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Abstract 

 
In this paper, we tackle a Kaggle challenge: using Yelp 

photos, provided by users, to label the businesses they 
represent. This problem involves image recognition and 
multilabel classification. While our approach to image 
recognition is extremely standard and vanilla – involving 
training a relatively small convolutional neural net on the 
dataset – we strive to try a novel approach to multilabel 
classification, using a single softmax classifier to pick out 
multiple labels. To do this, we designed and implemented 
a new way to use the probabilistic interpretation of a 
softmax vector, and a set of loss and test functions to 
examine our results and train the net. Unfortunately, 
results were not very promising, and we consider possible 
reasons for this, as well as some characteristics of other 
datasets that might be better suited to this approach. 
 

1. Introduction 

A current area of active product research in industry – at 
Yelp in particular – is the use of user provided images to 
classify businesses, to enhance their product’s ability to 
make recommendations and position it closer to a media-
based rather than text-based product.  

More specifically, the challenge as presented to Kaggle 
includes a dataset of images, image-to-business mappings, 
and business-to-class mappings, where some businesses 
have multiple images. [1] 

To do this, we will be using a single convolutional neural 
net – with a single classifier – to determine which of 
Yelp’s traits each business pictured has. This, in addition 
to having a very real world, consumer-facing application, 
we attempted as multiclass labeling with just one 
classifier, which is a novel problem (virtually every 
multilabel classification solution currently involves using 
a binary classifier for each label, or, if there are too many 
labels, a binary classifier for each of several dimensions, 

where the dimensions describe an approximation of the 
label space). The dataset is available on Kaggle. 

To expound a bit on how we use a single classifier on 
multilabel problems: we will be attempting to fit a 
softlabel vector produced by a softmax function 
(intuitively, the approximate probability distribution over 
classes of a picture) to the “ground truth” vector for an 
image, which is a vector x where xi is 1/n if the image is of 
class i and 0 otherwise, and where n is the total number of 
classes in the image. 

2. Background / Related Work 

There is significant literature with respect to multilabel 
classification problems, and we examined much of it in 
depth. It is often used to classify textual documents, 
media, and genomics. Formally, the problem involves 
associating each training example, or image in our case, 
with a set of labels Y in the set of possible labels L, 
whereas single-label classification, which is far more 
common, only asks for the selection of a single label l 
from the set of labels L. Tsoumakas et. al in “Mining 
Multi-Label Data” consider two main ways to transform 
the problem into one solvable with single-label classifier 
methods. Label powerset transforms set L into the 
powerset of L, which becomes a set of size 2|L| which 
includes every possible combination of labels a training 
example could have. Another approach is called binary 
relevance, and it is a primary mechanism in multilabel 
classification. BR involves training a separate classifier for 
each label. [2] There are numerous techniques that need to 
be employed when examining labelsets with very high 
dimensionality, making it impractical to either use the 
label powerset (which takes on massive dimensionality, 
far larger than the training set sometimes), or binary 
relevance, as the computing power demanded to train so 
many classifiers is just too much. 

For the Label Powerset (LP) method, the primary solution 
is pruning, or simply throwing out as viable classes those 
that appear below a certain threshold of times in the data. 
Sometimes, if a lot of pruning is done, we will substituted 
removed classes and those examples’ labels with strict 
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subsets of the true set of labels, as long as those strict 
subsets are “frequent.” [3] 
 
For Binary Relevance, techniques such as PCA are often 
used to reduce the dimensionality of the label space 
(allowing researchers to train a different classifier for each 
dimension vs. each label) if there are more labels than 
feasible. [2] 
 
In addition, current multi-label methods exploit various 
aspects of label structure. For instance, if some labels are 
hierarchical (or an item can be labeled as class X only if it 
is also class Y), then a tree of binary classifiers can be 
built, with non-root nodes (i.e. the classifier for class X) 
only being trained or use to classify if the data point is of 
class Y already. [4] 
 
Another way that current literature looks at taking 
advantage of label structure is by looking at label-label 
correlations. For instance, Yu et. al roughly use the 
neighbors of a data point in high dimensional space, in 
conjunction with both global and local label correlations 
(label correlations over the whole set, as well as over the 
“neighborhood” of the data point) to predict labels, 
incorporating label-label correlations when computing the 
probability of a test instance x. [5] 
 
Finally, a new set of testing methods and evaluation 
metrics have to be developed for multi-label classification 
problems as well – the percentage of time one guesses “the 
right class” is no longer an acceptable metric as it is for 
single-label problems. While “classification accuracy” 
does exist for multi-label problems, it is exceptionally 
strict in that guessing “the right class” involves predicting 
the exact set of labels that correspond to that data point in 
the “ground truth.” Rather, there are a number of options, 
such as distance between sets (between the true set of 
labels, and the guessed set) in the form of Hamming loss, 
or roughly the average symmetric difference between sets. 
[6] There are also measurements of “precision” and 
“recall,” or the number of true positives picked in the 
guessed set, divided by the number of positives overall in 
the ground truth, or the number of guessed labels, 
respectively. Finally, accuracy is the average over data 
points for the size of the intersection between the truth and 
guess, divided by the size of the union between the two 
sets. [7] 

3. Approach 
 
To attack this problem, we first needed to decide how to 
approach image feature extraction. It seemed relatively 
obvious that we should use a convolutional neural net, and 
while we started with 3 layers, with the hope that they 

would achieve reasonable results and be much faster to 
train to test new approaches. While the results could 
probably benefit from more layers, using 3 layers allowed 
us to do significantly more in terms of experimentation, 
both with hyperparamters, and various strategies for 
initialization or loss functions. Furthermore, our results 
have yet to be promising enough to warrant the extra time 
investment to do more than 3 layers – if 3 layers is not 
much better than random, it seems better for both results 
and learning to try different approaches to 3 layers than 
just add more layers. 
 
A much more interesting problem to us than feature 
extraction, though, was the multilabel aspect of the 
problem. (We’ve done plenty of convolutional net training 
on the homework.) In particular, it seems weird that multi-
label classification requires an asymptotic jump up in 
computing power from single-label; the LP method 
demands an exponential amount of space in the number of 
labels, and the BR method demands a linear number of 
models in the number of labels. Accordingly, we tried our 
hands at designing a mechanism by which we could use a 
single classifier to endow each training example with 
multiple labels. 
 
To do this, we started with the softmax loss function. 
Recall that the softmax loss function returns a vector v of 
size |L| for each image X, where each element vi can be 
roughly interpreted as the probability that X is of class i. 
Unfortunately, this is designed for single class instances, 
so the vector v is a probability distribution, so the sum of 
all vi is 1, and the terms are not independent. 
 
Regardless, we thought that using this intuitive definition 
could be used to approximately push the softmax 
probabilities to our “ground truth” definition for each 
image X, which we proceeded to define as v* as follows: If 
image X belongs to n classes, v*i = n-1 if image X is of 
class i, and v*i =0 otherwise. 
 
Then, we had to design an objective function to minimize 
such that our neural net would try to push the softmax 
probabilities vector towards our definition of v*i for each 
image. To do this, we picked the Kullback-Leibler 
divergence, or KL divergence. This can, for discrete 
distributions as we have here, be roughly interpreted as the 
expected log-difference between two probability 
distributions. Formally, the KL divergence of two discrete 
probability distributions, P and Q, is: 
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This function is continuous and differentiable, and thus the 
gradient is easy to backpropagate through the neural net. 
By minimizing this for our ground truth vectors, it’s clear 
that we always want to increase Q(i) (which is vi) for 
values of i for which P(i) is positive, holding all else 
equal. This naturally means we take away probability from 
those values of i for which P(i) is zero; that is, we try to 
push the learned probabilities up for classes which do 
correspond to the image, and down otherwise. Kullback-
Leibler divergence does have its flaws for this use-case, 
with a major one being that it fails to attempt to equally 
distribute the “leftover” probability (that probability that is 
distributed to values of i for which P(i) is 0). This is 
because all of those probabilities have no direct weight in 
the KL divergence, and this seems like it could possibly 
create worrying local minimum effects by allowing the 
algorithm to fit v*i in weird ways that don’t necessarily 
make intuitive sense, such as, to, say, put all of the 
“leftover” probability on one class to get a marginally 
lower KL divergence. 

After designing this approach, finding a convolutional 
neural net framework that might support it was nontrivial. 
After significant exploration, we settled on mocha.jl, a 
framework involving GPU implementations in Julia, 
which fortunately implemented most of the training for us 
(but none of the testing), provided we could get the data in 
the right format. In particular, their “softlabel” returns the 
softmax probabilities vector without computing a loss, and 
allows us to compute a custom KL-divergence loss against 
the ground truth we set when formatting the hdf5 database. 

Our objective loss function (or KL-divergence) seemed to 
work reasonably well; an example from an early training 
instance (not with prior initialization) is graphed below 

Chart 1: KL-Divergence over Training 

 

It is slightly worrying how quickly the algorithm seems to 
plateau, and this seems to happen for almost any 
reasonable learning rate. It’s also very hard to interpret 

this over thousands of data points – it loosely translates to 
an expected log difference in probability distributions, but 
the expectation over many datapoints of a ratio (or the log 
of one, as a log difference is) makes very little statistical 
sense, so it’s very difficult to say how significant an 
improvement 1.9 is over 2.2.  

4. Experiments 
 
We used Yelp’s dataset, as provided on Kaggle. We 
started with a rather naïve implementation, in which we 
simply used a three-layer convolutional net, which we 
trained from scratch, on the images cropped and 
compressed into 64x64. (Unfortunately, our AWS instance 
didn’t seem to have the memory to run 256x256.) We 
loaded these into an hdf5 data file with the corresponding 
ground truth labels, v*, as described in Section 3. We then 
trained the net, and then took a snapshot of the net every 
500 iterations. We used these snapshots to make a pass 
over the validation set, get softmax probability vectors for 
each validation example, and predict the classes for the 
validation set, comparing them to the ground truth. 
 
A major point of difficulty is converting the softmax 
probability vector into labels, mainly because it doesn’t 
tell us how many labels to pick.  Logically, it was clear 
that we should pick the top m labels based on probability, 
but it’s unclear what value m should take. We first tried 
picking the smallest m such that the sum of the 
probabilities of the m classes chosen was at least k for 
some cutoff k. The first graph we printed was with k=0.5. 
 
Our evaluation metric was the mean f-1 score, which 
measures the ratios of precision (true positives to all 
positives) and recall (true positives to all returned 
positives) in equal measure; it seems obvious that both 
precision and recall are key to a good model - a good 
model should avoid both false positives and false 
negatives.  In particular, targeting exactly one of these 
properties at a time would be trivially easy; we could 
achieve very high precision by only choosing the highest 
probability label as our guess, and we could achieve 
perfect recall by guessing every label regardless of the 
probability distribution.  The f-1 score is an accepted 
metric for evaluating high precision and high recall in a 
single value. 
 

More formally, the mean f-1 score, as presented on the 
Kaggle challenge, is: 
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where tp refers to the number of true positives (or classes 
predicted to be labels for image X by both vectors v and 
v*), fp to the number of false positives (or classes 
predicted to be labels for image X by vector v but not v*), 
and fn to the number of false negatives (or classes 
predicted to be labels for image X by vector v* but not by 
v). [1] 
 
Chart 2: Mean F-1 Score Test: Cumulative Probability 

Method, k=0.5 
 

 
 
As can be seen, this learned very quickly and delivered an 
F-1 score around .225. The F-1 score seems incredibly low 
(if you have as many true positives as false positives as 
false negatives, you will have F-1 score .5), which is 
extremely concerning. The first potential problem is the 
cutoff strategy (there also definitely is a local minimum, 
but even a local minimum ought to have F-1 score higher 
than this. We accordingly tried employing another cutoff 
strategy, instead picking any class with individual vi at 
least k for some cutoff k. With some hyperparameter 
testing, we opted for k=(9-1)-1=.125. The graph for this 
process follows:  
 
Chart 3: Mean F-1 Score Test: Individual Probability 

Method, k=.125 
 

 
 
This achieves an F-1 score of around .37, which is 
significantly better, but still not very good. 
 
We decided to try one more metric for choosing m, or the 
number of classes to include in our “guessed set.” This 
metric involved taking the reciprocal of the highest 
probability in the softmax probability vector v, and taking 
the ceiling of this reciprocal as m. The intuition seems 
reasonable: we expect that, if the learned softmax 
probability vector approximates the ground truth well (that 
is, if v is a good approximation for v*, which is the 

definition of our algorithm learning well based on our KL-
divergence loss function), then we expect the maximal 
value of v*i to be around 1/n, where n is the number of 
classes that apply to the image. We expect some noise, so 
we expect that the maximal value of v*i will be slightly 
higher than 1/n, and so taking the reciprocal and taking the 
ceiling should be a good approximation for n if our net 
learns well. Unfortunately, the F-1 score was abysmal: 
 
Chart 4: Mean F-1 Score Test: Ceiling of Reciprocal of 

Max Probability Method 
 

 
 
This F-1 score was the worst yet, topping out just under 
.175. Around here, it starts to get concerning that the 
problem may be the learning algorithm or the overall 
design, and not necessarily the step where we select how 
many classes to guess. From here on out, we chose to 
continue to use the second method we tried, with 
individual probability cutoffs of k=.125. 
 
At this point, we decided to sanity check our process (and 
make sure our softmax process was at least learning 
something approximately correct) by taking a look at the 
accuracy if we set n=1; that is, if we took only the top 
probability (treating softmax as a single classifier as it was 
originally intended) and evaluated the percentage of 
examples for which the maximal vi actually referred to a 
class i that belonged to the example. This is the inverse of 
what is known as one-error in multi-label problems; this 
graph over training iterations is below: 
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Chart 5: Accuracy Metric: (probability that the top 
softmax label is a true positive) 

 

 
 
 
As can be seen, this seems to take longer than the F-1 
score to train, which seems weird – all the metrics should 
train roughly in line. However, it does make it up to 
around .75, which is comforting – considering that we are 
not training a single-label classifier with conventional 
objectives, it doesn’t seem like an unreasonable outcome 
that our top class is accurate around 75% of the time. 
 
To try and solve the local minimum problem, we decided 
to initialize our vector with a prior on the probability 
vector. We did this by taking a random sample of 10,000 
data points, computing the probability that an image X fit 
into label i for each i, and then normalizing this set of 
unaffiliated probabilities into a probability distribution to 
fit it into our softlabel vector formulation. We made this 
the “ground truth” for these 10,000 points, and trained the 
net for 10,000 iterations with these points as our 
“initialization.” 
 
The intuition behind this initialization was to produce a 
very small instance of transfer learning for our net.  Rather 
than starting with randomly initialized weight vectors and 
guessing a nearly uniform probability distribution for 
every image, we concluded we could acquire better results 
in fewer iterations by initializing the weights so that the 
initial guess for average image was the average probability 
distribution. 
 
Unfortunately, looking at the graph, it looks like the prior 
initialization may have put us in a position to overfit to the 
training set a bit. After just 3000 iterations of training on 
the training set from the initialized net, this is what we 
saw: 
 

 
 
 
 

Chart 6: Mean F-1 Score Test: Initialized with Sample 
Prior 

 

 
 
Training the priors on the training set, and then training on 
the training set to separate out the images in it, seems to 
have caused the second step to see some overfitting, and 
the training actually caused our net to perform worse on 
validation data! It was also worse than not having the 
initial prior, dropping to an F-1 score of around .24. 
 
At this point, it seems possible that our softmax 
probability vectors aren’t learning or separating as well as 
we thought, and therefore that the vectors v are very 
“noisy” representations of v* – but that they are still viable 
representations. There are two possible tactics to try and 
remedy this problem: one is to increase the number of 
layers in the net, which we did to 4 (but not longer for 
training time constraints), and the other is to try averaging 
a number of guesses v at the same v*; our dataset provides 
a very natural way to do this by providing multiple images 
for each business. 
 
To aggregate the vectors v for a group of images that 
represents a single business (call the group of vectors 
corresponding to a group of images that represents a single 
business B), we tried two approaches:  
 

1. We allowed, for all v in B, each v to cast a “vote” 
for each label i for which vi exceeded a threshold 
ki (similar to what we did when we picked classes 
with only image, except that instead of that image 
being labeled with that class, that image instead 
“votes” for that class). Then, for each class i which 
received more than |B|*k votes for that class (the 
voting threshold, which is some percentage of the 
number of available votes), we labeled that 
business with that class. Consider this Approach 
A. 

2. We computed vB as the sum of all v in B, divided 
by |B| (this is analogous to computing the average 
v in B). We then labeled the business (and 
accordingly, all images in the business) with 
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classes i for which vB
i > k*maxi(vB

i) for some 
threshold k. Consider this Approach B. 

 
The graphs for the final F-1 scores, after 10000 iterations, 
picking “guessed sets” of labels with Approaches A and B, 
for various levels of k on training and test sets, are below: 
 
Chart 7: Approach A with ki = .125 for varying levels 

of k 

 
 

Chart 8: Approach B for varying levels of k 
 

 
 
It can be seen that Approach B substantially improves our 
F-1 score (which makes sense, considering that Approach 
B seems to help with removing the noise significantly 
more than Approach A even from an intuitive standpoint – 
Approach A only removes noise when it is large enough to 
change a “vote”). We top out with Approach B’s F-1 score 
of around .535. While this is still not great compared to 
Kaggle’s leading .82 (which we believe comes from a 
decision tree – we optimized for an interesting approach 
vs. winning Kaggle), it does show that this approach might 
not be totally useless on a different dataset better 
optimized to this approach, and that our net did learn 
something, significantly beating Kaggle’s random guess 
benchmark of around .43. [1] 
 
Also interesting is that the accuracy on the training set is 
almost identical to that on the validation set; this suggests 
that the model, even with 4 layers, generalizes too well, 
and we could add more. 

5. Conclusion 
 
Overall, it seems that a single classifier approach to the 

multi-labeling problem, at least as we attempted it here, 
was relatively ineffective. This is very unfortunate and 
disappointing, but not that surprising – after all, it seems 
weird to try and push the “strength” of independent classes 
into a probability distribution over them, effectively 
making the final term entirely linearly dependent on the 
others. Perhaps next time a dummy class with label always 
false would be helpful in trying to ensure that the “class 
strengths” are less collinear. 
 
A major problem is that the ground truth for, say, “takes 
reservations” (class 2) should be of value x for every 
image of a restaurant that takes reservations, where x is 
independent of the number of classes that image belongs 
to – however, this is not the case in our model. This is 
imposed by the requirement that the sum of the ground 
truth vector be exactly 1, regardless of the number of 
classes associated with an image; this means that every 
image for businesses that “take reservations” will not have 
the same “strength” for this class – if business X takes 
reservations, but is also good for lunch, good for dinner, 
serves alcohol, and is good for kids, it will see only 1/5 as 
“reservation-taking” as one that takes reservations but 
doesn’t fit into any of those categories. 
 
In other words, our objective function is too punishing 
towards learning from images with many labels. In 
general, it is bad that we had to normalize the “class 
strength” of an image X for label i for reasons unrelated to 
the direction relationship between X and i, but rather 
because of the relationships between X and other labels j. 
 
In general, it seems that the fundamental concept we were 
playing with, that of using a single softmax classifier to 
solve a multilabel problem without expanding the label 
space to the label powerset, was not well tailored to this 
dataset at all.  
 
We suspect that this method of using a single classifier 
might find more success if applied to different type of 
dataset.  In the Yelp dataset, generally different labels 
were not mutually exclusive, as for example, good for kids 
is not necessarily correlated with good for lunch, and in 
some cases, there might exist significant positive 
correlations between labels; one imagines, for instance, 
that “is expensive” is positively correlated with “takes 
reservations.” A dataset in which the labels were in direct 
competition, or at least strong negative correlations might 
exist, might be better suited to being modeled using these 
probability distributions. 
 

 



 

231 

References 
[1] Yelp. Kaggle Challenge. https://www.kaggle.com/c/yelp-

restaurant-photo-classification 
[2] Tsoumakas, G., Katakis, I., and Vlahavas, I. Mining 

multilabel data. In Maimon, O. and Rokach, L. (eds.), Data 
Mining and Knowledge Discovery Handbook, pp. 667– 
685. Springer, 2010. 

[3] Read, J.: A pruned problem transformation method for 
multi-label classification. In: Proc. 2008 New Zealand 
Computer Science Research Student Conference (NZCSRS 
2008). (2008) 143–150 

[4] Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental 
algorithms for hierarchical classifi- cation. Journal of 
Machine Learning Research 7 (2006) 31–54 

[5] Yu, Y. Pedrycz, N. Miao, D.: Multi-label classification by 
exploiting label correlations, Expert Syst. Appl. 41 (2014) 
2989–3004. 

[6] Schapire, R.E. Singer, Y.: Boostexter: a boosting-based 
system for text categorization. Machine Learning 39 (2000) 
135–168 

[7] Godbole, S., Sarawagi, S.: Discriminative methods for 
multi-labeled classification. In: Proceedings of the 8th 
Pacific-Asia Conference on Knowledge Discovery and Data 
Mining (PAKDD 2004). (2004) 22–30 

 


