth of the learn-
ing rate used for the FC layers. This was to ensure that
our already-decent conv layer weights were not perturbed
too much, especially since the FC layers were being trained
from scratch. For various choices of the hyperparameters,
however, we failed to extract an improvement in the mean
F1 score, and are hence omit its results here.

6.4. Individual label performance

In this section we discuss the performance of the
classifiers on the 9 individual labels. The classifiers achieve
0.9+ F1 score on labels 5 and 6 (alcohol and table service
respectively), while the worst performing labels are 7 and 3
(classy ambience and outdoor seating respectively).

Approximately 70% of the pictures of a restaurant are of
food items, a good number of these being shots of various
items kept on the table. These, in our opinion, could
provide sufficient information, given enough training, for
labels 0, 1, 5 and 6 (good for lunch/dinner, alcohol, table
service respectively) - since images of food items could be
indicative of lunch/dinner, and alcohol and table service
might be indicated by the other aspects of a full-table image.

However, the VGG16 net we use is trained on ImageNet
categories, which correspond to real-world objects. 6 of
the 1000 ImageNet categories correspond to alcoholic
items, and 2 of them correspond to tables (a few others for
miscellaneous furniture, relevant for label 6). Labels 0 and
1, however, tend to be more abstract in nature, and would
require in-depth training to identify food item pictures as
good for lunch/dinner.

Another important class of input images covers the
exterior of the restaurant, more often than not including the
restaurant’s sign. These provide ample evidence for label 3
(outdoor seating). In spite of this, the results for this label
were rather poor (best mean F1 score 0.68). We reason this
could also be caused by the ImageNet classes being fine

7

Model | Label 0 1 2 3 4 5 6 7 8 Avg HamLoss
SVM-CONV4 0.34 0.58 0.50 0.52 0.37 0.73 0.79 0.44 0.75 0.56 0.453
SVM-CONV5 0.37 0.59 0.53 0.54 0.40 0.73 0.76 0.47 0.77 0.58 0.446
SVM-FC1 0.56 0.77 0.81 0.57 0.82 0.87 0.90 0.62 0.83 0.77 0.224
SVM-FC2 0.57 0.77 0.82 0.69 0.81 0.89 0.91 0.60 0.81 0.79 0.211
2NN-WEAKOR 0.61 0.83 0.83 0.59 0.65 0.89 0.92 0.64 0.82 0.77 0.231
2NN-MAX 0.54 0.77 0.83 0.58 0.73 0.89 0.90 0.63 0.83 0.75 0.226
2NN-MEAN 0.68 0.83 0.84 0.64 0.79 0.92 0.94 0.59 0.84 0.79 0.206
2NN-WMEAN 0.66 0.78 0.84 0.66 0.76 0.89 0.93 0.63 0.82 0.78 0.215
Majority 0.57 0.66 0.64 0.68 0.65 0.75 0.83 0.60 0.76 0.68 0.307

Table 1: Overview of classification results; columns 0-8 and avg show each label’s F1 scores, or the average, and HamLoss
shows the hamming loss. All numbers are on the validation set. Omitted - numbers for ensemble and finetuned models

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Epoch

L
o
s
s

train−loss

(a) Training loss vs epoch for 2NN-Mean

0 5 10 15 20 25 30 35 40
0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Epoch

M
e
a
n
 F

1
 S

c
o
re

val

train

(b) Train/val accuracy vs epoch for 2NN-Mean

Figure 6: Behavior of loss function and train/val accuracy for 2NN-Mean classifier

tuned to detecting and classifying prominent objects in an
image, and outdoor seating shots are not that common in
the dataset.

The other labels (reservation-taking, expensive, classy
ambience and kid-friendly) have a more abstract nature to
them. However, surprisingly, for the labels reservation-
taking and kid-friendly, our classifiers achieve respectable
performance (0.84 mean F1 score for each), while the other
two attributes, which we expect to see a strong correlation
between, get mean F1 scores of just ∼ 0.64.

7. Conclusion and Future Work

As part of this project, we explored the MIML classifi-
cation paradigm. This has previously been applied in the
image domain to identify multiple objects (instances) in a
single image, but whether or not the same techniques would
work for this dataset, with potentially very different images
for each entity, remained to be seen. We took a transfer
learning approach to this problem using a pretrained

VGG16 net, coming up with baselines and investigating
strategies for the multi-instance angle of the problem, also
experimenting with finetuning and ensemble models (albeit
with not-so-great results). We finally report a reasonable
mean F1 score 0.79 on a subset of the full data with a
2-layer FFNN on top of the VGG16 pretrained net.

Training and testing our models on the entire dataset will
be the first line of future work, which would enable us to
understand the scalability of these models. Many of our
models were trained just using the features extracted from
a VGG16 network independent of the deep network itself.
This allows several other MIML algorithms to be tested,
like MIMLSVM and MIMLBOOST as discussed in [3]. It
would be interesting to test whether more complicated mod-
els like these can perform better on the CNN codes than
simple linear and 2 layered NN models. Res-Nets [11] have
shown promising results on ImageNet, improving upon all
previous models. It would be interesting to fine tune these
networks for the MIML problem and see whether they can
perform better on these tasks as well.

8

References
[1] “Yelp restaurant photo classification,” https://www.kaggle.

com/c/yelp-restaurant-photo-classification.

[2] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman,
“Return of the devil in the details: Delving deep into convo-
lutional nets,” arXiv preprint arXiv:1405.3531, 2014.

[3] Z.-H. Z. M.-L. Zhang, “Multi-instance multi-label learning
with application to scene classification.”

[4] O. Yakhnenko and V. Honavar, “Multi-instance multi-label
learning for image classification with large vocabularies.” pp.
1–12, 2011.

[5] G. Papandreou, I. Kokkinos, and P.-A. Savalle, “Modeling
local and global deformations in deep learning: Epitomic
convolution, multiple instance learning, and sliding window
detection,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2015, pp. 390–399.

[6] Z.-H. Zhou, M.-L. Zhang, S.-J. Huang, and Y.-F.
Li, “Multi-instance multi-label learning,” arXiv preprint
arXiv:0808.3231, 2008.

[7] A. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn
features off-the-shelf: an astounding baseline for recogni-
tion,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, 2014, pp. 806–
813.

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in Python,” Journal of Machine Learning Re-
search, vol. 12, pp. 2825–2830, 2011.

[9] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” arXiv
preprint arXiv:1409.0473, 2014.

[10] S. Han, H. Mao, and W. J. Dally, “A deep neural network
compression pipeline: Pruning, quantization, huffman en-
coding,” arXiv preprint arXiv:1510.00149, 2015.

[11] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” arXiv preprint arXiv:1512.03385,
2015.

9

https://www.kaggle.com/c/yelp-restaurant-photo-classification
https://www.kaggle.com/c/yelp-restaurant-photo-classification

