Concept Learning on Yelp Restaurant Classification

Shenxiu Liu
Physics Department
Stanford University

shenxiu@stanford.edu

Abstract

We are using Yelp restaurant photos from Kaggle to clas-
sify restaurants into 9 different concepts. In this project, we
tackled a multi-label classification problem for a “group of
images”. Also, labels here correspond to not the objects
but some higher level concepts. We solved this problem by
using transfer learning approach from pre-trained models.
Performance of various models are studied and compared
in our project.

1. Introduction

For commercial applications of image classification, it’s
not always a vanilla classification and identification of ob-
jects. Sometimes we want to do more complex tasks on
images. One very common problem is to use images as an
intermediate layer to understand concepts. Such as on yelp,
we can see a lot of user-posted photos of a specific restau-
rant on customer side and as customers we can have pretty
good ideas about this restaurant, such as if this is expen-
sive or not, the seats are indoor or outdoor, efc.. It will be
useful if we can extract these concepts out of photos auto-
matically and directly label it even before customers digest
it themselves. Furthermore it can be followed with applica-
tions like restaurant searching and/or ranking. Our problem
is then from a Kaggle competition dealing with this multi-
concept learning of restaurants based on their photos up-
loaded by Yelp users.

This application is particularly interesting because peo-
ple like to share photos on Yelp. Using these photos human
beings can easily get a lot of information of this restaurant.
But the throughput for this process is extremely low. We
have a large database here and it will be very useful if we
can digest these photos to make a description automatically
in a fast and high-throughput manner. The information then
can be easily integrated into recommendation systems and
search engines based on features. Our high level end-to-end
pipeline is shown in Fig. 1.

Haoming Li
ICME
Stanford University

haoming@stanford.edu

N

___,f’ Our Model |

Figure 1: Our model pipeline in high level. We have a series
of photos for a particular restaurant, then send them through
our model, we’ll end up with a list of labels for this restau-
rants indicating its features.

2. Problem Statement

We are given around 230k training photos associated
with 2k restaurants. Each restaurant is labeled as one or
more of these classes:

=)

: good for lunch

: good for dinner

: takes reservations

: outdoor seating

: restaurant is expensive
: has alcohol

: has table service

: ambience is classy

: good for kids

01NN AW~

Our goal is to classify any restaurant into these 9 classes,
with multi-label allowed, given the photos associated with
the restaurant. The test set is unseen with around 240k pho-
tos associated with unknown number of restaurants. (There
are 10k restaurants we are going to predict, but Yelp claims
most of these “restaurants” are actually made up to avoid
hand labeling.)

https://www.kaggle.com/c/yelp-restaurant-photo-classification

3. Evaluation Metric

The final test will be on an unlabeled test set for the com-
petition. We also construct a validation test by splitting the
labeled data into training part and developing part in order
to fine tune our hyper parameters. Our evaluation metric
is mean-F1 on whole dataset, which is the mean value of
per-instance F1. Per-instance F1 score is defined as the har-
monic mean of precision and recall on these 9 labels for this
sample, i.e.,
2pr

F1l= .
p+r

where
tp tp
= s r =
tp+ fp tp+ fn
Here true positives ¢p is the number of labels that are both
true and predicted for this instance. False positives fp and
false negatives fn follow the same way.

p

4. Approach

Since the labels are on restaurants but data we want to
utilize are photos, we separate the problem into two phases
following an intuitive approach:

1. Firstly we propagate labels for restaurants to photo-
level, as shown in Fig. 2. To classify these pho-
tos, we utilize convolutional neural networks to build
a multi-label classifier. Because these labels are rel-
atively harder to learn, we use transfer learning from
pre-trained models with loss function as the cross en-
tropy of logistic regression output and the label, de-
fined as

8
loss = — Z Z (yilog(pi) + (1 — v;) log(1 — ps))

data i=0
(1)

Photo1
Photo2
Photo3.

0338
Restaurant 1 | [

e Convnet models
Photot 2
Photo2 St

Photo3

Figure 2: If we have a restaurant associated with photos
shown in the picture with label 0,3,8, we will label these
photos as the restaurant label and send them through convo-
lutional neural network.

2. For the second phase from image to business, we use
the following strategy:

By collecting all probabilities of the belonging pho-
tos of each restaurant, we compute the mean for each
restaurant to make it as the probability of this restau-
rant to be in this class, as shown in Fig. 3.

Photo1 02 01 00 08 02 07 05 01 01
9 s 3 7 & 3 2 o

Photo2
Convnet models 03 04 02 07 00 05 08 02 02
Photo3 6 4 o0 6 5 4 0 3 2

04 03 01 07 02 03 04 04 03
T @ 8 5 o 4 & 5 0

[TNCWCS M, 03 03 01 07 01 05 05 02 02
PR W Y C WY WY o W N W 1

Figure 3: Collecting probabilities back to business level,
as shown in the example. We compute the mean value of
photo-level probabilities into business.

We further make decisions based on these probabili-
ties. Note that as our data may be imbalance in some
classes, so the best cut for predicting as positive isn’t
necessarily 0.5. Especially as we are working on op-
timizing F1, which means that we would like to have
a balanced precision/recall, it is clear that if we make
thresholds to predict as positive being 0 we can have
a low precision and 1.0 recall. However on the other
hand if we make the threshold close to 1.0 the recall
will be zero but precision is relatively high. There-
fore we make 9 more parameters for the threshold to
optimize F1 on training set. We find these values by it-
eratively using binary search between 0 and 1 on each
class. The prediction process is visualized in Fig. 4.

Restaurant 1 03 03 01 07 01 05 05 02 02
L Restaurant 1

- F1=0.667

Figure 4: This is showing how a single prediction is made.
We train the threshold values from training set, and then get
probabilities from test set. Based on those training thresh-
olds, we can set up this prediction: a class is labeled as
positive if and only if the score for this class exceeds the
threshold value of this class.

To train the photo-level classifier we reshape all photos
into 256256, then randomly pick a 224 %224 crop with
random mirror, as usual processes in ImageNet training. At
test time we use 5 224 x224 crops at corners and middle
together to make the prediction.

S. Empirical Results
5.1. Data exploration

The first step is always to look at data. The histogram
of photo number vs. business number looks like Fig. 5a.
Although restaurants with less than 50 photos dominate, it’s
still long tail, and each restaurant has a relatively large num-
ber of photos.

We make a train-dev split on the training data based on
business id (not on photo), 90% on training set and 10% on
dev set. We also show the distribution of train-dev split in
Fig. 5b,5c. It has a quite similar shape.

w0 Overall

500

200

200

#business

200

100

0 500 1000 1500 2000 2300 3000
#photos

(a) overall

Train split Dev split

#business
#business

o E I T
#photos #photos

(b) train split (c) dev split

Figure 5: The histogram of number of restaurants that have
specific number of photos.

For all 9 classes the positive ratio is shown in Fig. 6. It
doesn’t indicate too severe imbalance problem therefore we
are not specifically worrying about that.

Correlation of different classes is shown in Fig. 7. We
found that some classes are quite mixed, so we choose to
use a single loss function rather than training 9 different
classifiers.

5.2. Baselines

We are using two different trivial baselines as our starting
point.

e Random baseline: We compute the positive portion of
all nine classes in training set, and in evaluation phase
we randomly assign labels for each class by the prob-
ability distribution collected in training set for each
sample. This gives us a F1 at 0.485 on dev set.

e Same-class baseline: We still compute the positive
portion of all nine classes in training set. But this time
instead of assigning all into random, we compare accu-
mulation of each class and find all classes with a posi-
tive portion larger than 0.5, then we assign every sam-
ple into those classes. This strategy gives us a F1 at
0.608 on dev set.

4 5

(a) overall

(b) train split (c) dev split

Figure 6: The ratio of positive samples in different classes,
business level.

The same-class baseline is surprisingly better than ran-
dom baseline and very robust to train-dev splitting. It might
be related to the fact that classes have a high correlation and
guessing constants makes a favorable precision and recall
in a lot of cases, leading to a very high overall performance.

5.3. Learning Curve

For the training process on photos since there’s no accu-
racy metric that can directly represent the final F1, we only
look at loss function in this case. And we look at both train-
ing and validation error, in the end we choose the training
iteration that has best validation accuracy for the evaluation.

Specifically, as we are using pre-trained model, but the
last layer is random initialized by xavier initializer, we use
a 10 times larger learning rate in the last layer and use
1 x 10~* as base learning rate for the whole network, such
that we can update all parameters a bit, and won’t affect too
much to the pretrained parameters.

For the gradient solver we choose Adam after some ex-
periments, the momentums are set to be

By = 0.9, B> = 0.999.

And the learning rate policy is always chosen to be ‘inv’ in
Caffe solver.

10

08

06

04

02

400

(a) overall

10 10

08 08

06 05

04 04

a 02 ¢ 02

00

00

02

04

(b) train split (c) dev split

Figure 7: The correlation between different classes, busi-
ness level.

5.3.1 comparison between GooglLeNet and VGG-net

We train GoogLeNet [1] and VGG-nets (both VGG-S and
VGG-19) with pre-trained models from Caffe Model Zoo
(GoogLeNet parameters are from BVLC implementation).
We find GoogLeNet can give us a significantly better valida-
tion performance, see Fig. 8. Also GoogLeNet trains much
faster because of having less parameters. So we abandoned
VGG-nets and only use GoogLeNet in further investigation.

5.3.2 comparison between ResNet-50 and ResNet-101

We train ResNets using pre-trained parameters released re-
cently, in both 50-layer version and 101-layer version. For
the comparison, we show the dev loss in both model in Fig.
9.

From the figure, we can see that ResNet-50 has a much
faster convergence and needs significantly less iterations to
reach optimal validation accuracy. And its optimal valida-

Training process

0 1000 2000 3000 4000 5000 6000 7000
—+—GoogleNet trainingloss —#—VGG-S net training loss ~ —+— GoogLeNet validation loss

VGG-19 net training loss —#—VGG-19 net validation loss

Figure 8: Losses in GoogLeNet and VGG-nets. In figure
we can see that VGG net not only trains slower, but also
saturates to a higher dev loss. Also, GoogLeNet shows a
larger model capacity, which leads to a lower training loss,
too.

Comparison on dev loss in ResNets

el otime oinam

0 2000 4000 6000 8000 10000 12000 14000 16000

—®—ResNet:50 —@—ResNet-101

Figure 9: The dev loss in ResNet-50 and ResNet-101. Al-
though ResNet-101 is reported to have a better performance
in ImageNet, the model is harder to train and the limitation
in graphics memory leads to an extremely small batch size
(only 16 even on 8 Titan-Xs, thanks to Sherlock cluster,
which makes our experiment possible). Training ResNet-
101 is practically intractable. Also it’s clear that ResNet-50
starts to overfit after less than 4k iterations from the figure.

tion loss is about the same as GoogLeNet.

5.3.3 architecture choice

We choose both GoogLeNet and ResNet-50 as our architec-

tures. The learning curve of these models are shown in Fig.
10.

5.4. Evaluation

In this part we report the training and validation F1 for
different models, in both photo-level and business-level.

Training process on ResNet-50
Training process on GoogleNet

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

—e—trainingloss ——dev loss

(a) GoogLeNet (b) ResNet-50

Figure 10: The training and dev loss in architectures we
choose for prediction and evaluation. GooglLeNet shows
almost no overfitting during training, however ResNet-50
shows an overfitting after several thousands iterations. The
optimal dev loss in these two different models are about the
same.

F1 on training set | F1 on dev set
Business level, GoogLeNet 0.8257 0.8092
Business level, ResNet 50 0.8115 0.8010
Photo level, GoogLeNet 0.7882 0.7203
Photo level, ResNet 50 0.7806 0.7266

Table 1: Training and dev performance: naive thresholds

5.4.1 Without threshold training

We first try using 0.5 as the threshold value for all classes,
both for photo level and business level. At photo level, the
F1 scores are computed as if the propagated labels of all
photos are ground truth and each photo is an instance. For
business level the approach we introduce in figure 3 and 4
is used. The performance in mean F1 score on both training
set and test set is reported in table 1.

There are a couple of interesting observations. The busi-
ness level performance is what we focus more on, and they
turn out to be pretty good (compared with baselines) on both
training and test set, indicating that overfitting here is not
that severe. Two models give about the same performance.

The photo level performance, however, is less impres-
sive. Our interpretation is that our process of propagat-
ing restaurant labels to all associated photos can introduce
noise, e.g, some photos may just represent a subset of the
restaurant labels. However this kind of noise is canceled
out to some extent by our combining approach, leading to a
significantly better performance on restaurant level. Fur-
thermore we observe a more severe overfitting on photo
level. The overfitting comes from the convolutional neu-
ral networks and our approach mitigates the effect of this
kind of overfitting has on our restaurant level predictions.

F1 on training set | F1 on dev set
Business level, GoogLeNet 0.8436 0.8151
Business level, ResNet 50 0.8474 0.8214
Photo level, GoogLeNet 0.8016 0.7334
Photo level, ResNet 50 0.7929 0.7364

Table 2: Training and dev performance: trained thresholds

1123 shenxiu 0.80953

Figure 11: Test performance and ranking of the challenge.

5.4.2 With threshold training

We would like to further justify our approach of optimize
threshold values for making prediction. Following the ap-
proach introduced we report the same set of performance
in table 2. We observe improvement in almost all perfor-
mance scores: not only the training F1 is improved (which
is for sure since that’s how we optimize the thresholds) but
the validation F1 is improved as well. Therefore we believe
that this approach can indeed help us do a better job in la-
beling.

ResNet gets more benefit from this approach than
GoogleNet does and outperforms the latter. And other
patterns and observations we made previously also hold
here. For testing we will use threshold training and focus
on ResNet-50 model. We expect to obtain a test F1 score
close to our best performance on validation set, i.e, 0.82.

5.4.3 Model ensemble and test performance

We run 3 different ResNet-50s independently. We name
them ResNet-2000, ResNet-2100 and ResNet-2700 after
the number of iterations that hits the optimal validation lost.
We use ensemble of the predictions of the 3 models to be
our prediction on test set. Our submitted predictions got a
F1 score of 0.8095 on the test set, making us ranking the
17" place for this challenge among about 200 competitors.
Note that this ensemble gives us a 0.1% improvement on
test score compared to a single model prediction. This test
performance is close to our expectation (0.82). Some of our
prediction examples are shown in figure 12

6. Discussion and Conclusion

We designed a series of approaches to take the challenge
of doing multi-class labeling of restaurants given their pho-
tos. Our simplification and transformation of the problem,
including propagating labels, combining scores and opti-
mizing thresholds perform well in practice. Our core mod-
els are based on transfer learning and we tried different ar-
chitectures. Some of them indeed worked as expected and

Good for

- il Goodfor Take
ol | - | reservation
b
'Has table ‘Ambience

Figure 12: Some prediction examples: photos of restaurant
and added labels.

became the engine of our model. The performance on test
set we get significantly outperformed the baselines and is
close to the best result ever reported.

There are some topics which we didn’t dive into but
can be very interesting. One is to visualize the neural net-
works and see what kind of features/patterns these networks
learned, since the concepts represented by the training la-
bels are more abstract than some classic image classifica-
tion problems. Another thing is the possibility to refine the
propagated photo labels with trained network and further
improve the business level performance, which is an itera-
tive process and can be computationally very expensive.

References

[1] Szegedy, Christian, et al. ”Going deeper with convolu-
tions.” Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition. 2015. 4

[2] Simonyan, Karen, and Andrew Zisserman. ~Very deep
convolutional networks for large-scale image recogni-
tion.” arXiv preprint arXiv:1409.1556 (2014).

