
Predict attribute labels for restaurants using user-submitted photos

Vinaya Polamreddi
vinaya@stanford.edu

Shubham Gupta
shubhamg@stanford.edu

Abstract

User uploaded photos contain a great wealth of infor-
mation for Yelp. Yelp can provide its users valuable infor-
mation if it can tap into this resource and understand char-
acterisitics of the restaurants they belong to. Using Convo-
lutional Neural Networks which have been proven to have
state-of-the-art performance in many computer vision tasks
including single label image classification, we will analyze
the images belonging to a restaurant and classify the busi-
nesses according to a predefined set of labels. We utilize
transfer learning to solve the task more efficiently and ex-
plore various ways to extend on top of pretrained networks.
We find that using outputs from various layers of a pre-
trained model and building even slightly more complex net-
works on top of pretrained networks results in significant
improvements.

1. Introduction

Yelp has millions of photos uploaded from all around
the world. These pictures can provide valuable information
and insights into the restaurants they are visually describ-
ing. You might want to know if a restaurant is good for a
date or has live music or serves alcohol. Yelp normally gath-
ers these labels as users review the restaurant but this data
can be incomplete and hard to gather. However, we could
probably understand the characteristics of a restaurant by
looking at a few pictures of it as shown in 1.

Using the pictures uploaded to Yelp to automatically
assign labels to the restaurants would be very beneficial.
While a lot can be done with visual data, Yelp wants to first
understand some attributes of each business. In today’s cul-
ture of abundance photos, there are an abundant amount of
photos added to each restaurant. Yelp challenges us to take
this large amount of user-submitted photos and turn into a
description of the restaurant.

We propose to tackle this problem using the deep learn-
ing architecture: Convolution Neural Networks to analyze
the photos belonging to a business and understand the busi-
ness. CNNs have achieved state-of-art performance in many
computer vision tasks such as classification [10] and detec-

Figure 1. Images belonging to a restaurant that identify restaurant’s
attributes

tion [6]. Yelp has used CNNs previously for classifying its
images in different categories [1]. This gave them promis-
ing results and is widely used now. This indicates that the
user submitted photos has a lot of information and insights
if properly tapped.

In this problem, we are using a Kaggle dataset which
consists of businesses with a set of labels and set of images.
It is a multi-instance, multi-label problem where each busi-
ness has many input features (images) and multiple labels.
The input is a business represented by a set of images and
we will use CNNs to output labels associated with the busi-
ness. We explore a few neural network architectures and
transfer learning in tackling this problem.

2. Related Work
Image classification has been a very well studied prob-

lem in the field of computer vision. Conventional ap-
proaches using hand-crafted features followed by classic
classifiers such as random forests o SVMs have been beaten
by deep learning architectures such as Convolutional Neural
Networks (CNN) that automatically learn features. CNN’s
have achieved state of the art performance on many single
label Image classification challenges such as the ILSVRC,
and [10], [7] are the most cutting methods used to solve this
problem. While single label image classification in which

1



each image is assigned a single label from a set of prede-
fined labels has been very well studied; multi-label classi-
fication is still an open problem. Multi-label classification
is a very real problem as many real-life images have more
than one label. There have been many attempts at multi-
label classification. In [2] and [3], the authors formulated
the classification problem as a conditional modelling prob-
lem. Here, they are trying to incorporate the correlation
among different labels along with the relation between im-
ages and labels. There has also been a lot of work on solv-
ing this problem using classifiers and using different image
representations.

In [4], the authors presented a novel Rank minimization
algorithm for solving the multi-label image classification
problem. They modelled this as a problem of completing
unknown label entries in a data matrix made up of training
and testing features. One of the main claims is that it is ro-
bust to caveats like outliers and missing data. None of the
previously described methods use deep learning which we
saw beat the classic classifiers. In this [11], they explore
how the ability of CNN’s to do well on single label clas-
sification problem sheds on why they do poorly on multi-
label classification: implicit assumption in CNN’s of fore-
ground object alignment and interaction between multiple-
objects including occlusion and visibility. [11], proposed an
infrastructure called Hypothesis-CNN-Pooling which uses
the CNN architecture for multi-label classifying. They gen-
erate an arbitrary number of image segments called ob-
ject segment hypotheses using objectiveness detection tech-
niques. They connect each hypothesis with a shared CNN
and aggregate the results from the shared CNN which is
connected to each of the hypothesis to get the final multi-
label classification.

In addition to this problem being multi-label, it is also
multi-instance problem. In [13], they formalize multi-label,
multi-instance learning as where a training example is de-
scribed by many instances and multi-label 2. They con-
tinue to propose two algorithms: MIMLBOOST which uses
multi-instance learning as a bridge and MIMLSVM which
uses multi-label learning as a bridge. In [12], they deep
learning for a lightly supervised setting where they use mul-
tiple instances in a bag that is labeled. In [9], they use a new
formulation to multi-class instance learning by a fully con-
volutional network which accepts inputs of any size, does
not need object proposal preprocessing, and offers a multi-
class pixelwise loss for selecting latent instances. While the
results are interesting, there are still many places for im-
provements before this can become close to state of the art.

Another important finding in training neural networks
is the effectiveness of transfer learning [5]. On new tasks
with small datasets pretrained nets consistently outperform
randomly initialized nets [5], and image representations
learned on large-scale datasets can efficiently be transferred

Figure 2. Multi instance, multi label classification [13]

to other recognition tasks with low data [8].

3. Methods

3.1. Business to Image and back

In this problem, we are trying to assign multiple labels
to a single business based on a set of images representing
each business. In our training set, we know which labels
belong to each business and which images belong to each
business. The first problem we need to tackle is the relation-
ship between the business labels and images. As explored
in our related work, there are a few algorithms that explore
multi-instance learning which is the relationship between
businesses and images. However, these multi-instance al-
gorithms assume that the object can be accurately described
only by all the attributes in the instances; for example: a
picture of a beach can be accurately described only if it has
sand and water [12]. In this dataset, the instances seem
to contribute individually and independently to the label
of the object. As shown in 1, any single attribute for the
business seems to be deducible by a single image; in other
words, no attribute seems to need evidence from multiple
pictures containing various scenes. While this seems like
a multi-instance problem, in reality the instances indepen-
dently provide attributes; therefore, instead of treating the
instances in a bag, we will model this as a single instance
classification problem where each image will separately be
classified. We transfer all of the labels of the business in the
training set to each of the images.

The second problem we face is understanding the re-
lationship between each of the labels. Instead of two or
more characteristics of an image combining to form a la-
bel, we can separately identify each of the attributes of a
business. For example, in a photo of alcohol and dinner
plates, the alcohol can confirm that the restaurant serves al-
cohol and darkly lit photos and fancy plates can confirm that
the restaurant is good for dinner which seem independent
of each other. Multi-label algorithms are especially useful
when labeled data is sparse or in unsupervised settings [11].
In this case, where we have clearly labeled data and the la-

2



bels while related seem to be independently derived from
an image, we believe that using state-of-the-art single label
classification will perform superior to using less effective
multi-label classification algorithms. We will predict each
of the attributes for an image individually using single label
binary classifiers and concatenate the output of each of the
classifiers to get full set of labels for an image.

Once each of the images of a given business has labels
predicted, for each label, we get the proportion of images
for that business that were classified as having that label and
take all the labels past a certain threshold to be the labels
of the given business. The threshold is a hyperparameter
determined using the validation set.

3.2. Image Classification

3.2.1 Transfer GoogleNet trained on ImageNet

Transfer Learning has been proven to be an effective way
to tackle classsification problems where the features of one
task can be generalized to another and the data set is sparse.
Due to sparsity of training data and a shortage of com-
putation resources for our problem, transfer learning and
fine-tuning minimal parameters seemed the best way to ap-
proach this task. For all of our methods, we used the
GoogleNet architecture with weights pretrained for the Im-
ageNet challenge as the first building block of our networks.
We used the output of 3 different layers from the GoogleNet
in various ways: Inception 4a, Inception 4d and Inception
5b layers as shown in Figure 8. All these layers correspond
to the dense layers before the 3 output and loss layers of
the GoogleNet. We used the BVLC Caffe Deep Learning
Framework from UC-Berkeley and BVLC Model Zoo as
well as Apollocaffe to implement the following networks.

3.2.2 M1: Fully Connected layer on Inception 5b out-
put

In the first model as shown in fig 4, we trained a network
consisting of a single fully connected layer using the Incep-
tion 5b output as input. The fully connected layer takes an
input vector of size: N * 7 * 7 * 1024 where N is the batch
size, and outputs a vector of size: N x 2 x 1 x 1. We used
a softmax activation and loss to train the fully connected
layer. For each of the 9 attributes, we trained a separate net-
work which performed binary classification on the image
for each label.

Softmax Loss is defined as:

Li = − log

(
efyi∑
j e

fj

)
(1)

or equivalently

Li = −fyi
+ log

∑
j

efj (2)

Figure 3. Google net output layers we used as input for other meth-
ods

Figure 4. Training a fully connected layer on top of Inception 5b
output

3.2.3 M2: Ensemble using inputs from outputs of var-
ious GoogleNet layers

In the next model, we ensemble the output of 3 nets as
shown in fig 5 The three nets take in as input the output
of Inception 4a, Inception 4d and Inception 5b layers re-
spectively. They each have a single fully connected layer
with a softmax activation and loss trained on the dataset for
15 iterations. The fully connected layers output a vector of
size: N x 2 x 1 x 1 each of which are then ensembled by
taking the majority label for each input image. We trained a
separate binary classification network as described for each
of the 9 attributes.

3.2.4 M3: Adding convolution layers on Inception 5b

In the next model[fig

3



Figure 5. Ensemble on top of trained fc layers on top of each of
the GoogleNet layers

Figure 6. Training a net (pool-cnn-fc-fc) on top of Inception 5b
output

3.2.5 M4: Training for all attributes and using mutli-
ple GoogleNet layers as input

In our final model, we again use all three output layers from
the GoogleNet. We add a Convolution layer on top of each
of Inception 4a, Inception 4d and Inception 5b layers, Con-
cat the outputs, and add a fully connected layer on top for
each attribute with a softmax activation and loss. The con-
volution layers with input from Inception 4a and Inception
4d filters have 1024 filters of 2 x 2 dimension with stride
1, and the convolution layer with Inception 5b output as in-
put had 1024 filters of 1 x 1 dimension with stride 1 for
Inception 5b. Each of the layers resulted in an output of di-
mension: N x 1024 x 7 x 7 which are then concatenated to
output vector of size: N x 3072 x 7 x 7. Each of the 9 fully
connected layers take the output of the Concat layer and re-
sult in N x 2 x 1 x 1 output vector each to represent each
attribute. This can be seen in figure 7. A softmax activation
and loss layer sits on top of each of the fully connected lay-
ers and the 4 layer network is trained for 15 iterations. This
network trains taking every attribute into account instead of
a separate network for each attribute as all the other meth-
ods did.

3.2.6 Reasoning behind the network designs

We used the three different output layers of the GoogleNet
to be able to use the different features captured at each
level in our classifiers. Especially since the network wasn’t
trained entirely on this dataset, we wanted to experiment
with whether higher level features exhibited earlier in the
network would be better or supplemental to the finer grained

Figure 7. Training a net (pool-cnn-fc-fc) on top of Inception 5b
output

features near the end of the network. By having two net-
works build upon just the output of the final Inception layer
(Inception 5b) and two networks build upon the output of
all 3 layers , we can get a sense of whether the higher level
features that the network optimizes for in earlier levels help
especially in these cases of transfer learning.

In addition to using the various output layers, we also
have networks on top of the GoogleNet of various depths
and layers to get a sense of if training just a single fully
connected layer on top vs a Convolution layer with a fully
connected layer makes a significant difference.

The final network trains not based on each attribute but
based on the loss of all the fully connected layers combined.
While, this is still single label classification as the earlier 3
networks, it considers all of the labels in training at a time
rather than one at a time which would help us compare train-
ing separate binary classifiers vs having multiple fully con-
nected layers each outputing a binary vector.

4. Dataset and Features
We are using the dataset provided by Yelp in one of

the kaggle challenge [https://www.kaggle.com/
c/yelp-restaurant-photo-classification/
data]. The training set contains around 200K images
corresponding to a set of 2000 businesses. Figure 8 shows
the distribution of photos across all the business. It can be
seen that the photos are very unevenly distributed across
all the businesses. It also provides a set of attributes/labels
that belong to each of the businesses. But, there is no direct
mapping provided from photos to their corresponding
labels. There are a total of 9 different attributes in this
problem:
0: good for lunch
1: good for dinner
2: takes reservations
3: outdoor seating
4: restaurant is expensive
5: has alcohol

4

https://www.kaggle.com/c/yelp-restaurant-photo-classification/data
https://www.kaggle.com/c/yelp-restaurant-photo-classification/data
https://www.kaggle.com/c/yelp-restaurant-photo-classification/data


Figure 8. Distribution of photos across businesses

Figure 9. Distribution of Attributes across Businesses

6: has table service
7: ambience is classy
8: good for kids

These labels are annotated by the Yelp community. As
you can see from figure 9 that labels are not very uni-
formly distributed across all the businesses which would
make training a bit harder. In the training set, photos have
dimension either of 350 × 500 or 500 × 350. We prepro-
cessed the images by resizing them to a uniform size of
224× 224.

To better deal with the unequal distribution of the pho-
tos and to alleviate computational resource constraints, we
subsampled the data to include only 50 images from each
business. Any business with less than 50 images was not
used. This resulted in 1171 businesses with a combined
58500 images. We used 80-20 split for training and vali-
dation. With 934 businesses (46850 images) as the training
set, and 234 businesses (11700 images) as the validation set.

For the purpose of our algorithms, we would treat the
matrix representation of each of the images as an input to
the pretrained Googlenet [10]. A forward pass over a part of

this pretrained model, then gives us a set of features which
we use to train our models. This is described previously in
the Methods section.

5. Experiment and Results

5.1. Evaluation Metrics

We will be considering 2 metrics for measuring the
performance of our method.

1. Accuracy: This is the fraction of data for which the
algorithm correctly predicted if it can be tagged with
the attribute or not. For photos, we would be analyzing
the accuracy separately for each of the attributes over
both training and validation set. For business we would
be considering the mean accuracy, i.e., the fraction of
labels for which we correctly predicted the outcome.

2. F1-Score also known as example-based F-measure.
This scores measures accuracy using the statistics pre-
cision and recall. Precision is the ratio of true positives
to all predicted positives. Recall is the ratio of true pos-
itives to all actual positives. Lets say the true positive
is denoted by ’tp’, false positive as ’fp’, false negative
as ’fn’, precision as ’p’ and recall as ’r’. The F1 score
is given by:

F1 = 2pr
p+r where p = tp

tp+fp , r = tp
tp+fn

This metric gives equal weightage to both precision
and recall and will try to maximize both precision and
recall simultaneously. This would favor a moderately
good performance on both over extremely good per-
formance on one and poor performance on the other.
Again for photos, we would evaluating this metric sep-
arately for each of the attributes to understand the per-
formance of our classifiers and find insights about in-
dividual attributes. For businesses we would be cal-
culating a mean F1-score as suggested on the Kaggle
website. Suppose we have the following ground truth
and predicted labels for a set of 4 businesses:
y true = [[1, 2], [3, 4, 5], [6], [7]]
y predicted = [[1, 2, 3, 9], [3, 4], [6, 12], [1]]
We calculate the the F1 score for each business. The
”true positives” are defined as the common labels in
ground truth and predicted label set for a given busi-
ness. False positives are predicted items that aren’t
real, and false negatives are real items that aren’t pre-
dicted. Then we average the F1-score over all busi-
nesses. For the above example, we will get a mean
F1-score of 0.53

5



5.2. Experiments

For each of the methods we used a mini-batch gradient
descent approach using momentum update to learn the net-
work parameters. We also clipped the gradients to make
sure that loss doesnt go out of bounds. We used a batch
size of 50. From various papers and discussion in lectures,
we have observed that batch sizes of 32 or 64 are the most
common choice. We used 50 instead of 64 or 32 as this was
giving us a trade-off between the memory usage and run
time of the update algorithm. For method 1, we started with
a low learning rate of 0.05 but it was not sufficient to make
the loss converge to 0 even for a small dataset of 10 images.
Then, we increased the learning rate of 0.2 and added a mo-
mentum of 0.8 which made convergence much faster. The
results showed that this method is not performing well so
we didn’t perform any further experiments on this.

For Method 3 and Method 4 we started with the learn-
ing rate from method 1 and varied it ranging from 0.1 to
0.8. We also varied the momentum from 0.7 to 0.9. We
observed that extreme hyperparameters lead to a drop in the
performance, though it was not very significant. In the next
section we would be presenting only the best result corre-
sponding to a learning rate of 0.3 and momentum of 0.8. We
also varied the value at which we are clipping the gradients
and found good results for 0.25.

For method 2, we used the learning rates from previous
methods and didn’t do any further experimentation due to
significant amount of training time for just 1 set of hyper-
parameters.

All the experiments were trained on GeForce GTX 680
GPUs. Methods 1, 3 and 4 each took around 8-10 hours to
run once on a training set of 47k images. Method 2 involved
9 different CNNs took and hence took upward of 20 hours
for 1 complete run of 30 iterations over the ehole dataset.

5.3. Results

5.3.1 Image classification

Let us first examine the classification accuracy of our im-
ages.

Figures 10 and 11 shows the performance of different
methods on the validation set described in Section 3 for
each of the 9 attributes. Upon analyzing the accuracies
and F1 scores based on attributes, we can see that some at-
tributes are easier to classify than others. Attributes 5 and
6 have high accuracy and F1 scores followed by 1, 2, 8
which are has alcohol, has table service, good for dinner,
takes reservations and good for kids respectively, while at-
tributes 0,4 and 7 had high accuracies and low F1 scores
which are attributes: good for lunch and restaurant is ex-
pensive respectively. Upon further investigation of why the
F1 score is low, we saw that the recall was low for these at-
tributes which suggest that our methods are predicting much

Figure 10. Validation Accuracy per attribute over images

Figure 11. Validation F1 score per attribute over images

Figure 12. Training Accuracy per attribute over images

less than what it should be predicting. This can be due to
relatively lower fraction of positive examples for these at-
tributes in the dataset as shown in figure 9.

While most of the methods did similar to other methods
in each attribute, Method 1 was significantly lower than the
rest of the methods for several of the attributes which seems
to indicate that a single fully connected layer using only the
end output isn’t sufficient to capture as many features of the

6



Figure 13. Training F1 score per attribute over images

Figure 14. Overall training accuracy for business label classifica-
tion over various thresholds

Figure 15. Overall Validation F1 Score for business label classifi-
cation over various thresholds

image as the other methods.

5.3.2 Business classification

Figures 14 and 15 shows the overall performance of all the
4 methods for the validation set. From these graphs, we can

Figure 16. Overall Validation accuracy for business label classifi-
cation over various thresholds

Figure 17. Overall Training accuracy for business label classifica-
tion over various thresholds

Table 1. Performance of Different Methods over Validation Set
Method Validation Training

Max F1 Score Max Accuracy Max F1 Score Max Accuracy
M1 0.48 0.58 0.73 0.75
M2 0.71 0.68 0.93 0.95
M3 0.7 0.7 0.79 0.81
M4 0.68 0.67 0.99 0.99

compare how the methods do overall in classifying busi-
nesses. Method 1 does significantly worse than the others
at every threshold in both accuracy and F1 score which is
in accordance to our previous analysis and it shows that
we need better and bit more complex networks to correctly
model this classification problem. Another interesting ob-
servation is that even the method 4 which has F1 scores in
a similar range to the other two methods for image label
prediction, is consistently performing worse than Method
2 and Method 3 in both accuracy and F1 score. However,
Method 4 has the highest training accuracy and mean F1
score (approx 1) which is also much more as compared to
its validation accuracy. This shows that Method 4 is over-
fitting on the training set and indicates that using a better
regularization such as a dropout layer would have helped in

7



enhancing its performance on the validation set.
The validation of both Method 2 and 4 that use fea-

tures from the 3 different layers in the pretrained net is
much lower than the training which implies that pulling
features from multiple layers is causing overfitting which
intuitively makes sense. If we compare the training accu-
racies of these two methods against a similar network us-
ing only the final layer features, it seems pulling features
from multiple layers of the net instead of just the final layer
significantly improves training performance based on evi-
dence Method 4 having around 20%+ lead over Method 3
and Method 2 having 20% lead over Method 1. This calls
for better regularization methods while using a more com-
plex network/higher-dimensional feature space.

6. Conclusion and Future Work
We took a complex multi-instance, multi-label classi-

fication problem and simplified it with reasoning through
examining the dataset into a single label, single instance
classification. Then to save computation resources and re-
duce the bias among businesses, we subsampled the dataset
by choosing 50 random images per business and used only
around a quarter of the original training set. We then used
transfer learning to use the learnings from a network pre-
viously proven to work very well on a different dataset
[10]. With these simplifications and methods, we achieved
around 73% validation accuracy and a F1 score of 0.71.

We saw from our results that adding a little complexity
even as simple as training a convolutional layer and a fully
connected layer instead of just a fully connected layer on
top of the pretrained network significantly improves perfor-
mance. Additionally, pulling features from multiple lay-
ers through a pretrained network also seems to help signif-
icantly, although we need to employ proper regularization
techniques to avoid overfitting.

We used many simplifying techniques to solve a complex
problem and performed with decent results. If we want to
achieve much better accuracy, there are many easy avenues
of improvement. Using more data to train, training for more
iterations are very simple ways of improving. More impor-
tantly, tackling the problem without some of the simplifica-
tions might improve the overall accuracy. Comparing how
the same network architectures do with multi-label classifi-
cation instead of several binary classifiers would be interest-
ing. Additionally, training the entire GoogleNet or at least
a larger chunk of the network instead of freezing it with
weights trained for another dataset would be a definite next
step.

For this image classification problem, there are many
ways to use CNNs to solve the problem some of which in-
clude complex networks to try to improve a particular as-
pect of the problem such as multiple instance or multi-label
but even starting with an established pretrained network, us-

ing transfer learning and training small networks on top are
great ways to make headway at the problem and provide a
good foundation to add more specific techniques on top of
to incrementally increase accuracy hereafter.

References
[1] How we use deep learning to classify business photos.
[2] K. Balasubramanian and G. Lebanon. The landmark selec-

tion method for multiple output prediction. arXiv preprint
arXiv:1206.6479, 2012.

[3] W. Bi and J. Kwok. Efficient multi-label classification with
many labels. In Proceedings of the 30th International Con-
ference on Machine Learning (ICML-13), pages 405–413,
2013.

[4] R. S. Cabral, F. De la Torre, J. P. Costeira, and A. Bernardino.
Matrix completion for multi-label image classification. In
NIPS, volume 201, page 2, 2011.

[5] D. C. Cireşan, U. Meier, and J. Schmidhuber. Transfer learn-
ing for latin and chinese characters with deep neural net-
works. In Neural Networks (IJCNN), The 2012 International
Joint Conference on, pages 1–6. IEEE, 2012.

[6] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587,
2014.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[8] M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Learning and
transferring mid-level image representations using convolu-
tional neural networks. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1717–1724, 2014.

[9] D. Pathak, E. Shelhamer, J. Long, and T. Darrell. Fully
convolutional multi-class multiple instance learning. arXiv
preprint arXiv:1412.7144, 2014.

[10] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015.

[11] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao, and
S. Yan. Cnn: Single-label to multi-label. arXiv preprint
arXiv:1406.5726, 2014.

[12] J. Wu, Y. Yinan, C. Huang, and Y. Kai. Deep multiple in-
stance learning for image classification and auto-annotation.
In Computer Vision and Pattern Recognition (CVPR), 2015
IEEE Conference on, pages 3460–3469. IEEE, 2015.

[13] Z.-H. Z. M.-L. Zhang. Multi-instance multi-label learning
with application to scene classification.

8


