Recurrent Deep Q-Learning for PAC-MAN

Kushal Ranjan

kranjan@stanford.edu

Abstract

Classic Artificial Intelligence agents are limited by the
creation of handcrafted features which include specific do-
main knowledge about the rules of the game which they are
playing. In this project, we take the data-driven approach,
and attempt to train deep neural networks to play the game
PAC-MAN, using no specific game knowledge, only features
extracted from raw-pixel images using a convolutional neu-
ral network paired with recurrent neural network layers. We
experiment with several architectures and learning strate-
gies, including supervised learning, transfer learning with
an inception network, a small convolutional network, and a
convolutional network combined with an LSTM unit.

1. Introduction

The recent decade has seen a a revolution in the predic-
tive power of neural networks, especially for ”sensory dis-
crimination” types of problems (e.g. visual object recogni-
tion, or natural language processing). Although the adop-
tion of artificial neural networks to reinforcement learning
paradigms has been slower, promising results have been at-
tained. For example, Google DeepMind used Convolutional
Neural Network (CNN) architectures as part of an algorithm
termed “Deep Q-Learning” (DQL) to play Atari games [15]
remarkably well, sometimes even surpassing human perfor-
mance. The team used a data-driven paradigm, in which
they provided the agent only the game pixels and reward
values, diverging from the more traditional approach of
handcrafting features. The DeepMind team also had recent
success training a DQL based agent to play Go at a level
that surpassed that of a human professional player [20], a
feat that pundits had previously proclaimed was more than
a decade away.

These works illustrate the large potential power CNNs
and deep reinforcement learning possess, which will facil-
itate flexible, intelligent game playing agents. However,
there still exist situations in which DQL has not yet been
successful, for example, in arenas in which rewards are
sparse, or temporally removed from the actions which were
causal to the agent receiving the reward. One example of

Amelia Christensen

amyjc@stanford.edu

Bernardo Ramos

bramos@stanford.edu

such a game, where existing deep learning algorithms have
failed to produce impressive results is PAC-MAN.

Throughout this work, we will study an application of
Deep Q-Learning (more specifically, a CNN paired with a
Recurrent Neural Network) in learning to play PAC-MAN
using raw pixel images only. We hope that the combination
of a convolutional network which should extract salient spa-
tially invariant features from the game pixels, and the recur-
rent net which will allow the agent to integrate information
about past action sequences that it has taken, will optimize
the performance of the DQL network. We will also dis-
cuss the difficulties encountered when performing transfer
versus bottom-up learning and provide an insight of future
improvements.

2. Related Work

The DQL algorithm was first described by Minh et. al.
[15]in 2013, where the DeepMind team performed standard
approximate Q-Learning, replacing the Q function with a
deep convolutional network. They then applied the same
framework to all of the Atari games, in many cases achiev-
ing performance surpassing that of human experts. This
demonstration spurred a number of groups to implement
variations of DQL. [4, 10, 12, 16, 17, 23, 25]

Perhaps the most similar of these implementations to our
work is the Deep Recurrent Q-Learning framework pub-
lished by Matthew Hausknecht and Peter Stone in 2015 [9].
Hausknecht and Stone replace the last fully connected layer
from the convolutional networks used by Minh et. al. with
an LSTM, and then train the network on the Atari games.
While they do not find that the addition of the LSTM ei-
ther positively or negatively impacts performance in normal
playing conditions, they do notice that in cases when there
are flickers on the game screen, or some other inconsistency
in the test data, their network is able to perform better than
when just a convolutional network is used. They conclude
that the addition of the LSTM provides robustness against
test time variations in the statistics of the environment.

Another relevant application of Deep Reinforcement
Learning, this time to the game Go, was published by Deep-
Mind in Nature this year [20]. Although the approach was
quite different from the previous DQL work, both for the

combination of roll outs and MonteCarlo Tree search and
the use of two networks, one to estimate the value of the
board at any given time, and another to select an action, the
authors used supervised learning to initialize the values of
the action policy network and the value network, a method
which we adopted.

Although there are examples of approximate Q learn-
ing or DQL on top of handcrafted features (e.g. [3]) that
perform quite well, to the best of our knowledge, there is
currently no DQL implementation of PAC-MAN that uses
convolutional layers to extract features from the game board
that comes even close to rivaling scores achieved by human
players.

3. Methods and Technical Approach

Our goal is to develop a reinforcement learning agent for
PAC-MAN that uses a combination of CNN’s and recur-
rent neural network with LSTM units to model the Q-value
function Q(s,a). In this section we discuss the technical
details surrounding Reinforcement Learning (section 3.1)
and Deep Q-Learning (section 3.2), show our motivation
and hypothesis for introducing RNN’s (section 3.3), and
describe the concrete architectures we will use to compare
our results (section 3.4). Finally, we describe a supervised
learning task that will give an insight of the learning capac-
ity under the RL paradigm (section 3.5).

3.1. Reinforcement Learning Overview

Let S be the set of states, and A the set of actions of
a Markov Decision Process (MDP). In our setting, the set
S consists of all the possible configurations of PAC-MAN,
the ghosts and the food in a given level, and A is the set of
actions PAC-MAN can take: left, right, up, down, or stay.

In Reinforcement Learning, we are concerned with find-
ing the policy 7 : § — A that maximizes the value function
Vi (s), defined as the sum of the expected (discounted) re-
wards when following policy 7 starting in state s. To this
end, we define the (Q-value of a policy as

Qr(s,a) = ZT(S, a, s')(Reward(s, a, s') + vV (s")),

s’/

where T'(s, a, s") denotes the probability of the underlying
Markov Decision Process transitioning from state s to s’ af-
ter taking action a, and 0 < v < 11is the discount parameter.
A necessary condition for a policy 7y to be optimal is

to satisfy
Topt(8) = arg max Q. (s, a) Vs e S, (D

acA

hence a strategy for finding the optimal policy is to directly

estimate (Qqp; (the Q-function of an optimal policy) and use
(1) to find 7rop. One way to do this is to fit a neural network,

which we parametrize by 6, with an objective loss given by

L0)= Y (Quls:0) (4 Ton()

(s,a,r,8")

where (s,a,r,s’) are the values of the states, actions, re-
wards and successive states in the observed paths and
Vopt(8) = Qopt (5, Topt(8)). The network can then be trained
using stochastic gradient descent updates.

In a real-world setting, an optimal-policy agent is both
concerned with collecting rewards following the estimated
optimal strategy, and finding a good estimator of the Q func-
tion across the state-action space. The latter requires a thor-
ough exploration of S x A, which can be achieved by de-
viating from the optimal policy with a certain probability e.
Such a strategy is called e-greedy, and is formally given by

ro(s) = {ﬁ”"(s)

a € A selected randomly w. prob. e,

w. prob. 1 —e€

For the purposes of this work we will use e-greedy explo-
ration to compare the performance of different Q-Learning
approaches.

3.2. Deep Q-Learning and Convolutional Neural
Networks

In section 3.1 we discussed the general Q-Learning pro-
cedure without specifying the form of Q(s, a;6). Regular
Q-Learning with function approximation takes € R™ of
the form

Qs a30) = ¢(s,a) - 0,

where ¢(s,a) € R™ is the vector of features describing the
state s and the action a. The term Deep Q-Learning applies
when the output of Q is generated from a deep neural net-
work with inputs ¢(s, a), which in our case includes the set
of pixels of the image generated from state s. Motivated by
the success of CNN’s in vision applications (cf. section 1),
we will use convolutional layers in the test architectures of
section 3.4.

Our architectures will be structured so that activations
g of the last layer at time ¢ represent an expected Q value
for the action that corresponds to that neuron, i.e. ¢ =
(Q(up), Q(down), Q(right), Q(left), Q(stay)) € R®. The
action PAC-MAN will take is then

a; = argmax g:(a),
a
as output neurons will be trained to contain the ‘scores’ for
performing each action.

3.3. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) allow for the net-
work to have “memory” over past actions. LSTM (Long

Algorithm 1: batch Deep-Q-Learning

Initialize cache < {}

Initialize Q-network parameters randomly

fort =11t Mdo

with probability €, a; is random

otherwise, select a; = max, (Q(s, a; 0))

execute action and observe new image

store (¢, ag, ¢, S¢41) in cache

set sy = St+1

if episode modulo batch size == 0 then
perform gradient descent update on cached
sequence

11 clear cache

12 end

13 end

o NN N R W N -

=
>

Short Term Memory) units — introduced by Hochreiter and
Schmidhuber [11] — are specialized neural network units
that can remember input patterns over an arbitrary number
of passes. They have been successfully used for natural lan-
guage processing applications such as speech recognition
and grammar modeling.

PAC-MAN is a game whose strategies require planning
over potentially long sequences of actions. Our hypothesis
is that a PAC-MAN RL agent with added memory will have
an increased capacity of representing states to determine the
best action sequences. We will test this hypothesis in sec-
tion 5 by testing the performance of ConvNet architectures
with and without LSTM layers.

There is, however, an implementation caveat for using
recurrent neural networks. While LSTM layers will hope-
fully add a better state-action sequence representation of the
game, they require the entire sequence of actions of a game
to perform a single backpropagation step. This increases
the computational time our agent requires for learning. To
cope with this issue, we propose a learning procedure where
a backpropagation step is performed after a batch of actions
is performed. This updating procedure is described in Al-
gorithm 1.

Using batch Q-learning introduces a trade-off between a
more rapid learning procedure with the overall long-term
representation of past actions. While batch Q-Learning
does keep the hidden state of the LSTM layer as if learning
was performed using the entire game sequence, the gradient
of actions past a certain batch will be ignored, which poten-
tially has an impact in long-memory sequences. Through-
out this work we used batch sequences of length 6, a choice
driven by the trade-off between the run-time of a single
game and the amount necessary for tuning the network over
a reasonable number of hours.

3.4. Architectures

In this section we present the proposed DQL architec-
tures, designed to test the effects of performing transfer
learning (Inception-LSTM network, section 3.4.1), adding
an LSTM to a CNN trained from scratch (Conv-LSTM net-
work, section 3.4.2), and training a vanilla ConvNet without
RNN features (ConvNet Experience Replay, section 3.4.3).

3.4.1 Inception v3 + LSTM (Transfer Learning)

Our first architecture is designed to test the effect of transfer
learning (the practice of using part of a trained network as
feature extractors in another architecture), in the network’s
learning capacity. Works such as Taylor and Stone [22] em-
phasize the benefits of using TL in reinforcement learning
applications, which stresses our motivation for combining a
pretrained network with the proposed RNN structure.

Figure | depicts the flow of our Inception-LSTM archi-
tecture. It uses Google’s Inception v3 [21] as a feature ex-
tractor and adds layers that will be trained using the proce-
dure described in section 3.3. The architecture is structured
as follows:

1. The raw image is processed to create features using
Google Inception v3’s fourth max-pool.

2. The features are fed into a fully connected layer
(FC1).!

3. The result is the input of an LSTM cell, whose hidden
state contains memory of past actions.’

4. An FC-5 layer outputs the estimated Q-values for the
five actions (right, left, up, down and stop).

Inception Network
(through layer maxpool4)

Predicted Q-values

Or=I=31x}!

¥
FC1 LST™M

Figure 1. Inception-LSTM Architecture.

I'The initial size is taken to be 200, though in section 5 we also consider
a size of 50.

2We take the first LSTM size to be 150, and in section 4.1 we also
consider a size of 15. This also applies to the Conv-LSTM architecture
presented in 3.4.2.

While we expect transfer learning to provide an accel-
erated learning process, we should keep in mind that the
nature of the application in which Inception v3 was trained
(the ILSVRC challenge for object classification) is funda-
mentally different than ours. This means features created
out of PAC-MAN images may not prove as meaningful as
in object classification tasks.

3.4.2 ConvNet + LSTM

Our next architecture follows a CNN structure with an
added LSTM layer. Unlike the Inception-LSTM architec-
ture, all layers of this network will be trained from scratch.
Figure 3.4.2 shows the Conv-LSTM structure, whose flow
is described as follows:

1. The image goes through three stacks of 3x3
Convolution—-ReLU-2x2 max-pool layers with 8, 16
and 32 filters, respectively.

2. The result is fed into two fully connected layers (FC1,
FC2). ?

3. FC2 connects to an LSTM cell.

4. An FC of size 5 outputs Q(s, a).

Predicted Q-values

CONV 3x3x16

Relu POOL 2x2
POOL2x2

Figure 2. Conv-LSTM Architecture.

3.43 ConvNet Experience Replay (Non-RNN net-
work)

Our two previous networks have included LSTM cells be-
fore outputting action scores. This network is intended to
provide a benchmark similar to the model used by Mnih et
al. [15], where the PAC-MAN agent learns to play with-
out accounting for memory cells. The flow is described as
follows:

3We consider two different sizes: first, FC1 and FC2 will both have 200
neurons, and in section 4.1 we will reduce them to 50 and 25, respectively.

1. The first layers are the same as ConvNet-LSTM (see
Figure 3.4.2), except the FC2 layer’s size is turned to
5.

2. The FC2 layer outputs the estimated Q-values. The
LSTM cell is omitted to provide a non-memory bench-
mark for the proposed architectures.

To follow the steps of Mnih et al. [15], we will use
an experience replay learning process, differing from the
one used for LSTM structures. This process stores the past
history of (s, a,r,s’) tuples, and then updates the network
based on a random past training examples, to remove corre-
lation structure in the training examples.

3.5. Supervised Learning for Game Replaying

Consider the supervised learning task that uses same ar-
chitectures as in section 3.4, but replacing the step loss func-
tion with cross-entropy

6score(a;e)
&(9) = — Z l{at:a} log (W) 5

acA

where (a;); is a sequence of actions taken at time ¢,
score(a; 0) is the output of the last layer corresponding to
action a given the parameters 6, and the total loss is

Ls(0) = th(e)-

When optimizing with respect to the loss function Lg,
the network learns to distinguish the actions PAC-MAN
should take, based on the games provided (we train our net-
works using games played by a human). We believe us-
ing parameters tuned for minimizing Lg will prove useful
as a weight initialization for minimizing the reinforcement
learning loss, as learned weights incorporate knowledge
about the PAC-MAN dynamics. We will explore the re-
sults of using the supervised learning procedure for weight
initialization in section 4.1.

Moreover, having near-zero classification losses across
various games suggests that the network can learn sequen-
tial strategies. Indeed, we can test the performance of the
learned agent by letting it play in a RL setting and looking
at the obtained scores. As we will see in section 4.1, our
architectures can learn to play after being tuned in a super-
vised fashion.

3.6. PAC-MAN Implementation

Our code was built on top of a pre-existing Python imple-
mentation of PAC-MAN. The implementation is that used in
UC Berkeley’s Introduction to Artificial Intelligence course
and was built by John Denero, Dan Klein, and Pieter Abbeel

[1].

The implementation provides 5 moves: left, right, up,
down, and stay. The score starts at 0 and changes at each
timestep as follows:

e The score drops by 1.
e Eating food increases the score by 10.
e Eating a ghost increases the score by 200.

e Eating the last piece of food (winning the game) in-
creases the score by 500.

e Being eaten by a ghost (losing the game) decreases the
score by 500.

This implementation includes an interface for general Q-
learning, but not for Deep Q-learning, which was imple-
mented from scratch.

3.7. Computational Setup

We used TensorFlow [2] in Python as our deep learn-
ing library. The machines we used all ran OS X without
Tensorflow-compatible GPUs. Thus, all code was run on
2.5 GHz Intel Core i7 CPUs.

4. Dataset and Features

Since the bulk of our training is reinforcement learn-
ing, our dataset was primarily generated as the agent pro-
gressed through the PAC-MAN game. It consisted of raw
RGB images of the PAC-MAN game board. We used two
game grids for our experiments: one simple, 5x6 grid with
4 pieces of food and a ghost; and one larger grid with many
pieces of food and multiple ghosts. Example images are
shown in Figures 3 and 4.

These images were downsampled using opencv [5] be-
fore being fed to our Q-nets from their original size of
540x540 pixels to 224x224 pixels. Screenshots were taken
once per move using the ImageGrab functionality available
in the Python Imaging Library. The project was developed
in Python and we used Tensorflow for designing our deep
architectures.

Q-learning feature extraction is handled by a convolu-
tional network on top of the raw images. Since these con-
volutional layers are trained in conjunction with the rest of
the Q-net, they learn features that are salient to Q-learning
decisions.

4.1. Supervised Learning Data

Training deep convolutional networks is difficult, espe-
cially when considering the low rate at which we acquire
data (once per move). Since obtaining thousands of training
points may take on the order of days, we created a dataset
of 6,500 labeled image-move training examples by playing
PAC-MAN manually. This dataset was used when using our

Figure 3. Example images from the grid mediumGrid used by
the deep Q-nets. The original 540x540 images were rescaled to
224x224 before being passed to the networks. This grid was used
for our initial reinforcement learning

own, randomly initialized convolutional layers for feature
extraction, as they allowed us to train those layers more ef-
fectively prior to any reinforcement learning. These images
are standardized to zero-mean-unit-variance pixels.

Finally, we used a different grid than our previous at-
tempts — a larger grid with more food and multiple ghosts,
shown in figure 4 — for this phase of our experiments. We
did so because, since the supervised training set was gener-
ated manually, it was possible for us to generate a greater di-
versity of training examples by using a more complex game
grid.

Figure 4. Example image from the grid mediumClassic. This
grid was used once we started using supervised learning to pre-
train the convolutional layers in our models.

5. Results
5.1. Initial Results

We first ran several thousand reinforcement learning it-
erations with our ConvNet-LSTM and Inception-LSTM ar-
chitectures. The ConvNet architecture was that described
in section 3.4.2 with activation depths of 8, 16, and 32 in
the convolutional layers. All models were trained by Adam
optimization of the DQL loss described in section 3.1. The
resulting average step loss over 288 games for both models

on mediumGrid is plotted in figure 5. We see a heavy

10000 ‘ Model Pgrformancr? VS. Game; Played ‘

— LSTMAgent
— InceptionLSTMAgent

8000

6000

4000 -

Average Loss by Game

2000

J__W.L.L s Mewad A s
0 50 100 150 200 250 300
Games Played

Figure 5. Average step loss per game over 288 games for both
the ConvNet-LSTM agent and the Inception-LSTM agent. These
values were calculated by averaging the DQL loss for batches of
size 6 over the moves of each game.

drop in average loss within the first 100 games, after which
it seems to level off.

Despite the drop in loss, we did not see a significant im-
provement in PAC-MAN performance by our agents. The
resulting action patterns were largely cycles of left-right or
up-down movements, with no inclination to avoid the ghost
or to pursue food. This suggests one of two things:

e that PAC-MAN is too difficult to model with networks
of the size that we used, and so even a seemingly con-
verged network would have subpar performance, or

o that the few thousand DQL training iterations that we
used were insufficient to properly train the network.

In the following sections we will show evidence against
the first hypothesis. In particular, we will see how archi-
tectures with a significantly reduced number of parame-
ters are able to learn game strategies when the problem is
turned into a supervised learning task rather than a rein-
forcement learning one. As a consequence, the possibility
that our architectures were misspecified (i.e. the addition of
an RNN layer not generalizing enough, or layer sizes not
being enough for a good state representation) appears to be
weak.

For the case of randomly initialized convolutional layers
— as opposed to using the Inception network — it’s certainly
likely that only a few thousand training iterations is insuffi-
cient to train those layers so to properly extract salient fea-
tures from the PAC-MAN game board. This is supported
by the observation that average loss using the pre-trained

Inception network is significantly lower than that using ran-
domly initialized convolutional layers, despite Inception be-
ing trained for ILSVRC rather than for PAC-MAN feature
extraction.

Should hypothesis 2 be correct, then it would require
1000 hours to fully train a single CNN for a reasonable
number of iterations — say, 325,000. We would then need
1.5 months to evaluate our RL agents at an acceptable ca-
pacity. The main restriction is that our PAC-MAN base code
requires a physical screen grabbing, which ruled out any
possibility of using remote GPUs or services such as AWS.

The following sections describe the procedure followed
to cope with the restriction of a reduced training time.
Moreover, we provide support for the hypothesis that learn-
ing the PAC-MAN game is feasible — at least in a supervised
learning task. Finally, we use the tuned supervised learning
parameters as the RL weight initialization as an attempt to
improve the learning speed and explore the results.

5.2. Supervised Learning for Weight Initialization

To circumvent the difficulty of training deep convo-
lutional networks with reinforcement learning described
above, we attempted a supervised learning approach to pre-
train the convolutional layers in our models. In particu-
lar, we used the dataset detailed in 4.1 to initially train the
weights of our convolutional layers before applying rein-
forcement learning. We used an Adam optimizer with a
learning rate of 10~2, dropping that value as training loss
leveled out. The agent used here is similar to the stan-
dard DQL agent detailed in [15], except that the supervised
learning takes the place of experience replay; in fact, train-
ing batches were sampled randomly from the dataset, sim-
ilar to experience replay’s sampling from a move history
cache.

The advantage of supervised learning over reinforcement
learning is primarily speed. Supervised learning enables us
to use batch training to significantly speed up the training
process, rather than the one-by-one nature of reinforcement
learning. First, we reduce the number of parameters used
in each layer.* Table 1 shows the number of parameters
used for each architecture before and after the change of the
supervised learning tasks.

Architecture First approach | Final sizes
Conv-LSTM 220,000 46,000

Inception-LSTM 18,000,000 4,700,000
Experience Replay 175,000 45,000

Table 1. Approximate number of parameters tested for each archi-
tecture.

4Concretely, we reduced all fully connected layer sizes from 200 to be
50 and 25, respectively, and changed the LSTM unit size from 150 to be
10.

By using batches of size 100, we were able to perform
11,000 updates (corresponding to 1,100,000 examples sam-
pled from the dataset of 6,500 images) in just 8 hours. In
contrast, performing 1,100,000 updates of reinforcement
learning on our Conv-LSTM model would take roughly 5
months.

Indeed, we see that supervised learning provides for
impressive game performance. Figure 6 shows the game
scores obtained by agents trained with the supervised learn-
ing method. At each of the 6 benchmark locations — 100,
4800, 6700, 8800, 9500, and 10,900 — we ran the agent on
5 games to gauge its performance. We can see a clear up-
ward trend as training proceeds. Figure 7 shows the step
cross-entropy loss over 20,000 steps of the same training;
the downward trend also demonstrates steady convergence.
These two plots provide evidence that the ConvNet agent
was being trained effectively, and would potentially provide
well-trained convolutional layers for our Conv-LSTM DQL
agent.

600 Game Scores During Supervised Learning

x

400 -

200 -

Game Score

—200

-400 x
L]

B 2
)

-600

0 2000 4000 6000 8000 10000 12000
Training Steps

Figure 6. Average game scores at 6 points during training of a
supervised learning agent. We see the general upward trend as
training proceeds. This implies the ability to learn a reasonable
PAC-MAN agent despite our relatively small models.

The implication of the score increase is that, despite what
we had seen with the reinforcement learning agents, it is
possible for a network with the number of parameters that
we are using to be trained into a reasonably successful PAC-
MAN agent. In particular, the convolutional layers gener-
ated by this method should be usable in a DQL agent, by-
passing the need for training those layers using DQL over
far more steps than feasible.

5.3. DQL After ConvLayer Pre-training

As in Figure 6, we saw steady game performance im-
provement over the course of our supervised learning. We
did this with the intention of using the pre-trained convolu-
tional layers from these models to expedite training on our
DQL models.

Y
3

I
3

Supervised Loss
2 8 3 =
s 8 8 3

3
3

©
38

o

10000 20000

Training Steps

Figure 7. Cross-entropy loss over 20,000 supervised training steps.
We see a gradual decrease in loss; this corresponds to Figure 6 to
suggest that the ConvNet agent trained by supervised learning was
indeed being trained effectively.

However, our results did not significantly improve be-
yond the supervised learning. In the 100 games played via
DQL following the pretraining, our agent’s performance did
not increase; it obtained an average final game score of -42
over 31 games after training, lower than the averages seen
in the later stages of the supervised learning, likely due to
the addition of a relatively high € = .2, to encourage explo-
ration.

The performance stagnation seen at this stage would sug-
gest that our issues largely stem from the difficulty of DQL
over many iterations. The same agent running only on su-
pervised learning performs reasonably well, suggesting that
our convolutional layers have learned features salient to
Q-learning. Thus, performance due to DQL may only be
achieved by more extensive training, which is currently in-
feasible due to our hardware limitations and the requirement
that the PAC-MAN screen be visible at all times in order for
the Deep Q-learning code to use it.

6. Conclusion

In this project, we explored different architectures and
deep reinforcement learning training paradigms for the
game PAC-MAN. We began with a standard DQL imple-
mentation, where the Q-network is a convolutional neural
network, and experimented with adding an LSTM recurrent
network after the fully connected layers, in an attempt to
add sequence memory to the network.

We also experimented with using a pretrained Incep-
tion network to extract features, and with an LSTM con-
nected after the convolutional layers. Finally, we collected
a database of PAC-MAN images and moves by playing the
game ourselves, and then used supervised learning with a
cross-entropy loss to pretrain both the purely convolutional
Q-agent, and a convolutional Q-agent with an LSTM.

We found that because of the vastly larger number of
iterations, we were able to achieve convergence in the su-

pervised learning scenario, whereas we did not see the same
behavior in the pure reinforcement learning scenario. While
the agents never reached human level performance, they
did clearly pick up some aspects of human-like play, espe-
cially in the opening sequences of the game. For example,
both the convolutional-only and convolutional + LSTM net-
works learned to immediately eat the power pellets, a strat-
egy we employed often when playing the game to create the
database.

7. Future work

With more computational power, or more training time,
we would like to be able to train an agent purely with re-
inforcement learning, not resorting to supervised learning.
Demis Hassabis, founder of DeepMind, agrees in [6] that
their AlphaGo Go playing agent could have been trained
without initial supervised learning given more time. We
think that with further optimization of network architecture
and other hyper-parameters, and increased training time, it
should be possible to reinforcement train a reasonably good
PAC-MAN agent.

References

[1] A. WONG, P. A. The pac-man projects. Documentation for
the PAC-MAN implementation. 4

[2] ABADI, M., AGARWAL, A., BARHAM, P., BREVDO, E.,
CHEN, Z., CiTrRO, C., CORRADO, G. S., DAVIS, A.,
DEAN, J., DEVIN, M., GHEMAWAT, S., GOODFELLOW, I.,
HARP, A., IRVING, G., ISARD, M., JIA, Y., JOZEFOWICZ,
R., KAISER, L., KUDLUR, M., LEVENBERG, J., MANE,
D., MONGA, R., MOORE, S., MURRAY, D., OLAH, C.,
SCHUSTER, M., SHLENS, J., STEINER, B., SUTSKEVER,
I., TALWAR, K., TUCKER, P., VANHOUCKE, V., VASUDE-
VAN, V., VIEGAS, F., VINYALS, O., WARDEN, P., WAT-
TENBERG, M., WICKE, M., YU, Y., AND ZHENG, X. Ten-
sorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org. 5

[3] BoM, L., HENKEN, R., AND WIERING, M. Reinforcement
learning to train ms. pac-man using higher-order action-
relative inputs. In Adaptive Dynamic Programming And Re-
inforcement Learning (ADPRL), 2013 IEEE Symposium on
(April 2013), pp. 156-163. 2

[4] BORSA, D., GRAEPEL, T., AND SHAWE-TAYLOR, J.
Learning Shared Representations in Multi-task Reinforce-
ment Learning. ArXiv e-prints (Mar. 2016). 1

[S] BRADSKI, G. Dr. Dobb’s Journal of Software Tools. 5

[6] BYFORD, S. Deepmind founder demis hassabis on how ai
will shape the future. An interview with Demis Hassabis,
founder of DeepMind, on their AlphaGo Go player. 8

[7]1 DELOOZE, L. L., AND VINER, W. R. Fuzzy g-learning
in a nondeterministic environment: developing an intelli-
gent ms. pac-man agent. In Computational Intelligence and
Games, 2009. CIG 2009. IEEE Symposium on (2009), IEEE,
pp. 162-169.

8]

(9]

(10]

(1]
(12]

(13]

(14]

[15]

[16]

(17]

(18]
[19]

(20]

(21]

(22]

(23]

(24]

[25]

FRANCOIS-LAVET, V., FONTENEAU, R., AND ERNST, D.
How to discount deep reinforcement learning: Towards new
dynamic strategies. CoRR abs/1512.02011 (2015).

HAUSKNECHT, M. J., AND STONE, P.
rent g-learning for partially observable mdps.
abs/1507.06527 (2015). 1

HEINRICH, J., AND SILVER, D. Deep Reinforcement
Learning from Self-Play in Imperfect-Information Games.
ArXiv e-prints (Mar. 2016). 1

HOCHREITER, S., AND SCHMIDHUBER, J. Long short-term
memory. Neural computation 9, 8 (1997), 1735-1780. 3
JIANG, N., AND L1, L. Doubly robust off-policy evaluation
for reinforcement learning. CoRR abs/1511.03722 (2015). 1

MERTIKOPOULOS, P., AND SANDHOLM, W. H. Learn-
ing in games via reinforcement and regularization. ArXiv
e-prints (July 2014).

MNIH, V., BADIA, A. P., MIRZA, M., GRAVES, A.,
LiLLICRAP, T. P., HARLEY, T., SILVER, D., AND
KAvUKcUOGLU, K. Asynchronous methods for deep re-
inforcement learning. CoRR abs/1602.01783 (2016).

MNIH, V., KAVUKCUOGLU, K., SILVER, D., GRAVES,
A., ANTONOGLOU, I., WIERSTRA, D., AND RIEDMILLER,
M. Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602 (2013). 1,4, 6

ONG, H. Y., CHAVEZ, K., AND HONG, A. Distributed deep
g-learning. CoRR abs/1508.04186 (2015). 1

PARISOTTO, E., BA, L. J., AND SALAKHUTDINOV, R.
Actor-mimic: Deep multitask and transfer reinforcement
learning. CoRR abs/1511.06342 (2015). 1

PYTHONWARE. Python Imaging Library (PIL).
SERMANET, P., EIGEN, D., ZHANG, X., MATHIEU, M.,
FERGUS, R., AND LECUN, Y. Overfeat: Integrated recog-
nition, localization and detection using convolutional net-
works. arXiv preprint arXiv:1312.6229 (2013).

SILVER, D., HUANG, A., MADDISON, C. J., GUEZ, A.,
SIFRE, L., VAN DEN DRIESSCHE, G., SCHRITTWIESER, J.,
ANTONOGLOU, 1., PANNEERSHELVAM, V., LANCTOT, M.,
ET AL. Mastering the game of go with deep neural networks
and tree search. Nature 529, 7587 (2016), 484-489. 1
SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS, J.,
AND WOINA, Z. Rethinking the inception architecture for
computer vision. arXiv preprint arXiv:1512.00567 (2015).
3

TAYLOR, M. E., AND STONE, P. Transfer learning for re-
inforcement learning domains: A survey. The Journal of
Machine Learning Research 10 (2009), 1633-1685. 3

VAN HASSELT, H., GUEZ, A., AND SILVER, D. Deep
reinforcement learning with double g-learning. CoRR
abs/1509.06461 (2015). 1

WANG, Z., DE FREITAS, N., AND LANCTOT, M. Duel-
ing network architectures for deep reinforcement learning.
CoRR abs/1511.06581 (2015).

ZAREMBA, W., AND SUTSKEVER, I. Reinforcement learn-
ing neural turing machines. CoRR abs/1505.00521 (2015).
1

Deep recur-
CoRR

