Facial Expression Recognition Using Convlutional Neural Network
A Case Study of The Relationship Between Dataset Characteristics and Network Performance

Weier Wan

weierwan@stanford.edu

Abstract

Convolutional neural network has been adopted to
achieve state-of-the-art performance across various tasks
involving high dimensional data with local correlation. In
our work, we apply convolutional neural network to facial
expression recognition. We trained a network using images
from Kaggle facial expression challenge, and were able to
achieve a 65.3% accuracy across 7 categories. Moreover,
through a qualitative analysis of the dataset including its
size, dimensionality and complexity, we studied the rela-
tionship between dataset characteristics and network per-
formance, and tried to understand why certain architecture
and training approach are preferred over the others based
on dataset characteristics. We made a thorough compari-
son among different training and fine-tuning strategies, and
network with different configurations.

1. Introduction

Understanding human communication has been at fore-
front of artificial intelligence research for decades. While
traditional approach typically relies on verbal-based natural
language processing for understanding communication, in
many cases, the intended meaning of spoken words has to
be understood with the knowledge of the speakers emotion,
which can be most directly reflected from humans facial ex-
pression. In recent years, due to the fast growing social
networks, photos and videos that include faces constitute a
great proportion of visual data on the Internet. Moreover,
facial expression recognition can be applied to many other
interesting applications such as human behavior research
and human-computer interface.

With recent success of deep convolutional neural net-
work in tasks involving locally correlated high dimensional
data, we think deep convolutional neural network would be
suitable for recognizing facial expression.

There are two main objectives for this project. First,
we are interested in developing some intuition on how to
choose a suitable network architecture and training tech-
nique for a given dataset through a qualitative high-level

Chenjie Yang

yangcj@stanford.edu

Yang Li
yvang8@stanford.edu

analysis of the data. The dataset will be understood qualita-
tively through a comparison with ImageNET dataset which
was used to pre-train many models. Some characteristics of
dataset that we look into include the dimensionality of the
features, the size and resolution of images and the diversity
and similarity of data. With these characteristics, we then
try to understand how the dataset can affect the choice of an
optimal network architecture and training techniques.

Second, we study how different regularization and data
augmentation techniques will have effects on the learning
performance. To do this we first construct a relatively sim-
ple network, and add different regularization techniques
step-by-step to quantify their effectiveness, and finally we
will construct a deeper network based on our previous ob-
servations to achieve a high accuracy.

Section 2 of the paper will briefly talk about the back-
ground and some early approaches people used for facial
expression recognition. Section 3 will discuss in details the
two tasks introduced above and our approach. Our results
will be presented in section 4 followed by a detailed analy-
sis. Section 5 will conclude the paper and points out some
further improvement that can be done.

2. Background

Researchers have tried different approaches to recognize
facial expression from unconstrained images. In general,
face related tasks (e.g. identity recognition, emotion recog-
nition) involve three steps: face detection, face modelling
and classification. Early researchers tried to extract the best
high-dimensional feature representation of faces [7] [3], and
find most important set of features with dimension reduc-
tion techniques such as PCA and sparse learning. People
have also construct a variety of 2-D and 3-D models for
face that are suitable for the task. With many recent suc-
cess in high-dimensional data learning, convolutional neu-
ral network has been adopted in both face modelling [6]
and recognition [4]] [2]. Yaniv [6] reports that using deep
learning framework, they are able to generate compact 3-D
representation of face that can be generalized across various
unconstrained environment.



3. Approach

One thing that we are particularly interested in is to
use this facial expression recognition task as a case study
to develop some understanding on the interaction between
dataset and network architecture and training techniques.
The questions that we want to explore include: given a task
and associated dataset, what network architecture (depth
of the network, filter and stride size at each layers, etc)
should we choose; how to tradeoff between training speed
and complexity of the network; should we use a pretrained
model or train a model from scratch; if using pre-trained
model, what is the best fine-tuning strategy, etc.

We want to study these design decisions based on some
qualitative analysis of the dataset. The dataset we will use
for training and evaluating our network is the Kaggle facial
expression challenge dataset. The dataset consists of 35887
48%48 gray-scaled images of faces divided into 28709 for
training and 7178 for testing. Each face corresponds to one
of the seven emotion categories, namely Angry, Disgust,
Fear, Happy, Sad, Surprise, Neutral. Figure 1 shows an ex-
ample from each category.

o7

(a) Angry (b) Disgust (c) Fear

(d) Happy (e) Sad (f) Surprise

(g) Neutral

Figure 1: Sample images from each category of Kaggle
dataset

To study the effects of dataset characteristics on network
performance, we conduct a few experiments. First, we want
to compare several fine-tuning techniques and study their
tradeoffs between speed and performance. In many cases,
fine-tuning only the bottom fully connected layers while
leaving all the convolutional layers frozen could lead to

good performance. However, it is also natural to think that
refining the shallow convolutional layers can lead to extra
performance gain, while trading off training speed. We will
try both approaches and understand the results based on the
characteristics of Kaggle images in comparison with Ima-
geNet.

The second question we look into is that how a model
trained from scratch will perform compared to the model
fine-tuned from existing models. In many cases, training a
deep network from scratch will take very long time to con-
verge, so we want to see with a limited number of epochs
and reasonable amount of training time, is it possible to
train a deep network that can perform equally well or even
better than a pre-trained model, and how this has any im-
plication on the relationship between data complexity and
network structure.

We conduct the aforementioned experiments on both
pretrained AlexNet and VGGNet [3]] so that we could
know if the properties are network-specific or solely deter-
mined by the dataset. Since we use both networks, it is natu-
ral for us to also draw some conclusion on the performance
of AlexNet vs. VGGNet, with a focus on the relationship
between the performance discrepancy and the characteris-
tics of the dataset.

4. Experiment
4.1. Architectures and Training Approaches

As discussed in the previous section, to develop
some qualitative understanding of the relationship between
dataset and the performance of various network architec-
tures and training approaches, we applied different training
approaches on both AlexNet and VGGNet. Figure 2 sum-
marizes the results.

Fine-tuning: Freezing conv layers vs. Tuning en-
tire network. Since training deep network (backpropagate
through all the layers) is computationally intensive, and ini-
tial large gradient signal during fine-tuning tends to overly
disturb pretrained weights, people normally freeze shal-
lower layers during fine-tuning. Results have shown that
fine-tune a model pre-trained with ImageNet dataset could
achieve state-of-the-art performance across various image
classification tasks. The key behind fine-tuning is that im-
ages usually share similar sets of basic constructing compo-
nents such as edges and simple motifs.

In our experiment, we first try to follow this typical fine-
tuning method. We only re-initialize fully-connected layers
while setting the learning rate of convolution layers all to
zero. We compare its result to the case where we do not
freeze any layers, but instead setting the learning rate of
convolution layers 1/10 of fully connected layers. For more
thorough comparison, we also tried fine-tuning the bottom
two convolution layers while leaving top conv layers frozen.



0.9
0.8
0.7

X Fine-tune entire network

X Fine-tune anly fc layers

Fine-tune fc + bottom conv layers

ETrain from Scratch

0.6

04
0.3 1
0.2 7
0.1

AlexNet VGGNet

Figure 2: Summary of results obtained with AlexNet and
VGGNet using different training approaches

0.6

Test Accuracy
o o o o o
2 9 & = &

)

AlexNet

/_____/\

I/__/

==Tuning entire network

=Freeze all convolution layers

Freeze first 3 convolution layers
1 2 3 4 5 6 7 8 9 10 1
Training Epoch

Figure 3:
methods.

Results of AlexNet using different fine-tuning

0.5

Test Accuracy
o o o
SIS N

=
a

o

VGGNet

——

—
/

/ ==Tuning entire network

/ —Freeze all convolution layers

1 2 3 4 5 6 7 8 9 10 11 12
Training Epoch

Figure 4: Results of VGGNet using different fine-tuning

methods.

The results in Figure 3 and Figure 4 show that freez-
ing convolution layers results in much worse performance,

which suggests that the features selected by the pre-trained
model do not represent the dataset well. We think this per-
formance discrepancy is not only due to the fact that the
Kaggle dataset content is very different from ImageNet, but
more fundamentally because the size of each image in Kag-
gle is only 48*%48 whereas the shallow layers of the model
trained on ImageNet are optimized for recognizing finer
features. For example, pixel-wise, the transition of edges
in Kaggle is more abrupt due to low resolution. Therefore,
tuning the entire network could help these shallow features
to be better extracted.

Fine-tuning vs. Training from Scratch. Regardless
of the training speed, fine-tuning can sometimes give bet-
ter results than training a network from scratch, especially
when the dataset is small and the network is deep. For
small dataset, a deep network is usually able to over-fit
to the training data, but fail to extract a good set of fea-
tures that can be generalized across a wider range. Also,
compared to shallow network, a deep network needs more
training epochs to converge, each epoch also takes longer
time, therefore training a deep network would require much
longer period.

0.6

o
n
|

o
IS
|

Test Accuracy
o
w
|

o
[N)
|

===Re-initialize fc layers

H ===Re-initialize fc + 2 conv layers

©
o

Train from scratch

o

r r r r r ,
1 2 3 4 5 6 7 8 9 10 11
Epoch

Figure 5: Test Accuracy of AlexNet fine-tuned using pre-
trained model vs. trained from scratch

However, if the dataset is simple, the network can con-
verge faster. Considering the case of a linearly separable
dataset on a 2D plane, even a deep network can converge al-
most instantly. In this case, the network will learn to extract
a more efficient set of features for the dataset than the fea-
tures for ImageNet. This can partially explain why training
a network from scratch for Kaggle can achieve similar ac-
curacy to fine-tuning in reasonable number of epochs (Fig-
ure 5 and 6): The Kaggle dataset is constituted of centered
and well-clipped gray-scale faces. The variation across im-
ages is small compared to ImageNet. Therefore we could
expect the principal components of Kaggle dataset domi-
nant and able to capture most information contained in an
image. The dimensionality can then be largely reduced.
During training, the network should need much less time



—Re-initialize fc layers

—Re-initialize fc + 2 conv layers

Train from scratch

0.5

Figure 6: Loss history of AlexNet fine-tuned using pre-
trained model vs. trained from scratch

to figure out an important set of features that can classify
the images well. Indeed, figure 5 shows that even though
the dataset is small, the network actually converges pretty
fast, and could achieve a performance closed to the best ac-
curacy obtained using fine-tuning. We could observe that
the accuracy curve is still going upwards. With more train-
ing epochs, we would expect its accuracy to reach or even
beat that of the fine-tuning.

One challenge of training a deep network is that at the
beginning of training, if the initial bias and learning rate is
not carelly selected, neurons at one layer may completely
jump into the dead region. We encountered this problem
while training both AlexNet and VGGNet. Interestingly,
when this happens, we found the accuracy is always stuck
at 25% independent of network and learning rate.

Besides, in the above two comparisons, we ignore train-
ing speed when evaluating performance. In practice, fine-
tuning deeper into the network would require more com-
putation. So there obviously exists a tradeoff between the
accuracy and training speed.

AlexNet vs. VGGNet. Both AlexNet and VGGNet were
winning architectures for ImageNet competition. Though
both networks use similar conv-relu-pool-fc structure, they
are different in many aspects. The most obvious difference
is their depth. AlexNet has 8 layers while VGGNet has 16.
However, we think this is not the main cause of the per-
formance discrepancy. As discussed above, since Kaggle
dataset has small variance and diversity, a deeper network
may not give too much advantage in representational power.
In fact, we train an 8-layer network that has similar architec-
ture as 16-layer VGGNet. It can achieve an 62.8% accuracy
on test set, which is closed to 63.1% accuracy of VGGNet.

Instead, the major difference between AlexNet and VG-
GNet that leads to the performance discrepancy is that
AlexNet use large filter and stride size at the initial layer
whereas VGGNet preserve the dimension of the input im-
age. Preserving dimensionality may not lead to huge ben-

efits for larger images, but can be crucial for small images
(48*48) such as Kaggle. This also explains why using our
8-layer network could give much better results than an 8-
layer AlexNet. Also, from the results in Table 1, we find
VGGNet tends to overfit training data more than shallower
network. This is expected because a deeper network would
more easily over-fit to a small training set.

4.2. Regularization and Accuracy

Training Accuracy Testing Accuracy
AlexNet 61.7% 54.8%
VGGNet 89.4% 63.1%
8-layer-net 70.7% 62.8%
11-layer-net 74.1% 65.3%

Table 1: Summary of best results using different architec-
tures

Our CNN Model

e==Training Accuracy

0.9
e===Test Accuracy

0.8

0.7409
0.7

0.6 g
N /

0.4

0.6534

076238

Naive CNN Adding Dropout Adding Data Big CNN

Augmentation

Figure 7: Improvement of regularization and accuracy with
reguarization techniques

0.7
0.6
3.0.5 1
e
304 7
S
s03
g / e===8-layer-net
02 1y =—=g_layer-net with data aug
o1 11-layer-net
: e====11-layer-net with data aug
0 +—r—T—T—"TT"TTT—T—T—T—T—T—T"T"T"T—T"T"7T
12345678 9101112131415161718192021
Training Epoch

Figure 8: Test Accuracy of 8-layer and 11-layer network

To achieve highest accuracy, we first construct a rela-
tively shallow network and use it to quantify the effective-



ness of various regularization and data augmentation tech-
niques in reducing over-fitting and improving test accuracy.
The architecture of this 8-layer network is shown in Table
2.

input data(48x48 grey scale image)

Data Augmentation

CONV 3 x 3 x 32, RELU, BATCH NORM

CONV 3 x 3 x 32, RELU, BATCH NORM
MAXPOOL 2 x 2

CONV 3 x 3 x 64, RELU, BATCH NORM

CONV 3 x 3 x 64, RELU, BATCH NORM
MAXPOOL 2 x 2

CONV 3 x 3 x 128, RELU, BATCH NORM

CONV 3 x 3 x 128, RELU, BATCH NORM
MAXPOOL 2 x 2

FC 512, RELU, BATCH NORM
FC7
SOFTMAX

Table 2: Architecture of our 8-layer network

At the beginning of our experiment, this 8-layer network
gives us 51.0% accuracy on test set, while the training accu-
racy arises to 95% quickly. We tried various regularization
techniques to reduce the over-fitting. The most obvious way
is to increase the regularization factor. However we found
it hard to find a good parameter. Sometimes closing the
gap between training and testing accuracy would also result
in worse test time performance. To achieve better regular-
ization for deep network, more fine-grained regularization
factors might be needed, rather than a global regularization
factor.

After adding dropout to our network, the overfitting is-
sue is much improved. The gap between training and testing
dataset is reduced to less than 15%. To further improve the
performance, we tried a few data-augmentation techniques.
For example, we randomly select some images to flip hori-
zontally before feeding into the network. It helps to further
reduce the gap to around 8%. We also tried adding ran-
dom Gaussian noise and random cropping, but do not obtain
much improvement.

Finally, we construct a deeper 11-layer network with
slight modified architecture compared to previous 8-layer
network. Here instead of inserting dropout layer right af-
ter convolution layer, we add it after the max-pooling layer.
The final architecture is shown below. Our best model
achieved 65.34% accuracy on test set and 74.09% on train-
ing set.

Figure 9 shows a few examples of both correctly classi-
fied examples and mis-classified examples.

input data(48x48 grey scale image)
Data Augmentation
CONV 3 x 3 x 64, RELU, BATCH NORM
CONV 3 x 3 x 64, RELU, BATCH NORM
MAXPOOL 2 x 2
CONV 3 x 3 x 128, RELU, BATCH NORM
CONV 3 x 3 x 128, RELU, BATCH NORM
MAXPOOL 2 x 2, DROPOUT 0.2
CONV 3 x 3 x 256, RELU, BATCH NORM
CONV 3 x 3 x 256, RELU, BATCH NORM
MAXPOOL 2 x 2, DROPOUT 0.25
CONV 3 x 3 x 512, RELU, BATCH NORM
CONV 3 x 3 x 512, RELU, BATCH NORM
MAXPOOL 2 x 2, DROPOUT 0.25
FC 1024, BATCH NORM, RELU, DROPOUT 0.45
FC 1024, BATCH NORM, RELU, DROPOUT 0.45
FC7
SOFTMAX

Table 3: Architecture of our 11-layer network

(c) Misclassified Sad (d) Misclassified Neu-

as Neutral tral as Fear

Figure 9: Examples of correctly and mistakenly labeled im-
ages

5. Conclusion

In this project, we used a convolutional neural network
on Kaggle facial expression recognition challenge and were
able to achieve an accuracy of 65.3% on the test set, which
could rank top 5 among the 56 teams participating in the
challenge (held in 2013). We showed that by incorporating
various regularization techniques such as dropout and data-



augmentations, the over-fitting issue can be largely sup-
pressed.

We showed that through a high-level qualitative under-
standing of the dataset characteristics such as its size, di-
mensionality and diversity, we were able to develop some
intuition to explain the performance discrepancy between
different architectures and training approaches. First, we
found that during fine-tuning, freezing more layers would
result in performance degrading significantly compared to
fine-tuning weights across all layers. The intuition behind
is that the early layers of pre-trained model are optimized
for recognizing finer features of relatively large images in
ImageNet, whereas the 48%48 Kaggle images have much
lower resolution. Second, because the Kaggle dataset has
relatively low variance across images, and thus requiring
lower representational power for the network, the exper-
iment shows that it takes a reasonable amount of time to
train an AlexNet from scratch to reach similar accuracy as
fine-tuning pre-trained model. Finally, we found that the
performance of an 8-layer network that we constructed is
closed to that of VGGNet, but much higher than a similar
8-layer AlexNet. And we conclude that preserving the size
of feature maps at early layers is crucial for images with
small size.

To further improve the performance, an unsupervised
learning phase might be added before the supervised learn-
ing. This technique is particularly useful when the dataset is
small. In fact, the winning team of Kaggle facial expression
challenge in 2013 use a RBM (Restricted Boltzmann Ma-
chine) before the supervised learning phase and achieved
an accuracy closed to 70% on the testing dataset.

References

[1] G. E. H. Alex Krizhevsky, Ilya Sutskever. Imagenet classifi-
cation with deep convolutional neural networks. Advances in
Neural Information and Processing Systems (NIPS), 2012.

[2] Y.-H. Byeon and K.-C. Kwak. Facial expression recognition
using 3d convolutional neural network. International Journal
of Advanced Computer Science and Applications, 5(12), 2014.

[3] C.C. Chibelushi and F. Bourel. Facial expression recognition:
A brief tutorial overview. 2003.

[4] e. a. Samira Ebrahimi Kahou. Combining modality specific
deep neural networks for emotion recognition in video. Pro-
ceedings of the 15th ACM on International conference on mul-
timodal interaction, pages 543-550, 2013.

[5] Z. A. Simonyan, Karen. Very deep convolutional networks for
large-scale image recognition. /CLR, 2015.

[6] e. a. Yaniv Taigman. Deepface: Closing the gap to human-
level performance in face verification. Computer Vision and
Pattern Recognition (CVPR), pages 1701-1708, 2014.

[7]1 Z.Zhang. Feature-based facial expression recognition: Sensi-
tivity analysis and experiments with a multi-layer perceptron.
International Journal of Pattern Recognition and Artificial In-
terlligence.



