
Game Engine Induction with Deep Networks

Dave Gottlieb
Stanford University

Department of Philosophy
dmg1@stanford.edu

Abstract

A game engine is a probabilistic generative process,
which produces a stream of outputs based on inputs and
some hidden state. In this paper, I consider learning the
transition and output functions of such a process using only
input and output streams – with no access to hidden states.

I adapt two different network architectures from video
classification to learn the outputs and transitions of the
Pong game engine. The second architecture combines re-
currency with spatial convolutions in the same layers, and I
analyze the spatio-temporal receptive fields of those layers
with the concept of “speed of light.”

1. Introduction

I present two models to learn the output and transition
functions of the Pong game engine. A game engine can be
treated as a probabilistic generative process, which, at each
time step, given a hidden state, qt, and a control input, pt,
produces a screen output, yt. Output and transition func-
tions, f and g, define the process’s behavior over time:

f(qt, pt) = P (yt|qt, pt)
g(qt−1, qt−1) = P (qt|qt−1, pt−1).

The task is to learn this behavior while treating the game
engine as a black box – without ever having access to the
hidden states, Q. In practical terms, the models take as in-
put the sequence of previous screen outputs, Y<t, and con-
trol inputs, P≤t. They then use one of two convolutional
network architectures to output a prediction of the next out-
put frame in the sequence. Both models are able to solve
this task well enough to continuously predict a stream of
outputs, using sampled model outputs as prediction inputs.1

1In my submission, I include source code for both models as well as
for the Pong game engine, and code used to generate training and test data.
Trained weights for the model are available on request.

I evaluate two main models for this task. Model 1 is a
convolutional network architecture similar to early fusion
video approaches, where a finite window of previous screen
outputs are “stacked” in the channels of the input to a 2D
convolution. Model 1 is accurate but has the shortcoming
of being in-principle incapable of learning long-distance de-
pendencies beyond its finite window size. To account for
this, I devised Model 2, which combines 2D convolutions
with a recurrent architecture. The first layers of Model 2
are LSTM-RCNs, recurrent units which use spatially lo-
cal convolutions instead of fully-connected transformations,
similar to the proposal of [1]. This allows the early stages
of Model 2 to preserve spatial and temporal locality, while
also learning long-distance dependencies. Model 2 is also
accurate, although its computational demands are greater
than Model 1’s.

In addition to reporting these results, I investigate the re-
ceptive fields of LSTM-RCN output elements, whose spa-
tial extent increases at a fixed rate the further back in time
you go. I show that this imposes a limit on the spatial ve-
locity of motion patterns that can be learned by such a unit.
By analogy to the value c in cellular automata, I call this the
speed of light[2]. I believe this is the first time this prop-
erty of recurrent convolutional units has been investigated
in depth.

Although Pong in particular is a toy problem, and the
narrow task of game engine induction has little practical
application, there are deep similarities to important prob-
lems. For example, just as deep Q learning results for
video games have practical applications in model-free rein-
forcement learning generally[3], game engine induction is
relevant to model learning for model-based reinforcement
learning. Another possible application area is video genera-
tion. Generating video streams with control inputs could be
used to procedurally generate videos with character move-
ments, like dancing or sports.

2. Related work
The methods I use in Model 1 and Model 2 both reflect

approaches that have been used in video classification. The

1



convolutional layers of Model 1 are similar to the “early
fusion” architectures for video classification described in
[4]. The LSTM-RCN layers of Model 2 are based on the
GRU-RCN architecture described in [1], also designed for
video classification. These layers extend the basic idea
of recurrent networks using backpropagation through time
(BPTT)[5], and in particular on the LSTM design presented
by [6].

Little work has directly addressed the problem of pre-
dicting future behavior of a game engine. [7] takes the
approach of splitting screen output into patches and using
patchwise Bayesian methods to estimate output distribu-
tions over each patch. This has the advantage of reducing
the complexity of the problem compared to the full joint
distribution. However, their model used knowledge of the
game engine and its states, rather than treating it as a black
box. Furthermore, it had no capability to learn non-local
dependencies among different screen patches – not relevant
in Pong but relevant to game engine induction in general.

Finally, a similar approach to roughly the same prob-
lem is described by [8]2. They are able to predict output
for several Atari games in the Arcade Learning Environ-
ment[9]. They demonstrate two different encoder-decoder
architectures. The first begins with 2D convolutions across
stacked sequential frames, similar to my Model 1. The
second takes in only one frame at a time, but introduces
a fully-connected LSTM layer after the initial convolutions.
There are two major architectural differences between their
approaches and mine (to be described in full detail below):

1. Their models use a decoding network of “deconvolu-
tions” (aka “upconvolutions”) before producing out-
put.

2. Their recurrent model uses a fully-connected recurrent
layer, whereas my Model 2 uses spatially local recur-
rent convolutions.

Although my models are able to produce good results
without a deconvolutional decoder network, this may be
partly owing to the simplicity of Pong relative to Atari
games. However, I speculate that my spatially local re-
current layers are able to compensate to some extent for
not having a decoder network, because they enforce spatial
locality on learned temporal dependencies. In prototypes
for this project, I trained fully connected LSTM models on
top of spatial convolutions, just like [8], and they were not
really able to reconstruct the spatial structure of the Pong
frames. Adding a deconvolutional decoder network perhaps
could have solved this problem, but in my experiments it
was sufficient to use spatially local recurrent layers instead.

2Unfortunately, I only learned about this paper during the poster session
this week, limiting my ability to incorporate its work into my project.

Figure 1. Overall pipeline for both models.

3. Methods
Per above, the Pong game engine behavior is character-

ized by output and transition functions, f and g respectively.

f(qt, pt) = P (yt|qt, pt)
g(qt−1, qt−1) = P (qt|qt−1, pt−1).

Since our models never have access to the internal state
q, they estimate f and g conjointly:

(f̂ ◦ ĝ)(Y<t, P≤t) ≈ P (yt|Y<t, P≤t)

Both models are characterized by training on sequences
of output frames and control inputs, with prediction targets
of subsequent output frames (Figure 1).

Frames produced by the Pong game engine are 32×32×
1 bit, so reconstructing them can be characterized as find-
ing “on” or “off” values for each of 32 × 32 pixels. Ac-
cordingly, predicted output frames are 32 × 32 × 1 pixel
arrays. Both models use a softmax output function to pro-
duce a probability estimate ∈ (0, 1) for whether each pixel
is active. Performance is then evaluated using a weighted
average pixel-wise crossentropy loss,

L = − 1

32× 32

∑
i

[γyij (log yi) + (1− yij (log(1− yi))],

where i indexes the pixels of the output array, yi is the
predicted value for pixel i, yij is the true value for pixel i,
and γ is a weight factor used to weight the relative impor-
tance of “on” versus “off” pixels (γ = 14 in the results be-
low). The models are trained by backpropagating this loss
to the parameters.

Both models are trained with minibatch gradient descent
using the Adam algorithm[10].

2



Figure 2. Core Model 1 architecture with some predicted frame
outputs.

Both models are implemented in Python using the
Numpy[11] and Theano[12] frameworks and trained on
NVIDIA GRID K520 GPUs.

3.1. Model 1

Model 1 is an early fusion video model. Input is 4 con-
secutive frames of Pong screen output, {yi}i=−4,...,−1, and
one frame of control inputs, p−1. These are then used to
predict the next frame of Pong screen output, y0. The input
frames are combined into a 32×32×4 stack that then forms
the input to a 2D convolution layer (the core architecture is
depicted in Figure 2). (All convolutional filters are 3 × 3.)
ReLU activation is then applied.

The convolved inputs are then passed through a second
convolutional layer, followed by another ReLU activation,
and then 2× 2 max pooling, for robustness to degraded in-
puts. The output of the pooling layer is a 16×16×16 filters
spatially local activation volume. This volume is then un-
rolled into a (16×16×16) = 4096-dimensional feature vec-
tor, which is concatenated with the 2-dimensional vector of
control inputs, p−1. This concatenated feature vector forms
the input to a 512-unit fully connected hidden layer, using
the ReLU activation function. Per-pixel raw scores for the
output frame are then calculated by a final fully connected
transformation with (32 × 32) = 1024 output values. Fi-
nally, an element-wise sigmoid (logistic) transformation is
applied to give the “on”-“off” probabilities for each pixel.

3.2. Model 2

Model 2 is a recurrent convolutional network featuring
“long short-term memory recurrent convolutional network”
(LSTM-RCN) units in the early stages of processing, simi-
lar to the “gated recurrent unit recurrent convolutional net-
work” (GRU-RCN) units described in [1]. After the LSTM-
RCN layers process screen input, 2 × 2 max pooling is
applied. Activations are then unrolled and concatenated
with control inputs. The resulting vector is then fed into
a fully-connected LSTM (not LSTM-RCN) unit. Per-pixel
raw scores for the output frame are then calculated by a fi-
nal fully connected transformation with (32 × 32) = 1024

Table 1. Architectural details for Model 1.

Layer Activation volume

Stacked screen input 32× 32× 4

CONV1 32× 32× 8 filters

RELU

CONV2 32× 32× 16 filters

RELU

POOL (2× 2) 16× 16× 16 filters

UNROLL and CONCATENATE 4096 + 2 control inputs

FC1 512 hidden units

FC2 1024 raw scores

SOFTMAX 1024 “on-off” probabilities

output values, and “on”-“off” probabilities are obtained by
applying an elementwise sigmoid transform.

During training, Model 2 processes an input window of
8 consecutive frames at a time, maintaining hidden and cell
states at each LSTM or LSTM-RCN layer. At each time
step, the model emits a prediction for the next frame. All
8 such predicted frames are then compared to the true out-
put frames (which are the same as the input sequence, but
shifted one time step ahead). Using the BPTT algorithm,
the loss at each time step is used to update the parameters
at all previous time steps. Using this training schedule, the
model is able to learn any temporal dependencies so long as
they occur within an 8-frame window in the training data.
In online prediction, the model can handle long-term depen-
dencies of indefinite length, but the dependencies must be
seen in the training data within the 8-frame window3.

Below, I describe the new LSTM-RCN units in some de-
tail, with particular attention to the extent in space and time
of their receptive fields.

3.2.1 LCTM-RCNs

LSTM-RCNs are recurrent units, similar to simple recurrent
neural network (RNN) units, that maintain an internal state
across time-steps, while processing time series inputs. They

3By analogy, a text-prediction LSTM can learn the rule that “(” must
be followed by “)” no matter how many characters there are in between – a
dependency of indefinite length. But in order to learn that rule, its training
data must include “(” followed by “)” within its finite window for BPTT.

3



Table 2. Architectural details for Model 2.

Layer Activation volume

Screen input 32× 32× 1× 8 time-steps

LSTM-RCN1 32× 32× 4 filters×8 time-steps, hidden state
32× 32× 4 filters×8 time-steps, cell state

LSTM-RCN2 32× 32× 8 filters×8 time-steps, hidden state
32× 32× 8 filters×8 time-steps, cell state

POOL (2× 2) 16× 16× 8 filters×8 time-steps

UNROLL and CONCATENATE (2048 + 2 control inputs)× 8 time-steps

LSTM 512 hidden units×8 time-steps

FC 1024 raw scores×8 time-steps

SOFTMAX 1024 “on-off” probabilities×8 time-steps

Figure 3. Core Model 2 architecture with some predicted frame
outputs.

do this by, at each time step, incorporating a “hidden state”
based on previous time steps of processing. In this way,
at each time step, the unit is not only emitting outputs, but
transmitting hidden state information to future time steps.
Thus, at each time step, the unit potentially incorporates in-
formation from all previous time steps. This architecture
has proven effective at learning complex relationships over
long temporal distances in time series data, for example
syntax and semantics of text and source code[13].

LSTMs are a variation on the general recurrent architec-
ture which introduce a “cell state” vector in addition to the
hidden state. This innovation allows the model to special-
ize, training one set of parameters to pass information to fu-
ture time steps and another set to pass information forward
in the network (at a given time step). LSTMs are known to
perform better than plain RNNs.

LSTM-RCNs introduce an additional variation to the ba-
sic LSTM architecture. An LSTM-RCN transforms inputs
at each time step, and combines them with previous time-
step hidden and cell states to produce new hidden and cell
states. The difference from basic LSTMs is that each of
these transformations is a spatially local 2D convolution
rather than a general (“fully connected”) linear transfor-
mation. Concretely, the computations performed by the

LSTM-RCN are as follows:

ai = Xt ∗Wxi + bxi

af = Xt ∗Wxf + bxf

ao = Xt ∗Wxo + bxo

ag = Xt ∗Wxg + bxg

Ct = σ(af ) · Ct−1 + σ(ai) · tanh(ag)
Ht = σ(ao) · tanh(Ct)

where ∗ stands for the 2D convolution operator, · stands
for elementwise multiplication, Xt is the input volume
at time t, Ct is the cell state, Ht is the hidden state,
and Wxi,Wxf ,Wxo,Wxg, bxi, bxf , bxo and bxg are learned
weight and bias parameters. Since the inputXt is an image,
and Ct and Ht are computed by transformations that pre-
serve spatial locality, Ct and Ht are activation maps over
the spatial structure of the input image Xt, along with the
inputs at previous time steps.

Accordingly, the LSTM-RCN architecture should allow
units to pass information through time in a way that is also
spatially local4. In Model 2, we exploit this by feeding one
frame of Pong screen output in at each time step. As each
frame is fed in, the internal states of the LSTM-RCN units
update to reflect information from that frame, as well as all
previous frames. Over time, the model should learn trans-
formations to preserve all previous-frame information that
is relevant to future outputs, and incorporate that into its
predictions.

3.2.2 LSTM-RCN receptive fields and the speed of
light

Just as the output elements of 2D convolutions have re-
ceptive fields that can be characterized in terms of space,
LSTM-RCN output elements have receptive fields that can
be characterized in terms of space and time. As we will see,
this has the effect of imposing a speed of light or speed limit
on the spatial motions that can be learned by the LSTM-
RCN.

In an ordinary 2D convolution, any cell of its output vol-
ume is computed from a spatially contiguous region of its
input volume, called its receptive field. In the 3× 3 convo-
lutions used in both Models 1 & 2, a single cell of output
volume has a receptive field of 3 × 3 input volume cells.
In other words, a given output volume cell depends only on
the 3 × 3 input cells in its receptive field – it can’t incor-
porate any information from elsewhere in the input volume.

4A prototype architecture using basic LSTMs instead of LSTM-RCNs
succeeded in learning some dependencies across time, but failed to re-
construct screen outputs that respected spatial locality. This may be at-
tributable to the lack of spatial locality in the fully connected LSTM archi-
tecture.

4



Figure 4. Receptive field for an ordinary 2D convolution. After a
3 × 3 convolution, one cell in the activation volume is computed
from a 3× 3 region called its receptive field.

Stacking 2D convolutions has the effect of giving later con-
volution output cells larger receptive fields in the original
input volume. For example, if (as in Model 1) there are two
stacked 3× 3 convolutions, then:

1. the first output volume cells have 3×3 receptive fields
in the input volume,

2. the second output volume cells have 3 × 3 receptive
fields in the first output volume, and

3. accordingly, the second output volume cells have 5×5
receptive fields in the original input volume,

because they draw from the receptive fields in the input
volume of all of the first output volume cells in their own
receptive fields.

Now extend this thought to the case of LSTM-RCNs,
which can be thought of as convolutional layers stacked in
time. An LSTM-RCN hidden state, H0 is created by adding
together a convolution over an input image, X0 with con-
volutions over the previous hidden state and cell state, H−1

and C−1. Accordingly, a cell in H0 has a receptive field of
3×3 in the input imageX0, and a receptive field of 3×3 in
the previous hidden state and cell state, H−1 and C−1. By a
similar argument, a cell in H−1 or C−1 has a receptive field
of 3 × 3 in the previous input image, X−1, and receptive
fields of 3 × 3 in the further previous hidden state and cell
state, H−2 or C−2.

In other words, a cell in the hidden unit has larger spatial
receptive fields in input images further back in time, with
the receptive field expanding by one cell in each spatial di-
rection for every time step into the past.

receptive field of H0 cells in X−t = (3 + 2t)× (3 + 2t)

The factor 2 in the 2t term can be thought of as a mea-
sure of how quickly information propagates between spa-
tially separated image regions – in fact, a maximum. In par-
ticular, it stands for the fact that the spatial receptive fields

Figure 5. Receptive field for an RCN convolution. Note that a cell
in the hidden state at time 0 has a 3× 3 receptive field in the input
image and a 3 × 3 receptive field in the hidden state at time -1,
giving it a receptive field of 5× 5 in the input image at time -1.

expand by 1 in each direction in each time step. An event
that occurs in input image cell (0, 0) at time 0 will not be
able to influence hidden unit cell (8, 8) until time 7.

The speed limit on the propagation of information can
be thought of as a speed of light. The receptive fields of a
givenH0 cell, extending back in time to eachX−t, can then
be thought of as that cell’s past light cone.

I will say that a recurrent convolutional unit has speed of
light equal to the rate at which its receptive fields expand
in each direction for each time step in the past. In general,
a LSTM-RCN (or other recurrent convolutional layer) will
have a speed of light equal to 1/2 its filter size (round down)
times its stride in the input image. As I’ve shown, the first
LSTM-RCN layer has a speed of light equal to 1. The sec-
ond LSTM-RCN layer is stacked on top of the first. This
has the effect of increasing both its spatial and temporal ex-
tent. A cell in the second LSTM-RCN layer at time 0 has
a receptive field of 5× 5 in the input image at time 0, as in
the case of stacked 2D convolutions. It has a receptive field
of 9× 9 in the input image at time −1. Accordingly, at the
second LSTM-RCN layer, the speed of light is 2.

A low speed of light corresponds to a tighter constraint
on the model, and a higher degree of parameter sharing over
time within a given spatial region. It should be easier to
train models with a low speed of light, and easier to avoid
overfitting. On the other hand, the speed of light puts a limit
on the model’s expressive power to learn short temporal de-
pendencies over long distances. If the Pong ball could move
10 pixels in a single frame, that would be above the speed of
light for a single-layer LSTM-RCN, and it would be impos-
sible for such a model to extrapolate its motion. An LSTM-
RCN can only learn patterns that are spatio-temporally lo-

5



cal, and the speed of light summarizes what counts as local
in the model.

In Pong, the ball and paddles are strictly limited in their
motion, to a maximum of about 2 pixels per frame, which
is the speed of light for the second LSTM-RCN layer of
Model 2. If our target data was instead something in which
there could be much larger spatial gaps between frames,
then we might need to use a model with a higher speed of
light (although the fully connected layers after the LSTM-
RCN layers are able to learn relationships that are not
spatio-temporally local). However, motion of 2 pixels per
frame is pretty high for most sources of video, so a speed of
light of 2 might be sufficient for many applications.

4. Dataset
For training, I created about 1MM frames of random

Pong data for each model, broken up into sequences of
length appropriate to the model. Each training sequence
is created as follows: initialize the ball and paddles to a
random position, and initialize the ball to a random veloc-
ity. Then, run the game engine for the desired sequence
length, storing each frame produced. Control input streams
are generated using a simple AI algorithm, whereby each
paddle tries to align its height with the height of the ball.

For Model 1, I generated sequences of length 5. The first
4 frames are used as input to the model, and frame 5 is the
prediction target. The control input at frame 4 is also saved
for model input.

For Model 2, I generated sequences of length 9. The first
8 frames are used as input to the model, and the offset time
series of frames 2-9 is used as prediction targets. Control
inputs at frames 1-8 are also saved for model input.

Training on a large number of short, randomly initial-
ized sequences ensures that a wide variety of ball and pad-
dle positions are sampled. In addition, it compensates for
a weakness in the paddle AI. Since both paddles are trying
to align their height with that of the ball, after running for
a dozen frames or so the paddles will be at the same height
and moving in unison. This makes the data ambiguous as to
which control inputs are associated with the movement of
which paddle – both input streams and both paddle move-
ments are identical. Randomly initializing paddle position,
and not giving them time to get in sync, breaks this symme-
try.

5. Results and discussion
After training for 10 epochs on about 1MM frames of

training data, the models show training loss of 7 × 10−4

(Model 1) and 5.0 × 10−3 (Model 2). Recall that this is
a weighted average of pixelwise crossentropy loss in the
output frames, and is bounded below by the plain average
pixelwise crossentropy. So these figures represent a high

Figure 6. Pathological Model 2 outputs. The ball flickers, disap-
pears, and then comes back as a cloud of points.

Figure 7. Activation maps of filters from Model 1, first two layers.
The filters are applied across a temporal window of 4 frames, from
the present at the top to t−4 at the bottom. The temporal gradation
acts as a motion detector.

Figure 8. Activation maps of filters from Model 2, first two layers.
These filters are spatially local as well as temporally recurrent.
Most of the filters appear to be devoted to ball motion.

degree of accuracy. Using an additional 10,000 frames of
set-aside data generated for testing, the models show loss of
4.1× 10−3 (Model 1) and 6.5× 10−3 (Model 2).

The accuracy promised by those loss numbers can be
verified by visually inspecting some predicted outputs: the
overwhelming majority of frames in the training and test
sets are predicted almost completely accurately. Some ex-
amples can be seen in Figures 2 and 3, above. In general,
all of the following are predicted with complete fidelity:

1. Straight-line motion of the ball.
2. Bounces of the ball on the top or bottom of the screen.
3. Motion of the paddles in response to control inputs.

However, running the models online with predicted out-
puts fed back into input, errors are quickly encountered. See
Figure 6 for some examples. I discuss diagnoses and poten-
tial fixes for these problems in the next section.

To understand how the models see the Pong frames, I
have visualized the activation maps of the earlier convolu-
tional layers of both models. I use the technique of [???] to
find the most-preferred input image for each convolutional
filter. The results show us something about how time and
motion is represented in the network – see Figures 7 and 8.

6. Potential improvements
Failures of the model can mostly be attributed to:

6



1. Difficult-to-predict sequences are rare in training data.
2. Errors accumulate when the models are run online,

feeding their output frames back into input.
3. Overfitting.

All three problems can be readily addressed.

Difficult-to-predict sequences. The models learn straight
line motion very well. More difficult for them are (1)
bounces against the paddles, and (2) resetting the ball
to the center of the screen after it goes off the edge.
Both of these scenarios are rare in the training data,
because the ball usually starts in the middle of the field
and only travels a few frames (most randomly chosen
locations are in the middle of the field).

This could be easily fixed by biasing the ball’s start-
ing positions towards the edges a little, and sampling
training data from longer sequences.

Accumulating errors. Since the model is trained on com-
pletely clean true Pong outputs, when it is run on its
own somewhat noisy outputs, it’s not sure what to do,
and the outputs get noisier with time until the signal is
degraded.

This could be fixed by gradually introducing predicted
frames into sequences during training[14].

Overfitting. Model 1 in particular might benefit from
dropout.

More generally, a direction for further research might be
applying the models to a larger class of games. More com-
plex game engines might motivate introducing more com-
plex models, for example by adding decoder networks, or a
variational autoencoder architecture[15].

7. Conclusion

I have demonstrated two architectures for game engine
induction, the problem of learning an underlying game en-
gine process using only streams of inputs and outputs. Al-
though the current models are not as accurate as they could
be, they should be a convincing proof of concept and, I
have argued, improved performance should now be easy to
achieve.

Furthermore, I have contributed to the theory of recur-
rent convolutional units like the LSTM-RCNs of Model 2,
devising the concept of a model’s speed of light. Speed of
light quantifies a model’s spatio-temporal locality. Speed of
light is also a measure of the expressive power of a spatio-
temporally local model – models with higher speed of light
are able to learn a wider class of relationships, which brings
with it both strengths and weaknesses.

References
1. Ballas, N., L. Yao, C. Pal, and A. Courville. 2016.

Delving Deeper into Convolutional Networks for Learning
Video Representations. ICLR.

2. Gardner, M. 1970. Mathematical games: The fan-
tastic combinations of John Conway’s new solitaire game
“Life”. Scientific American 223: 120–123.

3. Mnih, Volodymyr, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
Martin A. Riedmiller. 2013. Playing atari with deep rein-
forcement learning. CoRR abs/1312.5602.

4. Karpathy, Andrej, George Toderici, Sanketh Shetty,
Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. 2014.
Large-scale video classification with convolutional neural
networks. In Proceedings of the iEEE conference on com-
puter vision and pattern recognition, 1725–1732.

5. Mozer, Michael C. 1989. A focused back-propagation
algorithm for temporal pattern recognition. Complex sys-
tems 3: 349–381.

6. Hochreiter, Sepp, and Jrgen Schmidhuber. 1997.
Long short-term memory. Neural computation 9. MIT
Press: 1735–1780.

7. Bellemare, Marc, Joel Veness, and Michael Bowl-
ing. 2013. Bayesian learning of recursively factored envi-
ronments. In Proceedings of the 30th international confer-
ence on machine learning (iCML-13), ed. Sanjoy Dasgupta
and David Mcallester, 28:1211–1219. 3. JMLR Workshop;
Conference Proceedings.

8. Oh, Junhyuk, Xiaoxiao Guo, Honglak Lee, Richard
L. Lewis, and Satinder P. Singh. 2015. Action-conditional
video prediction using deep networks in atari games. CoRR
abs/1507.08750.

9. Bellemare, Marc G., Yavar Naddaf, Joel Veness, and
Michael Bowling. 2012. The arcade learning environ-
ment: An evaluation platform for general agents. CoRR
abs/1207.4708.

10. Kingma, Diederik P., and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. CoRR abs/1412.6980.

11. Walt, S. van der, S. C. Colbert, and G. Varoquaux.
2011. The numPy array: A structure for efficient numerical
computation. Computing in Science Engineering 13: 22–
30. doi:10.1109/MCSE.2011.37.

12. Bergstra, James, Olivier Breuleux, Frdric Bastien,
Pascal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Bengio.
2010. Theano: A CPU and GPU math expression com-
piler. In Proceedings of the python for scientific computing
conference (SciPy). Austin, TX.

13. Karpathy, Andrej, Justin Johnson, and Fei-Fei Li.
2015. Visualizing and understanding recurrent networks.
arXiv preprint arXiv:1506.02078.

14. Bengio, Samy, Oriol Vinyals, Navdeep Jaitly,
and Noam Shazeer. 2015. Scheduled sampling for se-

7

http://dx.doi.org/10.1109/MCSE.2011.37


quence prediction with recurrent neural networks. CoRR
abs/1506.03099.

15. Kingma, D. P, and M. Welling. 2013. Auto-
Encoding Variational Bayes. ArXiv e-prints.

8


