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Abstract

We show that the adversarial robustness of deep neu-
ral networks can be improved by reducing the dimension-
ality of input data. Adversarial examples are generated by
small perturbations of regular input data, and while these
changes are typically imperceptible to the human eye, they
can result in catastrophic losses of accuracy in neural net-
works. This has been shown to be a generic property of
quasi-linear classifiers in high dimensional spaces; thus,
it is intuitively possible that reducing the dimensionality of
the inputs leaves less ‘space’ for adversarial examples to
exist. We present detailed results demonstrating this im-
proved robustness (with small sacrifices in accuracy) for
5 layer networks on the CIFARIO dataset, as well as for
the deeper CaffeNet and GoogLeNet architectures on the
Tiny-Imagenet-200 dataset. In particular, a reduction in the
number of allowed pixel intensities from 256 to 4, which
corresponds to robustness to perturbations of up to 32 units
of intensity, results in an accuracy reduction of only 6% for
CIFARI0 and 8% for Tiny-Imagenet.

1. Introduction and related work

Convolutional neural networks (ConvNets) have by now
exhibited better-than-human performance[1] in vision clas-
sification problems. It was therefore both surprising, and a
bit depressing, when Szegedy et al.[2] discovered that these
classifiers are remarkably vulnerable to so called adversarial
examples - small, deliberate changes of the pixel intensities,
designed to fool the classifier. While such small changes
are virtually imperceptible to humans, state-of-the-art Con-
vNets typically classify such images incorrectly, but with
very high confidence. Even more worryingly, ConvNets
can be convincingly fooled by tuning the pixel intensities of
random noise [3]. Furthermore, adversarial examples tend
to be similarly misclassified by different, separately trained
ConvNets leading to fears for both the security and general-
izability of deep neural networks.

From the subsequent explosion of literature investigating
this problem, several themes have emerged. First, suscepti-
bility to adversity has been shown to be a property of high
dimensional dot products[4] and so will plague any suffi-
ciently linear model, as many ConvNets are thought to be.
Second, while including adversarial examples in the train-
ing phase can act as a form of regularization, there are rel-
atively few successful strategies for combatting adversarial
examples in vanilla ConvNets, trained on natural images.[4]]

Finally, as emphasized by [3]], at the heart of the issue is
the difference between discriminative and generative mod-
els. ConvNets are discriminative models, which for a label
vector y and input vector x learn the probability distribution
p(y|x). Essentially, these models partition a very high di-
mensional input space into some set number of classes, with
class boundaries partitioning the space into hyper-volumes
that are much larger than the volume occupied by the train-
ing examples, as demonstrated in Fig. [T(a). Because natu-
ral input images occupy a very restricted manifold in this
high dimensional space, the class predictions for vast re-
gions of the input space are completely arbitrary. Thus, ad-
versarial examples are essentially synthetic images which
end up ‘far’ from typical data, and will be incorrectly clas-
sified with a high degree of confidence. What is needed is a
generative model, where the complete joint density p(y, x)
is known; in such a case the prior probability p(x) may be
used to rule out adversarial examples as being too improb-
able. These considerations have led to the development of
Generative Adversarial Nets (GANs) [5].

Given the above discussions of dimensionality, an
alternative—and we believe hitherto unexplored—
possibility is to discretize the manifold from which images
are classified. Eliminating portions of the input manifold
can be viewed as an inflexible prior; we are essentially
reducing the regions into which data can be perturbed and
misclassified by reducing the hyper-volume which must
be partitioned. The resulting robustness to adversarial
examples is then trivial: there is now a minimum allowed
distortion of the image (due to the discretization, as shown
in Fig. [T[b)), and so a proposed adversarial image will be
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Figure 1: A cartoon demonstration of the intuition behind
discretizing inputs. True data (dots) lie on a narrow mani-
fold in the high dimension space, and the classifier is trained
to separate this data into categories (shaded regions). How-
ever the decision boundaries in the vast swathes of “unpopu-
lated” space are arbitrary and untrained. Adversarial exam-
ples are images perturbed into this naturally empty region
and are thus, misclassified. Discretizing inputs introduces a
minimum allowable distortion, and helps prevent small ad-
versarial perturbations.

perceptibly different from a natural one.

From a human perspective, this discretization is perhaps
more intuitive than one may at first imagine. For exam-
ple, humans can typically classify grayscale images, sug-
gesting that all three color channels may not be necessary
for categorical data. Indeed, the higher convolutional lay-
ers of ConvNets have been shown to be efficient feature
extractors[6]] which should be robust to color. Furthermore,
there is a coarse graining procedure that is inherent to our
vision - the presence of displaced pixels is irrelevant to our
perception of an image. Thus, while color is certainly im-
portant to classification tasks, knowledge of all 256° RGB
colors is probably unnecessary. Both these ‘intuitive’ obser-
vations lead to the hypothesis that not every single dimen-
sion of the input space is relevant.

Discretization has the added attraction of improved com-
putational efficiency and decreased memory requirements,
which is naturally a desirable feature for any real world
deployment of deep neural networks. Indeed, in a very
recent preprint, Courbariaux et al.[7]] introduced and dis-
cussed deep binary neural networks (BNNs), where all the
weights and activations are binary. Despite the severe non-
analyticities introduced to the loss function by such ‘bina-
rization’, the authors report near state of the art results with
impressive speedups in the training of such networks. While
Courbariaux et al.[7]] did not discuss discretizing of inputs
as we do here, this report can be viewed as a natural gener-
alization of the BNN concept.

In Sec. @] of this report, we describe how we achieve
the reduction in dimensionality of the input by quantizing

RGB pixel intensities into a variety of allowed discretiza-
tions, ranging from 22 to the full 28 = 256 allowed intensi-
ties. For the CIFAR10 dataset[8]], we train a 5 layer neural
network from scratch for each discretization as is described
in Sec.[2.4.1] and report in detail on the changes in accuracy
and robustness of the network in Sec.[3.2] We then gener-
alize these methods to the deeper, pretrained CaffeNet[9] (a
modified AlexNet[10]) and GooglLeNet architectures[11].
We employ transfer learning[[12] to fine tune these networks
(Sec. for discretizations of 212:5:8} and report the re-
sults in Sec@ In addition to these quantitative metrics,
we also include visualizations of the effect of these adver-
sarial perturbations on images from Tiny-Imagenet[13] in
Sec. We end with a broader discussion of the potential
role for dimensional reduction techniques in image classifi-
cation, and discuss future avenues of research in Sec. [}

2. Methods

Here we discuss the discretization of inputs as well as the
different network architectures and training methods used
throughout this report.

2.1. Discretization of pixel intensities

While there are 256% ~ 2 x 107 possible colors which
can be represented by an image array, it is thought that the
human eye can only perceive around half of these. Fur-
thermore, everyday experience suggests that there is a huge
amount of redundancy in these colors - one does not need
to know the difference between cobalt and azure (shades of
blue) to recognize an image of the ocean. A simple way to
represent this redundancy is by discretizing the intensities
of each color channel. Throughout this work, we convert
the raw integer pixel intensities 0 < I < 255 to § possible
values /s using the equation

i || (5) 2 (5) 0

where | | denotes integer (floored) division. For an RGB
image of size N x N pixels, this reduces the input manifold
from 2563Y° to 6N”. Some examples of what discretiza-
tion does to input images is shown in Fig. 2]

2.2. Generating adversarial examples

In this work, we generate adversarial examples by a
method known as the ‘fast gradient method’ [4] which com-
putes the gradient of the loss function £(6,y, x), with re-
spect to the input image x,

' — x — (e x 256) sign[VLL(0,y, )] 2)

where v is the classification vector and 6§ are the parameters
(weights, biases etc.) of the network, and L is the loss func-
tion. Note V,L(0,y,x) is direction of steepest descent,
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Figure 2: The effect of increasing discretization of pixel
intensities ( is the number of allowed intensities) on two
randomly chosen (upscaled) 224 x 224 RGB images from
the Tiny-Imagenet dataset
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Figure 3: Same as Figlzbut for the CIFAR10 dataset (32 x
32 RGB images)

and as such a distortion of the input image in this direction
causes the fastest change in the loss function (and hence
misclassification). The parameter ¢ quantifies the magni-
tude of the distortion, and we will plot accuracies as a func-
tion of this parameter to quantify the robustness of the net-
work. Note that €’s of ~ 0.1 have been found to generate
errors rates of 87% on CIFAR10 [4].

Adversarial examples @’ are quantified by their magni-
tude of distortion |r| from an original image x (both of
which are vectors of dimension D) using the expression

1 D
1l =5 D llat, = 2l )
n=1

Because a given distortion of the image involves changing
all pixel values by €x 256 according to Equation[2] this mea-
sure of the distortion corresponds well to a human’s percep-
tion of the distortion to the image (as opposed to displacing

a single pixel by a huge amount, which would not affect our
perception of the image, but would correspond to large |r|).

2.3. Dataset

We use two standard computer vision datasets through-
out this project. Tests were initially carried out on the CI-
FARI10 data set [[8] which contains 50 000 training and 10
000 test images, corresponding to 10 categories. Each im-
age has a resolution of 32 x 32 pixels, and some examples
are shown in Fig. 3]

For subsequent analysis using deeper networks, we used
the Tiny-Imagenet dataset which consists of 100 000
training and 10 000 validation images corresponding to 200
categories. For use with CaffeNet and GooglLeNet archi-
tectures, we first upscaled all images to a resolution of
224 x 224 using SciPy’s bilinear interpolation scheme[14].
Some example images with different discretizations are
shown in Fig.[2]

2.4. Network architectures and training

All networks were implemented in Caffe[9], and with
training done using Nvidia GPUs with 4GB memory (on
AWS servers). The details of each network are presented
here.

24.1 5-Layer ConvNet on CIFAR10

For the CIFARIOQ dataset we use a five layer net-
work, consisting of three repeats of a [CONV3-
32—BATCHNORM—RELU—POOL2] layer, followed
by two fully connected layers. The outputs of the top
fully connected layer are 10 numbers f;, j < [0,10),
which we treat as unnormalized log probabilities, and so
we use a softmax classifier to compute the loss function
L(y,x) = +; >, L; where i indexes each of M images,
and

eyi
Li(yi,z;) = —log S o ) “4)
j

where y; is the correct class label of image x;.

For each discretization of the input images, we use batch
gradient descent with the ‘Adam’ update rule[15]. This
is currently an industry recommended default learning rate
method[[16] because of its per-parameter tuning of the learn-
ing rate, and successful combination of several previous up-
date rules like RMS Prop and Momentum. Batch sizes of
100 images were used, and we decreased the learning rate
by 90% every 2 epochs. Good results were obtained after
training for 10 epochs (5000 iterations).

2.4.2 Transfer learning with CaffeNet and GoogLeNet

For the richer Tiny-Imagenet dataset, a deeper network ar-
chitecture is necessary. While training deep networks usu-
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Figure 4: Loss and accuracy evolution of CaffeNet in the
training phase.

ally takes on the order of weeks, a commonly used strategy
is transfer learning. We essentially take a pre-trained net-
work and replace the data and final fully connected layers
with our data set and a new fully connected layer. The pre-
trained layers are used as feature extractors, and within a
couple epochs of training we are able to achieve high top-5
accuracies on the 10k validation images of Tiny-Imagenet.

We first experimented CaffeNet, a modified version of
AlexNet where pooling is done before normalization. There
are five convolutional layers and 2 fully connected layers,
with a softmax classifier once more. We implement transfer
learning for 5 epochs (5000 iterations at a batch size of 100),
using the Adam update rule once again.

Next, we applied transfer learning to GoogLeNet, which
is a much deeper network. We trained only the (3) fully
connected layers corresponding to the three different output
accuracies of the network, for a just over 1 epoch (5000
iterations with a batch size of 24).

Examples of the loss functions and accuracy vs. itera-
tions for both CaffeNet and GoogLeNet are shown in Fig. ]
and

We note that due to the significant expense of training
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Figure 5: Loss and accuracy evolution of GoogleNet in the
training phase.

these networks on AWS clusters, there was little room for
experimentation with many different hyperparameters. The
strategy for picking the overall learning rate (typically near
to 0.001) was to tune the learning rate magnitude until a
decreasing loss function was obtained. Limited experimen-
tation on randomly chosen learning rates produced roughly
the same final top-5 accuracies, and the best results are re-
ported here. For the same reasons, we only tested three dif-
ferent discretizations, corresponding to 228 allowed pixel
intensities. No cross-validation was employed.

3. Results and Discussion
3.1. Metrics used

Because we are focused on the adversarial robustness of
classifiers, our primary metric is the accuracy of the various
networks used, as a function of both the discretization, ¢,
and the strength of the adversarial perturbation. For the CI-
FARI10 data set we present the top-1 (regular) accuracy on
the test set of 10 000 images, while for the Tiny-Imagenet
we use both top-5 and top-1 accuracies on the validation set
of 10 000 images. For qualitative results (where we show
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Figure 6: Evolution of the accuracy of the ConvNet as the
discretization ¢ is changed. A remarkable outcome is the
fact that with only 16 allowed intensities, the classification
accuracy has only dropped by 1%. This corresponds to a
minimum allowed perturbation of 8 units of intensity.

adversarial distortions), we also include the magnitude of
the distortion |r| as defined in Eq.

3.2. Fully trained ConvNets on CIFAR10

The results on CIFAR10 are encouraging. As shown in
Fig. |§|, the accuracy of the classifier only drops by 6% on go-
ing from all 256 allowed intensities to just 4. Furthermore,
there is a broad regime from 16 to 256 allowed intensities
where the accuracy varies by less than 1%. This clearly val-
idates the hypothesis that input dimension of images typi-
cally used is unnecessarily large, and can be reduced signif-
icantly.

In Fig.[7] we show the classification accuracy on the test
set as the strength of the distortion in a fast gradient method
is increased. As explained in the caption of this figure, the
discretized images are ‘trivially’ robust to small perturba-
tions - this is an explicit feature of our discretization of the
inputs. One obvious feature of these plots is the immedi-
ate collapse of the accuracy down to 10% (consistent with
random draws) upon perturbing beyond the minimum al-
lowed distortion. While unfortunate, this can be expected
on general grounds, following our earlier discussion of the
difference between discriminative and generative models.
This is still a discriminative method, and so there are still
vast regions of the input space which are being classified
(despite their lack of natural data). Thus, as soon as images
are perturbed into these regions (with a minimum allowed
perturbation), the classifier fails completely. A more sub-
tle feature of Fig.[7is the seeming recovery of the accuracy
(jumps in accuracy) just beyond the minimum allowed per-
turbation. This makes little physical sense, and will be the
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Figure 7: The adversarial robustness upon discretiza-
tion: evolution of the accuracy of the classifiers as the
parameter e (magnitude of the distortion strength in Eq. [2]
is increased. Note that the discretized images are triv-
ially robust. For example for § = 4, it is only when
e = 0.125 % 256 = 32 that a perturbation is allowed. Be-
low this, any small pixel perturbation is clamped back to
zero. Note that above ¢ = (.125, the classifier’s all fail
completely, with the accuracy of 10% being equivalent to
random luck.

subject of future investigation.

Perhaps the most intriguing feature of the CIFAR10 data
is shown in Fig. @ Here, we show the accuracies of Con-
vNets trained on images with one discretization and tested
on images with another discretization. There is a broad re-
gion from 16 allowed intensities upwards, where the accu-
racies are roughly the same. This is further confirmation of
the unnecessarily large dimension of images - for classifica-
tion tasks, only a few colors are necessary, and discretiza-
tion acts as form of regularization.
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Figure 8: The accuracies for classifiers trained on one level
of dicretization and tested on another. Classifiers trained on
inputs with a 16 or more allowed intensities all appear to
produce similar accuracies (indicating that the weights and
biases in these models are similar!)

3.3. Transfer learning on Tiny-ImageNet 200

For the Tiny-ImageNet data set, the results are remark-
ably similar, despite the 20 fold increase in the number of
categories being classified. In Fig.[9]we show the top-5 and
top-1 accuracies for both CaffeNet and GoogLeNet trained
via transfer learning. First note that GoogLeNet outper-
forms CaffeNet in both top-5 and top-1 accuracies as can
be expected - it is a deeper network, and when trained on
Imagenet achieved a top-5 accuracy of 89% (as opposed to
80% for CaffeNet).

However, note that there is a remarkable increase in the
accuracies for CaffeNet upon going from 256 to 32 pixels,
while the eventual decrease in top 5 accuracies at 4 allowed
pixel intensities is moderate. While a more comprehensive
exploration of training hyperparameters may change this re-
sult, initial attempts to change it were unsuccessful. This
possibly supports the notion of discretization as a form of
regularization. On the other hand, GoogLeNet’s top-5 and
top-1 accuracies were barely different between 256 and 32
allowed intensities, with a moderate (but not catastrophic)
drop in accuracy upon going to 4 allowed intensities.

Finally, a useful qualitative evaluation of the effective-
ness of discretization to adversarial examples is shown in
Fig.[10] where we show the raw images, the minimum per-
turbation as defined by Eq. [2]and the resulting distorted im-
age. It is clear that the minimum distortion is largest for the
discretized dataset, and the resulting distorted image is least
recognizable (to humans) for this large discretization. This
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Figure 9: Accuracies for CaffeNet and GoogLeNet upon
changing the discretization of input images.

is a concrete manifestation of the adversarial robustness we
have achieved by discretization.

4. Conclusions and Future Work

We have demonstrated that the accuracies of deep neu-
ral networks are not adversely affected by discretization of
input data. For a reduction of input pixel intensities from
256 to 16, there is a minimal drop in accuracy ( 1% for CI-
FARI10), and for 4 allowed intensities the accuracy drops by
less than 10%. This type of discretization then renders im-
ages trivially robust to adversarial perturbations - because
only discrete values of intensities are permitted, there is a
minimum allowed distortion to each image before it can
change. There is then a natural tradeoff between increas-
ing the level of discretization (i.e. reducing the number of
allowed pixel intensities), and the decreasing accuracy of
the ConvNet. The broad regime of similar performance that
is evident in CIFAR10 results (and supported by the Tiny-
Imagenet experiments) suggests that a ‘sweet-spot’ of dis-
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Figure 10: The minimum allowed distortion for differ-
ent discretizations of a randomly chosen Tiny-Imagenet
validation image, with the probabilities as assigned by
GoogleNet. The values of § are (a): 256, (b):32 and (c):4.
The distortion magnitude |r| is respectively 1, 4 and 32. The
noise images have been right shifted by 128.

cretization around 16-32 allowed pixel intensities will result
in minimal loss of accuracy and maximal robustness to ad-
versarial perturbations.

More broadly, it is clear that this discretization proce-
dure has acted as a form of regularization. By reducing the
dimensionality of the input data, we have even improved
the top-5 accuracy of CaffeNet and GoogleNet on Tiny-
ImageNet. This reduction in input dimensionality may also
be viewed as an inflexible prior distribution on the input
data distribution. We note that unlike other forms of input
dimensional reduction (e.g. PCA) the discrete form of the
data is crucial, as it results in stability to perturbations.

Future areas of investigation include completing this

analysis on Imagenet data, and investigating more values of
the discretization to search for an optimal value which max-
imizes robustness without sacrificing accuracy. This form
of discrete compression and improved robustness of images
may also be valuable for industries where security and high
throughput of data are important (e.g. in self driving cars).
More generally, techniques for learning the true underlying
distributions of image data in high dimensional spaces (and
perhaps with the inclusion of dimensional reduction tech-
niques such as that presented here) appears to be an impor-
tant avenue for research into deep neural networks.

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. arXiv preprint
arXiv:1512.03385, 2015.

2

—

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

3

—

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neu-
ral networks are easily fooled: High confidence predictions
for unrecognizable images. In Computer Vision and Pattern
Recognition (CVPR), 2015 IEEE Conference on, pages 427—
436. IEEE, 2015.

[4

—_

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples. arXiv
preprint arXiv:1412.6572, 2014.

[5

—

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. In Advances in
Neural Information Processing Systems, pages 2672—-2680,
2014.

[6] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[7

—

Matthieu Courbariaux and Yoshua Bengio. Binarynet: Train-
ing deep neural networks with weights and activations con-
strained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[8] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images, 2009.

[9

—

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey
Karayev, Jonathan Long, Ross Girshick, Sergio Guadarrama,
and Trevor Darrell. Caffe: Convolutional architecture for fast
feature embedding. In Proceedings of the ACM International
Conference on Multimedia, pages 675-678. ACM, 2014.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, pages 1097-1105, 2012.



[11]

[12]

[13]

[14]

[15]

[16]

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1-9, 2015.

Yoshua Bengio. Learning deep architectures for ai. Founda-
tions and trends® in Machine Learning, 2(1):1-127, 2009.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211-252, 2015.

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy:
Open source scientific tools for Python, 2001-.

Diederik Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Andrej Karpathy, Justin Johnson, and L. Fei-Fei. Cs231n
lecture notes, 2015.



	. Introduction and related work
	. Methods
	. Discretization of pixel intensities
	. Generating adversarial examples
	. Dataset and Features
	. Network architectures and training
	5-Layer ConvNet on CIFAR10
	Transfer learning with CaffeNet and GoogLeNet


	. Results and Discussion
	. Metrics used
	. Fully trained ConvNets on CIFAR10
	. Transfer learning on Tiny-ImageNet 200

	. Conclusions and Future Work

