

225

Abstract

In this paper, we tackle a Kaggle challenge: using Yelp

photos, provided by users, to label the businesses they
represent. This problem involves image recognition and
multilabel classification. While our approach to image
recognition is extremely standard and vanilla – involving
training a relatively small convolutional neural net on the
dataset – we strive to try a novel approach to multilabel
classification, using a single softmax classifier to pick out
multiple labels. To do this, we designed and implemented
a new way to use the probabilistic interpretation of a
softmax vector, and a set of loss and test functions to
examine our results and train the net. Unfortunately,
results were not very promising, and we consider possible
reasons for this, as well as some characteristics of other
datasets that might be better suited to this approach.

1. Introduction

A current area of active product research in industry – at
Yelp in particular – is the use of user provided images to
classify businesses, to enhance their product’s ability to
make recommendations and position it closer to a media-
based rather than text-based product.

More specifically, the challenge as presented to Kaggle
includes a dataset of images, image-to-business mappings,
and business-to-class mappings, where some businesses
have multiple images. [1]

To do this, we will be using a single convolutional neural
net – with a single classifier – to determine which of
Yelp’s traits each business pictured has. This, in addition
to having a very real world, consumer-facing application,
we attempted as multiclass labeling with just one
classifier, which is a novel problem (virtually every
multilabel classification solution currently involves using
a binary classifier for each label, or, if there are too many
labels, a binary classifier for each of several dimensions,

where the dimensions describe an approximation of the
label space). The dataset is available on Kaggle.

To expound a bit on how we use a single classifier on
multilabel problems: we will be attempting to fit a
softlabel vector produced by a softmax function
(intuitively, the approximate probability distribution over
classes of a picture) to the “ground truth” vector for an
image, which is a vector x where xi is 1/n if the image is of
class i and 0 otherwise, and where n is the total number of
classes in the image.

2. Background / Related Work

There is significant literature with respect to multilabel
classification problems, and we examined much of it in
depth. It is often used to classify textual documents,
media, and genomics. Formally, the problem involves
associating each training example, or image in our case,
with a set of labels Y in the set of possible labels L,
whereas single-label classification, which is far more
common, only asks for the selection of a single label l
from the set of labels L. Tsoumakas et. al in “Mining
Multi-Label Data” consider two main ways to transform
the problem into one solvable with single-label classifier
methods. Label powerset transforms set L into the
powerset of L, which becomes a set of size 2|L| which
includes every possible combination of labels a training
example could have. Another approach is called binary
relevance, and it is a primary mechanism in multilabel
classification. BR involves training a separate classifier for
each label. [2] There are numerous techniques that need to
be employed when examining labelsets with very high
dimensionality, making it impractical to either use the
label powerset (which takes on massive dimensionality,
far larger than the training set sometimes), or binary
relevance, as the computing power demanded to train so
many classifiers is just too much.

For the Label Powerset (LP) method, the primary solution
is pruning, or simply throwing out as viable classes those
that appear below a certain threshold of times in the data.
Sometimes, if a lot of pruning is done, we will substituted
removed classes and those examples’ labels with strict

Classifying Restaurants with Yelp Photos

mike yu

Stanford University
myu3@stanford.edu

Emma Marriott
Stanford University

em070394@stanford.edu

Aaron Zweig
Stanford University
azweig@stanford.edu

226

subsets of the true set of labels, as long as those strict
subsets are “frequent.” [3]

For Binary Relevance, techniques such as PCA are often
used to reduce the dimensionality of the label space
(allowing researchers to train a different classifier for each
dimension vs. each label) if there are more labels than
feasible. [2]

In addition, current multi-label methods exploit various
aspects of label structure. For instance, if some labels are
hierarchical (or an item can be labeled as class X only if it
is also class Y), then a tree of binary classifiers can be
built, with non-root nodes (i.e. the classifier for class X)
only being trained or use to classify if the data point is of
class Y already. [4]

Another way that current literature looks at taking
advantage of label structure is by looking at label-label
correlations. For instance, Yu et. al roughly use the
neighbors of a data point in high dimensional space, in
conjunction with both global and local label correlations
(label correlations over the whole set, as well as over the
“neighborhood” of the data point) to predict labels,
incorporating label-label correlations when computing the
probability of a test instance x. [5]

Finally, a new set of testing methods and evaluation
metrics have to be developed for multi-label classification
problems as well – the percentage of time one guesses “the
right class” is no longer an acceptable metric as it is for
single-label problems. While “classification accuracy”
does exist for multi-label problems, it is exceptionally
strict in that guessing “the right class” involves predicting
the exact set of labels that correspond to that data point in
the “ground truth.” Rather, there are a number of options,
such as distance between sets (between the true set of
labels, and the guessed set) in the form of Hamming loss,
or roughly the average symmetric difference between sets.
[6] There are also measurements of “precision” and
“recall,” or the number of true positives picked in the
guessed set, divided by the number of positives overall in
the ground truth, or the number of guessed labels,
respectively. Finally, accuracy is the average over data
points for the size of the intersection between the truth and
guess, divided by the size of the union between the two
sets. [7]

3. Approach

To attack this problem, we first needed to decide how to
approach image feature extraction. It seemed relatively
obvious that we should use a convolutional neural net, and
while we started with 3 layers, with the hope that they

would achieve reasonable results and be much faster to
train to test new approaches. While the results could
probably benefit from more layers, using 3 layers allowed
us to do significantly more in terms of experimentation,
both with hyperparamters, and various strategies for
initialization or loss functions. Furthermore, our results
have yet to be promising enough to warrant the extra time
investment to do more than 3 layers – if 3 layers is not
much better than random, it seems better for both results
and learning to try different approaches to 3 layers than
just add more layers.

A much more interesting problem to us than feature
extraction, though, was the multilabel aspect of the
problem. (We’ve done plenty of convolutional net training
on the homework.) In particular, it seems weird that multi-
label classification requires an asymptotic jump up in
computing power from single-label; the LP method
demands an exponential amount of space in the number of
labels, and the BR method demands a linear number of
models in the number of labels. Accordingly, we tried our
hands at designing a mechanism by which we could use a
single classifier to endow each training example with
multiple labels.

To do this, we started with the softmax loss function.
Recall that the softmax loss function returns a vector v of
size |L| for each image X, where each element vi can be
roughly interpreted as the probability that X is of class i.
Unfortunately, this is designed for single class instances,
so the vector v is a probability distribution, so the sum of
all vi is 1, and the terms are not independent.

Regardless, we thought that using this intuitive definition
could be used to approximately push the softmax
probabilities to our “ground truth” definition for each
image X, which we proceeded to define as v* as follows: If
image X belongs to n classes, v*i = n-1 if image X is of
class i, and v*i =0 otherwise.

Then, we had to design an objective function to minimize
such that our neural net would try to push the softmax
probabilities vector towards our definition of v*i for each
image. To do this, we picked the Kullback-Leibler
divergence, or KL divergence. This can, for discrete
distributions as we have here, be roughly interpreted as the
expected log-difference between two probability
distributions. Formally, the KL divergence of two discrete
probability distributions, P and Q, is:

227

This function is continuous and differentiable, and thus the
gradient is easy to backpropagate through the neural net.
By minimizing this for our ground truth vectors, it’s clear
that we always want to increase Q(i) (which is vi) for
values of i for which P(i) is positive, holding all else
equal. This naturally means we take away probability from
those values of i for which P(i) is zero; that is, we try to
push the learned probabilities up for classes which do
correspond to the image, and down otherwise. Kullback-
Leibler divergence does have its flaws for this use-case,
with a major one being that it fails to attempt to equally
distribute the “leftover” probability (that probability that is
distributed to values of i for which P(i) is 0). This is
because all of those probabilities have no direct weight in
the KL divergence, and this seems like it could possibly
create worrying local minimum effects by allowing the
algorithm to fit v*i in weird ways that don’t necessarily
make intuitive sense, such as, to, say, put all of the
“leftover” probability on one class to get a marginally
lower KL divergence.

After designing this approach, finding a convolutional
neural net framework that might support it was nontrivial.
After significant exploration, we settled on mocha.jl, a
framework involving GPU implementations in Julia,
which fortunately implemented most of the training for us
(but none of the testing), provided we could get the data in
the right format. In particular, their “softlabel” returns the
softmax probabilities vector without computing a loss, and
allows us to compute a custom KL-divergence loss against
the ground truth we set when formatting the hdf5 database.

Our objective loss function (or KL-divergence) seemed to
work reasonably well; an example from an early training
instance (not with prior initialization) is graphed below

Chart 1: KL-Divergence over Training

It is slightly worrying how quickly the algorithm seems to
plateau, and this seems to happen for almost any
reasonable learning rate. It’s also very hard to interpret

this over thousands of data points – it loosely translates to
an expected log difference in probability distributions, but
the expectation over many datapoints of a ratio (or the log
of one, as a log difference is) makes very little statistical
sense, so it’s very difficult to say how significant an
improvement 1.9 is over 2.2.

4. Experiments

We used Yelp’s dataset, as provided on Kaggle. We
started with a rather naïve implementation, in which we
simply used a three-layer convolutional net, which we
trained from scratch, on the images cropped and
compressed into 64x64. (Unfortunately, our AWS instance
didn’t seem to have the memory to run 256x256.) We
loaded these into an hdf5 data file with the corresponding
ground truth labels, v*, as described in Section 3. We then
trained the net, and then took a snapshot of the net every
500 iterations. We used these snapshots to make a pass
over the validation set, get softmax probability vectors for
each validation example, and predict the classes for the
validation set, comparing them to the ground truth.

A major point of difficulty is converting the softmax
probability vector into labels, mainly because it doesn’t
tell us how many labels to pick. Logically, it was clear
that we should pick the top m labels based on probability,
but it’s unclear what value m should take. We first tried
picking the smallest m such that the sum of the
probabilities of the m classes chosen was at least k for
some cutoff k. The first graph we printed was with k=0.5.

Our evaluation metric was the mean f-1 score, which
measures the ratios of precision (true positives to all
positives) and recall (true positives to all returned
positives) in equal measure; it seems obvious that both
precision and recall are key to a good model - a good
model should avoid both false positives and false
negatives. In particular, targeting exactly one of these
properties at a time would be trivially easy; we could
achieve very high precision by only choosing the highest
probability label as our guess, and we could achieve
perfect recall by guessing every label regardless of the
probability distribution. The f-1 score is an accepted
metric for evaluating high precision and high recall in a
single value.

More formally, the mean f-1 score, as presented on the
Kaggle challenge, is:

228

where tp refers to the number of true positives (or classes
predicted to be labels for image X by both vectors v and
v*), fp to the number of false positives (or classes
predicted to be labels for image X by vector v but not v*),
and fn to the number of false negatives (or classes
predicted to be labels for image X by vector v* but not by
v). [1]

Chart 2: Mean F-1 Score Test: Cumulative Probability

Method, k=0.5

As can be seen, this learned very quickly and delivered an
F-1 score around .225. The F-1 score seems incredibly low
(if you have as many true positives as false positives as
false negatives, you will have F-1 score .5), which is
extremely concerning. The first potential problem is the
cutoff strategy (there also definitely is a local minimum,
but even a local minimum ought to have F-1 score higher
than this. We accordingly tried employing another cutoff
strategy, instead picking any class with individual vi at
least k for some cutoff k. With some hyperparameter
testing, we opted for k=(9-1)-1=.125. The graph for this
process follows:

Chart 3: Mean F-1 Score Test: Individual Probability

Method, k=.125

This achieves an F-1 score of around .37, which is
significantly better, but still not very good.

We decided to try one more metric for choosing m, or the
number of classes to include in our “guessed set.” This
metric involved taking the reciprocal of the highest
probability in the softmax probability vector v, and taking
the ceiling of this reciprocal as m. The intuition seems
reasonable: we expect that, if the learned softmax
probability vector approximates the ground truth well (that
is, if v is a good approximation for v*, which is the

definition of our algorithm learning well based on our KL-
divergence loss function), then we expect the maximal
value of v*i to be around 1/n, where n is the number of
classes that apply to the image. We expect some noise, so
we expect that the maximal value of v*i will be slightly
higher than 1/n, and so taking the reciprocal and taking the
ceiling should be a good approximation for n if our net
learns well. Unfortunately, the F-1 score was abysmal:

Chart 4: Mean F-1 Score Test: Ceiling of Reciprocal of

Max Probability Method

This F-1 score was the worst yet, topping out just under
.175. Around here, it starts to get concerning that the
problem may be the learning algorithm or the overall
design, and not necessarily the step where we select how
many classes to guess. From here on out, we chose to
continue to use the second method we tried, with
individual probability cutoffs of k=.125.

At this point, we decided to sanity check our process (and
make sure our softmax process was at least learning
something approximately correct) by taking a look at the
accuracy if we set n=1; that is, if we took only the top
probability (treating softmax as a single classifier as it was
originally intended) and evaluated the percentage of
examples for which the maximal vi actually referred to a
class i that belonged to the example. This is the inverse of
what is known as one-error in multi-label problems; this
graph over training iterations is below:

229

Chart 5: Accuracy Metric: (probability that the top
softmax label is a true positive)

As can be seen, this seems to take longer than the F-1
score to train, which seems weird – all the metrics should
train roughly in line. However, it does make it up to
around .75, which is comforting – considering that we are
not training a single-label classifier with conventional
objectives, it doesn’t seem like an unreasonable outcome
that our top class is accurate around 75% of the time.

To try and solve the local minimum problem, we decided
to initialize our vector with a prior on the probability
vector. We did this by taking a random sample of 10,000
data points, computing the probability that an image X fit
into label i for each i, and then normalizing this set of
unaffiliated probabilities into a probability distribution to
fit it into our softlabel vector formulation. We made this
the “ground truth” for these 10,000 points, and trained the
net for 10,000 iterations with these points as our
“initialization.”

The intuition behind this initialization was to produce a
very small instance of transfer learning for our net. Rather
than starting with randomly initialized weight vectors and
guessing a nearly uniform probability distribution for
every image, we concluded we could acquire better results
in fewer iterations by initializing the weights so that the
initial guess for average image was the average probability
distribution.

Unfortunately, looking at the graph, it looks like the prior
initialization may have put us in a position to overfit to the
training set a bit. After just 3000 iterations of training on
the training set from the initialized net, this is what we
saw:

Chart 6: Mean F-1 Score Test: Initialized with Sample
Prior

Training the priors on the training set, and then training on
the training set to separate out the images in it, seems to
have caused the second step to see some overfitting, and
the training actually caused our net to perform worse on
validation data! It was also worse than not having the
initial prior, dropping to an F-1 score of around .24.

At this point, it seems possible that our softmax
probability vectors aren’t learning or separating as well as
we thought, and therefore that the vectors v are very
“noisy” representations of v* – but that they are still viable
representations. There are two possible tactics to try and
remedy this problem: one is to increase the number of
layers in the net, which we did to 4 (but not longer for
training time constraints), and the other is to try averaging
a number of guesses v at the same v*; our dataset provides
a very natural way to do this by providing multiple images
for each business.

To aggregate the vectors v for a group of images that
represents a single business (call the group of vectors
corresponding to a group of images that represents a single
business B), we tried two approaches:

1. We allowed, for all v in B, each v to cast a “vote”
for each label i for which vi exceeded a threshold
ki (similar to what we did when we picked classes
with only image, except that instead of that image
being labeled with that class, that image instead
“votes” for that class). Then, for each class i which
received more than |B|*k votes for that class (the
voting threshold, which is some percentage of the
number of available votes), we labeled that
business with that class. Consider this Approach
A.

2. We computed vB as the sum of all v in B, divided
by |B| (this is analogous to computing the average
v in B). We then labeled the business (and
accordingly, all images in the business) with

230

classes i for which vB
i > k*maxi(vB

i) for some
threshold k. Consider this Approach B.

The graphs for the final F-1 scores, after 10000 iterations,
picking “guessed sets” of labels with Approaches A and B,
for various levels of k on training and test sets, are below:

Chart 7: Approach A with ki = .125 for varying levels

of k

Chart 8: Approach B for varying levels of k

It can be seen that Approach B substantially improves our
F-1 score (which makes sense, considering that Approach
B seems to help with removing the noise significantly
more than Approach A even from an intuitive standpoint –
Approach A only removes noise when it is large enough to
change a “vote”). We top out with Approach B’s F-1 score
of around .535. While this is still not great compared to
Kaggle’s leading .82 (which we believe comes from a
decision tree – we optimized for an interesting approach
vs. winning Kaggle), it does show that this approach might
not be totally useless on a different dataset better
optimized to this approach, and that our net did learn
something, significantly beating Kaggle’s random guess
benchmark of around .43. [1]

Also interesting is that the accuracy on the training set is
almost identical to that on the validation set; this suggests
that the model, even with 4 layers, generalizes too well,
and we could add more.

5. Conclusion

Overall, it seems that a single classifier approach to the

multi-labeling problem, at least as we attempted it here,
was relatively ineffective. This is very unfortunate and
disappointing, but not that surprising – after all, it seems
weird to try and push the “strength” of independent classes
into a probability distribution over them, effectively
making the final term entirely linearly dependent on the
others. Perhaps next time a dummy class with label always
false would be helpful in trying to ensure that the “class
strengths” are less collinear.

A major problem is that the ground truth for, say, “takes
reservations” (class 2) should be of value x for every
image of a restaurant that takes reservations, where x is
independent of the number of classes that image belongs
to – however, this is not the case in our model. This is
imposed by the requirement that the sum of the ground
truth vector be exactly 1, regardless of the number of
classes associated with an image; this means that every
image for businesses that “take reservations” will not have
the same “strength” for this class – if business X takes
reservations, but is also good for lunch, good for dinner,
serves alcohol, and is good for kids, it will see only 1/5 as
“reservation-taking” as one that takes reservations but
doesn’t fit into any of those categories.

In other words, our objective function is too punishing
towards learning from images with many labels. In
general, it is bad that we had to normalize the “class
strength” of an image X for label i for reasons unrelated to
the direction relationship between X and i, but rather
because of the relationships between X and other labels j.

In general, it seems that the fundamental concept we were
playing with, that of using a single softmax classifier to
solve a multilabel problem without expanding the label
space to the label powerset, was not well tailored to this
dataset at all.

We suspect that this method of using a single classifier
might find more success if applied to different type of
dataset. In the Yelp dataset, generally different labels
were not mutually exclusive, as for example, good for kids
is not necessarily correlated with good for lunch, and in
some cases, there might exist significant positive
correlations between labels; one imagines, for instance,
that “is expensive” is positively correlated with “takes
reservations.” A dataset in which the labels were in direct
competition, or at least strong negative correlations might
exist, might be better suited to being modeled using these
probability distributions.

231

References
[1] Yelp. Kaggle Challenge. https://www.kaggle.com/c/yelp-

restaurant-photo-classification
[2] Tsoumakas, G., Katakis, I., and Vlahavas, I. Mining

multilabel data. In Maimon, O. and Rokach, L. (eds.), Data
Mining and Knowledge Discovery Handbook, pp. 667–
685. Springer, 2010.

[3] Read, J.: A pruned problem transformation method for
multi-label classification. In: Proc. 2008 New Zealand
Computer Science Research Student Conference (NZCSRS
2008). (2008) 143–150

[4] Cesa-Bianchi, N., Gentile, C., Zaniboni, L.: Incremental
algorithms for hierarchical classifi- cation. Journal of
Machine Learning Research 7 (2006) 31–54

[5] Yu, Y. Pedrycz, N. Miao, D.: Multi-label classification by
exploiting label correlations, Expert Syst. Appl. 41 (2014)
2989–3004.

[6] Schapire, R.E. Singer, Y.: Boostexter: a boosting-based
system for text categorization. Machine Learning 39 (2000)
135–168

[7] Godbole, S., Sarawagi, S.: Discriminative methods for
multi-labeled classification. In: Proceedings of the 8th
Pacific-Asia Conference on Knowledge Discovery and Data
Mining (PAKDD 2004). (2004) 22–30

