
CS231n Project Report
Deep Learning of Spatial and Temporal Features for Automotive Prediction

Jeremy Morton and Tim Allan Wheeler
Stanford University

Stanford CA, 94305 USA
{jmorton2, wheelert}@stanford.edu

Abstract

Vehicle behavior models and motion prediction are crit-
ical for advanced safety systems and safety system valida-
tion. This paper studies the effectiveness of convolutional
recurrent neural networks in predicting action profiles for
vehicles on highways. Instead of using hand-selected fea-
tures, the neural network is given an image-like representa-
tion of the local scene. Convolutional neural networks and
recurrence allow for the automatic identification of robust
features based on spatial and temporal relations. Real driv-
ing data from the NGSIM dataset is used for the evaluation,
and the resulting models are used to propagate simulated
vehicle trajectories over ten-second horizons. Prediction
models using Long Short Term Memory (LSTM) networks
are shown to quantitatively and qualitatively outperform
baseline methods in generating realistic vehicle trajecto-
ries. Predictions over driver actions are shown to depend
heavily on previous action values. Efforts to improve per-
formance through inclusion of information about the local
scene proved unsuccessful, and will be the focus of further
study.

1. Introduction

Comprehensive risk assessments are required for auto-
motive safety systems before their release. Conducting such
studies often requires real-world driving tests, which are ex-
pensive, time consuming, and subject to safety constraints.
Simulation allows for testing a wide range of scenarios in a
fraction of the time, at marginal cost, and at no risk of in-
jury, but must employ accurate behavior models for traffic
participants in order to produce useful evaluation metrics.
It is critical that the simulated behavior be as representative
of actual driving as possible; otherwise, the risk associated
with a safety system could be significantly over- or under-
estimated.

This paper describes neural probabilistic action models

trained on naturalistic driving data and outlines a general
methodology for constructing such models. The human
driving models produce distributions over actions rather
than maximum likelihood predictions, allowing for stochas-
tic predictions and the evaluation of statistical risk. Con-
volutional recurrent neural networks learn relevant spatial
and temporal features directly from an image-like input, re-
moving the need for feature engineering and automatically
maintaining an internal state over time. The resulting net-
works form generative distributions over driver accelera-
tions and are used to propagate simulated trajectories. Tra-
jectories generated from the resulting models are compared
using a wide range of metrics that quantify their modeling
performance and oscillatory characteristics.

2. Related Work

Many methods have been proposed for learning human
driving models from real-world data. A large body of re-
search exists for car-following models using fixed-form dis-
tributions [1]–[4], which rely on specific response equations
and are limited in their ability to capture fine-tuned vehicle
behavior. In particular, Bonsall, Liu, and Young highlighted
the deficiencies in these models, which they attributed to
safety-related assumptions, and argued that parameters be
learned from real-world data [5].

Recent work has sought to automate the learning of gen-
eral driver models using less restrictive probabilistic mod-
els. Agamennoni, Nieto, and Nebot developed a softmax
classifier over contextual features to identify a context class
with an associated Gaussian acceleration distribution [6].
Gindele, Brechtel, and Dillmann constructed a Gaussian
distribution over acceleration and turnrate using random
forests over contextual features [7]. Wheeler, Robbel, and
Kochenderfer used Bayesian networks to generate predic-
tions over acceleration and turnrate for free-flow, follow-
ing, and lane-change context classes [8]. Damerow and Eg-
gert planned using a probabilistic risk map generated based
on the foresighted driver model [9], [10]. Bahram, Hub-

1

mann, Lawitzky, et al. combined spatio-temporal cost maps
to predict intentions with Bayesian networks for classify-
ing candidate maneuvers with intention-unaware local fea-
tures [11]. These methods produce distributions over future
actions, which can be sampled to propagate driving scenes
in simulation, but rely on hand-selected features that are
limited in their ability to capture nuanced temporal and spa-
tial characteristics.

The use of contextual features in a driving model comes
with several drawbacks. Certain features are useful only in
certain contexts, so effective action prediction with a single
feature set is difficult. Different models have traditionally
been developed for different driving contexts, but this is un-
desirable. Secondly, hand-specified features often include
inconsistencies and corner cases. For instance, driving be-
havior is highly affected by relations to the lead vehicle, but
the definition of lead vehicle begins to break down as an-
other vehicle begins to cross over from another lane, there
is a lane split, or an imminent merge. In the case when
there is no lead vehicle, the contextual features are either:
(1) set to an arbitrary large value, which can lead to fitting
issues for common Gaussian models; (2) imputed, requir-
ing a fair degree of computation and producing unreliable
results; or (3) specially treated as missing or unknown. Fi-
nally, it is difficult to encode the specifics of nuanced driv-
ing interactions, abstract spatial relations, and temporal be-
havior. Driver aggressiveness, small intention-portraying
actions prior to a merge, and overtaking require following
detailed inter-vehicular relations over several frames with
variable duration, and coupled with arbitrary road geome-
try, are extremely difficult to encode.

An ideal action model produces a realistic action dis-
tribution for any possible traffic scenario. Accomplishing
this in a single model using hand-coded features is difficult.
We instead use deep learning to automatically extract spa-
tial and temporal features.

Deep neural networks have recently gained widespread
popularity as universal function approximators, capable
of learning robust hierarchical features from complicated
inputs [12], [13]. Deep neural networks have outper-
formed traditional state-of-the-art methods in fields as di-
verse as image classification [14] and natural language
processing [15]. Their superior efficiency, effectiveness,
and flexibility make deep neural networks highly attrac-
tive. Prior applications of neural networks to automotive
behavior modeling include maximum likelihood prediction
in car-following contexts [16]–[20], lateral position predic-
tion [21], and maneuver classification to provide inputs to a
hidden Markov model [22].

3. Methods
3.1. Problem Statement

Let a scene st define the joint configuration of vehicles
on a roadway at time t. A microscopic probabilistic action
model relates contextual scene information extracted over
H time steps to a probability distribution over the vehicle’s
action over the next time step, p(a(i)

t | st−H:t−1), where
a(i) is the action taken by the ith vehicle at time t. Sam-
pling from the conditional action distribution for each traffic
participant and propagating each vehicle over a small time
step using a dynamics model leads to probabilistically valid
successor scenes.

3.1.1 Vehicle State and Kinematics

We seek to produce probability distributions over vehi-
cle accelerations and turnrates in highway driving scenes.
These models take a general overhead scene representation
centered on the ego vehicle, whose actions are being pre-
dicted, and the local scene configuration. A scene st at time
t is an arrangement of n vehicles ϑ(i), i = 1, . . . ,m on
a roadway topology. Vehicles are described by four-tuples
ϑ(i) = 〈x, y, v, θ〉 containing two global position coordi-
nates, vehicle speed, and heading angle. Given an accelera-
tion at and turnrate ωt, a vehicle’s state can be propagated
over one time step ∆t according to:

vt+∆t = vt + at∆t

xt+∆t = xt + v∆t cos θt

yt+∆t = yt + v∆t sin θt

θt+∆t = θt + ωt∆t

(1)

The model used to predict the acceleration and turnrate
can take many forms. In this work we use deep convolu-
tional neural networks with LSTM layers.

3.1.2 Probabilistic Action Models

An action model defines a probability distribution over a
single vehicle’s action space, p(a(i)

t | st−H:t−1). The ac-
tion variables in this work are the acceleration, a, and turn-
rate ω over the next tenth-second time step, corresponding
to the traditional throttle/brake and steering wheel driving
inputs. Both the acceleration and turnrate were extracted us-
ing finite-difference derivative approximations, for instance
at+1 = (vt+∆t − vt)/∆t. The goal of this work is to learn the
conditional probability distribution p(a(i)

t | st−H:t−1) from
data.

3.2. Network Architecture and Training

This work uses convolutional recurrent neural networks
to obtain parameters to a probability distribution over a ve-

2

hicle’s action space. We introduce an image-like data input
based on an over-head view. Different components in the
image correspond to different types of spatial data. We cur-
rently use three components, analogous to an RGB image,
but more could be used in the future.

The image is extracted in an ego-relative frame and is
fed to the neural network. The image is first processed by a
convolutional neural network, consisting entirely of convo-
lutions, batch normalization layers, and ReLU activations.
This procedure allows for learning spatial features and auto-
matically reduces the image to a smaller feature space. This
reduced feature space is processed through fully connected
recurrent layers. These layers use long-short term memory
units [23] to allow for temporal information to be stored and
used. The final output is a vector of probability distribution
parameters. We are currently using a multivariate Gaussian
mixture model. For n components one needs 6n outputs:
two for the component means, two for the component vari-
ances, one for the component correlation coefficient, and
one for the component weight. A depiction of the network
structure is given in Fig. 1.

image-like input tensor

ConvNet

FC LSTM

distribution parameters

−4 −2 0 2

0

0.1

0.2

0.3

action

pr
ob

ab
ili

ty
de

ns
ity

Figure 1: The neural network structure. An image-like input is processed by a
convolutional neural network and then by a set of fully connected LSTM layers. The
network produces parameters for a probability distribution over the vehicle’s action.

3.2.1 Training the Feature Extractor

The image-like inputs used in this project are of size 32×64
with three color channels. If this representation was used
to directly learn the output action distribution, the network
would need to learn the relevance of all 6,144 input values in
generating its predictions. To simplify the learning task of
the LSTM, a convolutional neural network is used to extract
relevant spatial information from the image-like represen-

tation and encode that information in a lower-dimensional
feature space.

Hinton and Salakhutdinov [24] showed that it is possible
to use a deep neural natework as an autoencoder for data
dimensionality reduction. This technique requires the con-
struction of a network with “encoder” and “decoder” sec-
tions. The encoder section takes the input data and trans-
forms it into a low-dimensional code. The “decoder” sec-
tion takes the low-dimensional code and attempts to recon-
struct the network input.

In our problem, the image-like scene representation is
used as input to the autoencoder network and transformed
via a series of convolutions. Strided convolutions are inter-
spersed within the convolutional layers, which serve to re-
duce the height and width of the data being passed through
the network. At its narrowest point the network consists of
two 8×4 filters, which are then transformed via upconvolu-
tion into an output with the same dimensions as the input.
The loss function used to train the network is given by:

L =
1

2
||I− Î||2 +

1

2
λ||W||2 (2)

where I contains the pixel values from the input image, Î
represents the set of values in the output layer, and λ is a
regularization parameter applied to the network weights W.

Once trained, the narrowest point in the network will
contain a condensed feature vector f ∈ R(4×8×2), which
is smaller than the input image by a factor of 96. If the
values contained in f are able to capture much of the infor-
mation contained in the full input, then they can be used as a
surrogate for the full set of values contained in I. Figure 2a
shows an example of an image-like input from a validation
set, with Fig. 2b showing the reconstructed image produced
by a trained autoencoder network. While there are certainly
many differences between the two images, the reconstructed
image is able to reproduce quite a bit of information from
the original image, such as the approximate location of ve-
hicles and lane markers.

3.2.2 Training the LSTM

The compressed feature representation from a trained au-
toencoder can be used to generate predictions over driver
actions by outputting parameters to a multivariate Gaussian
mixture distribution. While a simple feedforward architec-
ture could be used for this, such a network structure would
only be capable of making predictions conditioned on the
current highway scene. Since driver actions depend not only
on their current surroundings, but also the evolution of those
surroundings over time, we would instead like to condition
our predictions on information from multiple time steps. To
allow for this, we use LSTM layers, which are capable of
tracking temporal variations in their inputs.

3

(a) Input (b) Reconstructed Image

Figure 2: Comparison of input image from validation set
and image reconstructed by autoencoder. The ego-vehicle
is positioned in the top-center of the image.

To train the recurrent layers of the network, an image is
run through the autoencoder, and its compressed represen-
tation is extracted. Since no direct information about ego-
vehicle acceleration and turnrate is contained in the image-
like inputs, we concatenate the previous acceleration and
turnrate to the feature vector, and feed this 66-component
input into the LSTM network. The network output layer
contains values corresponding to weights, means, variances,
and correlation coefficients. The weights are run through a
softmax activation to ensure that they sum to one, the vari-
ances are run through an exponential activation to ensure
that they are positive, and the correlation coefficients are
run through a sigmoid activation to ensure that they take on
a value between zero and one. Covariance matrices can then
be constructed from the variances and correlations.

The LSTM networks are trained to minimize the negative
log-likelihood of the probability density associated with the
true acceleration and turnrate at the next time step:

L = − log p
(
a

(i)
t | st−H:t−1

)
(3)

where a(i)
t is the set of actions taken by vehicle i at time t

and st−H:t−1 is a history of scenes over H time steps. To
test how much the LSTM network learns to use the com-
pressed feature representation in generating predictions rel-
ative to the recent accelerations and turnrates, a separate
LSTM network will be trained that receives only the accel-
eration and turnrates as inputs. By comparing the perfor-
mance of this network relative to the LSTM network with

the full input, we can judge whether spatial information
from the input images is helpful in predicting driver actions.

3.3. Baseline Methods

Four models are compared in our results below, two of
which use deep learning. The static gaussian model is a sim-
ple baseline that predicts a constant Gaussian distribution
over the acceleration and turnrate. It is the naive prediction
in the case that no other information is given.

The linear Bayesian model is a conditional linear
Bayesian network over acceleration, turnrate, and six fea-
tures: vehicle class, length, width, speed, current acceler-
ation, and current turnrate. Vehicle class has three cate-
gories: car, truck, and motorcycle, the labeling of which
is provided in the NGSIM dataset. The model learns condi-
tional univariate normal distributions over each model given
its parents in the Bayesian network:

p (x | pa(x)) =


N
(
wT

1 pac(x) + b1, σ1

)
for pa

(1)
d (x)

N
(
wT

2 pac(x) + b2, σ2

)
for pa

(2)
d (x)

...

where pa
(i)
d (x) is the ith instantiation of the discrete parents

of variable x and pac(x) is the vector of assignments to the
continuous parents.

4. Dataset and Features
4.1. NGSIM Dataset

This work used real-world driving data obtained from the
Next-Generation Simulation (NGSIM) US Highway 101
and Interstate 80 datasets [25], [26]. Each dataset consists
of 45 minutes of vehicle trajectory data collected using syn-
chronized digital video cameras providing the vehicle lane
positions and velocities over time at 10Hz. The US High-
way 101 dataset covers an area in Los Angeles, CA, approx-
imately 640m in length with five mainline lanes and a sixth
auxiliary lane providing highway entrance and exit. The In-
terstate 80 dataset covers an area in the San Francisco Bay
Area approximately 500m in length with six mainline lanes,
including a high-occupancy vehicle lane and an onramp.
Schematics of both locations are given in Fig. 3. These
datasets were collected by the Next-Generation Simulation
program in 2005 to facilitate automotive research and are
freely available.

Traffic density in the datasets transitions from uncon-
gested to full congestion and exhibits a high degree of ve-
hicle interaction as vehicles merge on and off the highway
and must navigate in the nearly-congested flow. This and
the datasets’ complete scene description make these sources
particularly useful for learning vehicle behavior based on
image-like general model.

4

176.2m 212.8m 251.2m

(a) Study Area for Highway 101

128m 374.9m

high occupancy lane

(b) Study Area for Interstate 80

Figure 3: Roadway topology for the NGSIM Highway 101 and Interstate 80 datasets.

The NGSIM datasets provide positions and velocities in
the global frame, and lane boundaries were extracted from
the provided CAD files. Vehicle headings were extracting
assuming zero side-slip. Vehicle positions, headings, and
velocities were smoothed using exponential moving aver-
ages according to the method described by Thiemann et al.
[27].

4.2. Image-Like Input Representation

We use the 4:00 - 4:15 NGSIM dataset component for
I-80, which gives us vehicle positions, estimated bounding
boxes, and velocities at 10Hz. Headings assumed zero side-
slip and were obtained using finite-differences in position,
θ ≈ atan2(yt+∆t − yt, xt+∆t − xt). Positions, velocities,
and headings were smoothed according to the method de-
scribed by Thiemann et al. [27]. Lane markings were ex-
tracted from a CAD file included in the NGSIM dataset.

Each image is set in the ego-vehicle’s body frame, with
the width of the image aligning with the vehicle’s forward
vector. All image components use the same size and projec-
tion parameters, these being the height and width in pixels
(32×64), and the fore, rear, and side distance of the image’s
field of view relative to the ego vehicle (150, 40, & 25m).

Our current input representation uses three components.
The first two components are the velocities of the pixel con-
tents relative to the lateral and longitudinal orientation of
the ego-vehicle, respectively. Empty pixels have zero ve-
locity, and a maximum and minimum threshold are used to
scale the velocity range between 0 and 255. Together these
layers convey the relative positions of vehicles and their ve-
locities, theoretically allowing the network to react to and
reason about interrelations. The third component contains
the roadway markings. This layer allows for arbitrary road-
way structures to be used and avoids the need to add compli-
cated pre-processing concerning lane merging and splitting,
etc. The layer construction is shown in Fig. 4.

Lateral Speed Longitudinal Speed Roadway

image

Figure 4: Image-like input tensor construction. Ego-relative image layers are
extracted containing the lateral and longitudinal velocities and the road markings.

4.3. Feature Augmentation

While it is theoretically possible to train an action model
which only uses the input image, performance was found to
greatly improve by augmenting the input to the LSTM net-
work with the current ego-vehicle acceleration and turnrate.
These augmented values will generally be known whether
the model is being used in simulation or on an autonomous
car platform. This augmentation increases the input feature
vector to have 66 dimensions.

5. Results and Discussion
The CNN was pretrained using the auto-encoding struc-

ture shown in Fig. 5 using Adam with a mini-batch size of
128. The initial learning rate was 0.01, with a decay of 0.95
after every epoch. Training was terminated after five epochs
due to settled loss and time constraints.

The filter depth used for all non-bottleneck layers and
the bottleneck filter depth were separately tuned. The final
model used a general filter depth of 16 and a bottleneck filter
depth of 2, as this was found to converge best. Several other
values were investigated, as was using a fully-connected

5

input 32 64 3

3x3 conv, depth 16, stride 2

3x3 conv, depth 16, stride 2

3x3 conv, depth 16, stride 1

3x3 conv, depth 16, stride 1

3x3 conv, depth 2, stride 2

compressed features 8 4 2

3x3 upconv, depth 16, stride 2

3x3 conv, depth 16, stride 1

3x3 conv, depth 16, stride 1

3x3 upconv, depth 16, stride 2

3x3 upconv, depth 3, stride 2

Figure 5: Network structure for the image-like input autoencoder. Batch
normalization and ReLU activations were used after each layer.

layer in the bottleneck. Other values either did not con-
verge to reasonable loss values or converged to where only
the ego-vehicle’s position was preserved in the image, and
the other vehicles were left out.

The trained CNN was run over the dataset to pre-extract
the 64-dimensional spatial feature vectors. This new dataset
was used to train the LSTM networks, consisting of a vari-
able number of fully-connected LSTM layers. Training
used Adam with a mini-batch size of 10, as traces consist
of 100 frames each. An initial learning rate of 0.005, with a
decay of 0.75 after every epoch seemed to provide the best
results within a small search over hyperparameter values.
The final network used two LSTM layers with 128 cells in
each layer.

5.1. Validation Likelihood

The first evaluation metric is the cross-validated likeli-
hood of withheld data given the learned model. The vali-
dation likelihood serves as the core performance metric in
maximum likelihood model selection [28]; it assesses the
model’s ability to generalize across datasets. A good model
will have a high validation likelihood and will generally also

have a high training likelihood.

Table 1: Validation log-likelihood for each model based on 10% of with-
held data.

Method Validation Log Likelihood

Static Gaussian −31.33
Linear Bayesian 172.74
Pure LSTM 734.33
CNN + LSTM 374.51

The validation likelihoods are given in Table 1. The neu-
ral models show considerably higher validation likelihoods,
indicating stronger generalization. The Pure LSTM model
has the highest likelihood, but was also trained for consid-
erably longer than the CNN + LSTM model due to time
constraints.

5.2. Root-Weighted Square Error

The second validation metric, the root-weighted square
error (RWSE), captures the deviation of a model’s probabil-
ity mass from real-world trajectories [29]. Where the cross-
validated likelihood measures the immediate probability of
successor frames, the RWSE measures the expected square
deviation of particular variables in successor traces, thereby
assessing the model’s ability to act over longer time scales
and with evolving traffic scenes. The RWSE is a natural ex-
tension to the root-mean square error, which is the mean de-
viation of a predicted trajectory from real-world examples.
The models developed in this paper are distributions rather
than maximum likelihood predictors, and it is important that
the overall probability mass correctly reflect the true distri-
bution over agents’ actions. The RWSE for m trajectories
for a predicted variable v at horizon H is:

RWSEH =

√√√√ 1

m

m∑
i=1

∫ ∞
−∞

p(v) ·
(
v

(i)
H − v

)2

dv, (4)

where v(i)
t is the true value in the ith trajectory at time t

and p(v) is the modeled probability density. Because the
integral is difficult to evaluate directly, we use Monte Carlo
integration [30] with n = 5 simulated traces per real-world
trajectory:

RWSEH =

√√√√ 1

mn

m∑
i=1

n∑
j=1

(
v
(i)
H − v̂

(i,j)
H

)2
, (5)

where v̂(i,j)
H is the simulated variable under sample j for the

ith trajectory at the horizon H .
The root-weighted square error for speed versus hori-

zon is given in Fig. 7. All three advanced models perform
equally well for the first one and a half seconds, after which

6

0 1 2 3 4 5
−6

−4

−2

0

2

4

6

Time (s)

a
(m

/s
2
)

(a) Static Gaussian

0 1 2 3 4 5
−6

−4

−2

0

2

4

6

Time (s)

a
(m

/s
2
)

(b) Linear Bayesian

0 1 2 3 4 5
−6

−4

−2

0

2

4

6

Time (s)

a
(m

/s
2
)

(c) Pure LSTM

0 1 2 3 4 5
−6

−4

−2

0

2

4

6

Time (s)

a
(m

/s
2
)

(c) CNN + LSTM

0 1 2 3 4 5
−6

−4

−2

0

2

4

6

Time (s)

a
(m

/s
2
)

(d) True Acceleration Values

Trajectory 1
Trajectory 2
Trajectory 3

Figure 6: Visual comparison of simulated and real trajectories.

they begin to diverge in comparison to the static Gaussian
model. The static Gaussian model, which takes the average
action, overtakes the other models for long horizons. This
suggests that the more complicated models follow inferred
trends that take them farther away from the true trajectory.
The Pure LSTM outperforms the CNN + LSTM in this anal-
ysis.

5.3. Smoothness

The final validation metric concerns the emergent behav-
ior of the vehicles under a particular model through simula-
tion. Likelihood alone is insufficient to capture the perfor-
mance of a stochastic process such as a probabilistic action
model. The model must produce vehicle traces and over-
all driving behavior that is comparable to real-world driv-
ing. An emergent variable is a value extracted from a trace
that is not explicitly fitted in the modeling process, such as
collision frequencies and traffic flow rates. A distribution
over emergent variables can be produced by simulation and
compared to the distribution extracted from real world data.
Matching distributions suggest model accuracy [31].

One such emergent variable is the comfort and smooth-
ness of resulting trajectories, often described by the deriva-
tive of lateral or longitudinal acceleration: jerk(t) = jt =
ȧt [32]. Humans tend to drive smoothly, so accurate driv-

0 1 2 3 4 5

0

2

4

6

8

10

12

Horizon [s]

R
W

SE
sp

ee
d

[m
/s

]

SG
LB

Pure LSTM
CNN + LSTM

Figure 7: The root-weighted square error for speed vs. horizon. Notice
the short-term superior performance for the three advanced models, but the
eventual consistency of the static Gaussian.

ing models should produce similarly smooth trajectories.
We used a simple smoothness measure in the form of jerk
sign inversions. Counting the average number of jerk sign

7

changes across a 10-second trajectory is easy to implement
and gives a clear indication of the trajectory smoothness.

Table 2: Jerk sign inversions on simulated trajectories over the validation
set.

Method Jerk Inversion Count

Static Gaussian 64.38
Linear Bayesian 48.59
Pure LSTM 22.44
CNN + LSTM 19.98

True 14.06

Smoothness results over the validation set are given in
Table 2. From these values it is clear that the LSTM models
generate trajectories with a level of smoothness that most
closely matches the data. This advantage can be largely at-
tributed to the internal state of the recurrent networks, as
they can observe trends in acceleration and turnrate values
that allow them to predict action distributions with a higher
level of certainty. This higher certainty translates into more
narrow distributions, meaning samples drawn from these
distributions are not likely to exhibit large jumps or exces-
sive oscillation.

Figure 6 provides an illustration of the smoothness lev-
els present in trajectories generated by each of the meth-
ods. The acceleration profiles generated by the static Gaus-
sian jump around quite a bit, which can be attributed to the
fact that the distribution needs to be wide enough to en-
compass all acceleration values observed within the train-
ing set. The Linear Bayesian method generates trajectories
that are much smoother than the static Gaussian, but they
still exhibit more oscillation than what we see in the real
trajectories. The smoothness levels present in the LSTM
trajectories seem to most closely match reality.

6. Conclusions
This work formulated a novel approach for learning neu-

ral driver models using deep neural networks. Image-like
inputs were constructed from naturalistic driving data, and
an autoencoder network was trained to extract relevant spa-
tial features. A compressed feature space was then passed
to an LSTM network, which used the temporal information
in its inputs to generate distributions over driver actions. To
our knowledge, this is the first work that uses convolutional
and recurrent neural networks to model drivers in a two-
dimensional driving context.

On the basis of quantitative metrics such as log-
likelihood and qualitative measures such as trajectory
smoothness, it was shown that LSTM-based methods gen-
erally outperform the baseline methods. Surprisingly, the
LSTM network that received only acceleration and turnrate
as an input seemed to perform better than the LSTM that

also receives features from the image-like input. This may
largely be due to the limited amount of time that was avail-
able to train the LSTM network with the larger input, since,
at the very least, the network should be able to learn to ig-
nore the other inputs if they are not useful. This will require
further investigation.

Future work should continue to explore model structures
and training methods for the both convolutional and LSTM
networks. It would be advantageous to include more non-
linearities, perhaps using a residual network [14], and it
may be possible to further reduce the bottleneck to as few
as 10 features. Future analysis should look at neural activa-
tions to identify what sort of relevant information is being
extracted, and look at particular contexts such as merging
and lane changing. The generative merit of thise models
should be proven and emergent behavior, such as maintain-
ing headway distance, should be demonstrated.

References
[1] R. E. Chandler, R. Herman, and E. W. Montroll, “Traffic dynam-

ics: Studies in car following,” Operations Research, vol. 6, no. 2,
pp. 165–184, 1958.

[2] S. Panwai and H. Dia, “Comparative evaluation of microscopic
car-following behavior,” Intelligent Transportation Systems, IEEE
Transactions on, vol. 6, no. 3, pp. 314–325, Sep. 2005.

[3] F. E. Gunawan, “Two-vehicle dynamics of the car-following mod-
els on realistic driving condition,” Journal of Transportation Sys-
tems Engineering and Information Technology, vol. 12, no. 2,
pp. 67–75, 2012.

[4] P. Ranjitkar, T. Nakatsuji, and A. Kawamua, “Car-following mod-
els: An experiment based benchmarking,” Journal of the Eastern
Asia Society for Transportation Studies, vol. 6, pp. 1582–1596,
2005.

[5] P. Bonsall, R. Liu, and W. Young, “Modelling safety-related driving
behaviour–impact of parameter values,” Transportation Research
Part A: Policy and Practice, vol. 39, no. 5, pp. 425–444, 2005.

[6] G. Agamennoni, J. Nieto, and E. Nebot, “Estimation of multivehi-
cle dynamics by considering contextual information,” IEEE Trans-
actions on Robotics, vol. 28, no. 4, pp. 855–870, Aug. 2012, ISSN:
1552-3098.

[7] T. Gindele, S. Brechtel, and R. Dillmann, “Learning context sensi-
tive behavior models from observations for predicting traffic situa-
tions,” in IEEE International Conference on Intelligent Transporta-
tion Systems (ITSC), 2013, pp. 1764–1771.

[8] T. Wheeler, P. Robbel, and M. J. Kochenderfer, “Traffic propaga-
tion models for estimating collision risk,” in IEEE International
Conference on Intelligent Transportation Systems (ITSC), 2015.

[9] F. Damerow and J. Eggert, “Risk-aversive behavior planning under
multiple situations with uncertainty,” in IEEE International Con-
ference on Intelligent Transportation Systems (ITSC), Sep. 2015,
pp. 656–663.

[10] J. Eggert, F. Damerow, and S. Klingelschmitt, “The foresighted
driver model,” in IEEE Intelligent Vehicles Symposium, Jun. 2015,
pp. 322–329.

[11] M. Bahram, C. Hubmann, A. Lawitzky, M. Aeberhard, and D.
Wollherr, “A combined model- and learning-based framework for
interaction-aware maneuver prediction,” IEEE Transactions on In-
telligent Transportation Systems, vol. PP, no. 99, pp. 1–13, 2016,
ISSN: 1524-9050.

8

[12] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional
deep belief networks for scalable unsupervised learning of hierar-
chical representations,” in Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning, ACM, 2009, pp. 609–616.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems (NIPS), 2012, pp. 1097–
1105.

[14] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” ArXiv preprint arXiv:1512.03385, 2015.

[15] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large-vocabulary speech recogni-
tion,” IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 20, no. 1, pp. 30–42, Jan. 2010.

[16] J. Hongfei, J. Zhicai, and N. Anning, “Develop a car-following
model using data collected by ”five-wheel system”,” in IEEE Inter-
national Conference on Intelligent Transportation Systems (ITSC),
IEEE, vol. 1, 2003, pp. 346–351.

[17] S. Panwai and H. Dia, “Neural agent car-following models,” IEEE
Transactions on Intelligent Transportation Systems, vol. 8, no. 1,
pp. 60–70, 2007.

[18] A. Khodayari, A. Ghaffari, R. Kazemi, and R. Braunstingl, “A
modified car-following model based on a neural network model
of the human driver effects,” Systems, Man and Cybernetics, Part
A: Systems and Humans, IEEE Transactions on, vol. 42, no. 6,
pp. 1440–1449, 2012.

[19] S. Lefèvre, C. Sun, R. Bajcsy, and C. Laugier, “Comparison of
parametric and non-parametric approaches for vehicle speed pre-
diction,” American Control Conference (ACC), pp. 3494–3499,
Jun. 2014.

[20] J. Morton, T. A. Wheeler, and M. Kochenderfer, “Human driver
acceleration predictions using recurrent neural networks, in prepa-
ration,” IEEE Transactions on Intelligent Transportation Systems,
2016.

[21] Q. Liu, B. Lathrop, and V. Butakov, “Vehicle lateral position pre-
diction: A small step towards a comprehensive risk assessment sys-
tem,” in IEEE International Conference on Intelligent Transporta-
tion Systems (ITSC), Oct. 2014, pp. 667–672.

[22] P. Boyraz, M. Acar, and D. Kerr, “Signal modelling and hidden
Markov models for driving manoeuvre recognition and driver fault
diagnosis in an urban road scenario,” in IEEE Intelligent Vehicles
Symposium, 2007, pp. 987–992.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,”
Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[24] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504 –
507, 2006.

[25] J. Colyar and J. Halkias, “US highway 101 dataset,” Federal High-
way Administration (FHWA), Tech. Rep. FHWA-HRT-07-030,
Jan. 2007.

[26] ——, “US highway 80 dataset,” Federal Highway Administration
(FHWA), Tech. Rep. FHWA-HRT-06-137, Dec. 2006.

[27] C. Thiemann, M. Treiber, and A. Kesting, “Estimating acceleration
and lane-changing dynamics from next generation simulation tra-
jectory data,” Transportation Research Records, vol. 2088, pp. 90–
101, 2008.

[28] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical
learning. Springer, 2001, vol. 1.

[29] J. A. Cox and M. J. Kochenderfer, “Probabilistic airport acceptance
rate prediction,” 2016.

[30] R. E. Caflisch, “Monte Carlo and quasi-Monte Carlo methods,”
Acta numerica, vol. 7, pp. 1–49, 1998.

[31] M. J. Kochenderfer, M. W. Edwards, L. P. Espindle, J. K. Kuchar,
and D. J. Griffith, “Airspace encounter models for estimating colli-
sion risk,” AIAA Journal on Guidance, Control, and Dynamics, vol.
33, no. 2, pp. 487–499, 2010.

[32] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel,
J. Z. Kolter, D. Langer, O. Pink, V. Pratt, et al., “Towards fully au-
tonomous driving: Systems and algorithms,” in Intelligent Vehicles
Symposium (IV), 2011 IEEE, IEEE, 2011, pp. 163–168.

[33] S. Kullback and R. A. Leibler, “On information and sufficiency,”
Annals of Mathematical Statistics, vol. 22, pp. 79–86, 1951.

9

