
Optimizing CNNs

Timothy Dozat
Stanford

tdozat@stanford.edu

Abstract

This work aims to explore the performance of a popu-
lar class of related optimization algorithms in the context of
convolutional neural networks. Our goals are to test log-
ically possible but currently unexamined variants of pro-
posed algorithms as well as provide a more thorough com-
parison of those that have already been written about. In
addition to examining the overall performance of the algo-
rithms, we scrutinize how sensitive different algorithms are
to their hyperparameters. Finally, we aim to see how al-
gorithm performance on toy datasets carries over to more
practical tasks with state-of-the art model structures.

1. Introduction
First-order optimization algorithms are often conceptu-

alized as being distinct and largely unrelated. This concep-
tualization is useful in that it restricts how much time the
researcher must put into finding the right optimizer for their
model–that is, they might train a few models with SGD,
a few with RMSProp, and a few with NAG, then pick the
best from among there–but troubling in that insights from
newly proposed optimization algorithms rarely get incor-
porated into older variants–for example, Kingma & Ba [5]
proposed an algorithm that corrects the zero-initialization
bias inherent in any algorithm that uses a decaying mean,
but few implementations of older algorithms that likewise
use decaying means have been updated to reflect this in-
sight. When the relationships between them are examined
more closely, it becomes easier to see how insights from one
algorithm can be incorporated into other algorithms, but the
other algorithms now have twice as many variants as they
had before. Obviously, one generally can’t claim that one
algorithm variant is categorically “better” for non-convex
objects, but can we find evidence that favors some algorithm
variants over others?

Additionally, as the complexity of the algorithm grows,
the number of hyperparameters that need to be hand-tuned
grows as well. In addition to the learning rate, most popu-
lar algorithms more complex than SGD include at least one

other hyperparameter, often two or three more. To make
matters worse, most hyperparameters can can be warmed or
cooled (and sometimes the algorithm’s theoretical bounds
depend on it), meaning even more hyperparameters. If one
wants to find the optimal optimizer for their model, that
amounts to an unmanageably large number of hyperparame-
ters to sift through–so do some hyperparameters make more
of a difference than others?

This work aims to examine the performance of differ-
ent algorithm variants on a relatively simple toy task with a
nonetheless difficult objective. Of course, performance on
one task with one type of network doesn’t guarantee simi-
lar performance on all tasks with any network architecture,
especially if the original task has few practical applications
and the original network leaves out recent insights–so in or-
der to make sure our findings are relevant to a wider class
of problems and network structures, we take insights from
the first round of experiments and see how they hold up in a
slightly more real task with a more recently innovated type
of network.

2. Background
This section reviews the relationships between a number

of popular first-order optimization algorithms.

2.1. Momentum

Classical momentum [8] maintains a decaying sum of
what the SGD update would be at each iteration and updates
the parameters with that moving average paramaterized by
µ. This serves to speed up convergeance across dimensions
with a small but consistent gradient and slow it down across
dimensions with large but inconsistent ones [9]. This can be
equivalently represented as a decaying mean by multiplying
the learning rate by (1−µ). Kingma & Ba [5] propose an al-
gorithm with a slightly different kind of momentum–rather
than accumulating the gradient scaled by the learning rate,
they accumulate only the gradient (we’ll call these scaled
gradient and unscaled gradient momentum, respectively).
In a stochastic setting, this has the intuitive interpretation as
an approximation of the true gradient, rather than the gradi-
ent of just the current objective (i.e. it approximates the full

1



batch gradient rather than just the gradient of the current
minibatch). When the learning rate is constant, these two
variants are equivalent, but the first one uses proportionally
less of the current gradient at each update when the learning
rate is annealed.

Sutskever et al. [9] advocate for using a schedule that
starts with a low value of µ and then increases it to a very
large value of µ over time, as this allows the model to
quickly forget the early gradients that just get it in the right
ballpark and remember more of the later gradients needed
to getting over saddlepoints near the minimum. Kingma &
Ba [5] point out that when using a decaying mean, initial-
izing the accumulation vector to 0 introduces error into the
accumulated mean. They propose correcting this error with
what what is equivalent to using a schedule of µ such that
µt = µ(1 − µt−1)/(1 − µt)1. With this schedule, the first
update will use all of the first gradient, the second will use
about half of the second gradient, the third will use about a
third of the third gradient, etc.

Lastly, momentum can be thought of as involving two
parts to every update–a momentum part, which applies the
momentum vector of the previous timestep, and a gradient
part, which applies an SGD update. When thought of like
this, it seems inefficient not to apply the momentum vector
of the current timestep–an algorithm known as Nesterov’s
Accelerated Gradient (NAG) [7] has been shown to rectify
this inefficiency [9].

2.2. Adaptive learning rates

Duchi et al. [2] motivate an algorithm called AdaGrad
that scales the learning rate for each parameter by the in-
verse L2 norm of all previous gradients for that that param-
eter. This slows down learning of frequently activated pa-
rameters and speeds up learning of infrequently activated
parameters (at first). However, because it accumulates this
value as a true sum instead of decaying sum or average, in
practice the learning rates become too small for the model
to achieve fine-grained convergeance. Tieleman & Hinton
[10] address this issue by replacing the sum with a decaying
mean and dub this variant R(oot)M(ean)S(quare)Prop.

Dauphin et al. [1] propose their own variant of RMSProp
that uses second-order information (Equilibrated Gradient
Descent). Instead of accumulating an L2 norm of the pre-
vious gradients, it accumulates an L2 norm of an approx-
imation of the previous Hessian diagonal. Computing the
full Hessian is obviously intractable for any medium-sized
model, but the product of the Hessian with a gaussian ran-
dom vector can be computed in a reasonable amount of time
and approximates the diagonal of the true Hessian when re-
peated with enough random vectors. Their algorithm as de-
scribed in the paper uses a true mean rather than a decaying

1However, any schedule that gives µ1 = 0 will avoid zero-initialization
bias.

mean, meaning it lacks an additional hyperparameter that
RMSProp has2.

2.3. Combination

Some previous researchers [10] found that attempts to
combine RMSProp with momentum generally underper-
formed, but they attempted to combine it with scaled-
gradient momentum–however, Kingma & Ba [5] were able
to outperform a number of other algorithms by combin-
ing unscaled-gradient momentum with RMSProp and then
correcting for the zero-initialization bias of the decaying
means. Similarly, Dauphin et al. [1] point out that their al-
gorithm can be combined with momentum as well for better
results than they present in their paper (which only exam-
ines the effects of the adaptiver learning rate component).

3. Logical Possibilities

There are four distinct logically possible variants of mo-
mentum based on this discussion, differing in whether they
use the scaled or unscaled gradients and whether the mo-
mentum part of their update uses the previous moment vec-
tor (classical momentum) or the current one (NAG). So far
the unscaled gradient version of NAG has not been explored
in the literature.

Of AdaGrad, there are twelve logical possiblities: vari-
ants can use a sum or a mean, an L1, L2, or L∞ norm, and
first- or second- order information. Only those using an L2

norm have been examined previously.
There are also numerous ways to select the moving av-

erage hyperparameters (e.g. µ for momentum). One pos-
sibility is to use a constant value that doesn’t depend on
time t; another is to use the initialization-bias correction
schedule; one could use a true mean instead of a mov-
ing average, equivalent to the limit as µ approaches 1 of
the initialization-bias correction schedule; or one could also
hand-craft a schedule that increases slowly over time. Like-
wise, the global learning rate can (and often should) be de-
cayed according to a schedule, which means yet another hy-
perparameter that must be set.

In principle, any of the momentum methods can be com-
bined with the adaptive learning rate methods, using any of
the four schedules for each moving average, resulting in ap-
proximately 750 possible algorithm variants of the “hyper-
algorithm” shown below. Time and computing restrictions
prevent a complete exploration of this algorithm space, so
the ensuing discussion will only examine parts of it and at-
tempt to infer the nature of the unexplored parts.

2Although one could consider the choice of using a decaying mean
versus using a true mean a hyperparameter as well.

2



Algorithm 1 The “hyperalgorithm” of which all the afore-
mentioned algorithms are variants. True sums/means can be
represented as the limit as a decay parameter approaches 1.
Require: θ0
Require: αi . The (annealed) learning rate at timetsep i
Require: µi ∼ [0, 1) . The momentum parameter
Require: νi ∼ [0, 1) . The variance parameter
Require: p ∼ [1,∞) . The norm number
Require: ε ≈ 1e−8

Require: fi(θ)
m0,v0 ← 0
while θt not converged do

t← t+ 1
ht ← {∇θft(θt−1) orRu∼N (0,1)(∇θft(θt−1))}
vt ← νtvt−1 + {(1− νt) or 1}hpt
v̄t ← p

√
vt + ε

gt ← {1 or αt

v̄t
}∇θft(θt−1)

mt ← µtmt−1 + {(1− µt) or 1}gt
m̄t ← {µt+1mt + {(1− µt) or 1}gt or mt}
∆t ← {αt

v̄t
or 1}m̄t

θt = θt−1 −∆t

end while
return θT

4. Experimental Setup
4.1. Convolutional autoencoder

We use a convolutional autoencoder3 trained on the
MNIST dataset of 28× 28 grayscale handwritten digits [6].
Each image was scaled so that each pixel was between 0 and
1 (therefore the dataset was not mean centered–every input
value was positive). The autoencoder used two 7×7×1×16
convolutional filters, followed by a 2×2 max pooling filter,
followed by a 7 × 7 × 1 × 32 convolutional filter, another
2× 2 max pooling filter, an 800× 128 FC layer, and finally
a 128×16 FC layer on the encoder side, then the conversely
on the decoder side, for a total of 224177 learnable parame-
ters. All models were trained for 50 epochs. Because we’re
primarily concerned with optimization, in this task we only
report training error; however, the patterns reported gener-
ally hold for validation error as well.

Using vanilla ReLUs seemed to categorically hurt per-
formance, as large learning rates consistently “killed” every
single node in the network–using smaller learning rates al-
lowed the model to retain a larger share of its initial capac-
ity but significantly slowed down learning. The solution to
this was to replace the vanilla ReLUs with “leaky” ReLUs–
doing so consistently resulted in better performance, as
no node was ever permanently deactivated and the models
could reach better solutions within 50 epochs. Also of note

3The code is adapted from [4], which uses the Lasagne extension of
Theano.

is that decaying the learning rate by .94 every two epochs
similarly very frequently improved performance, irrespec-
tive of the other hyperparameters.

4.2. Momentum

In this section we examine the effect of classical momen-
tum (CM) versus NAG, the momentum comstant, the sched-
ule, and to a lesser extent the choice of accumulating scaled
or unscaled gradients. The results are shown in Table 4.2.
The optimal learning rate for both CM and NAG, selected
from {.5, 1, 2}, was found to be 2 in all of the best models,
whereas vanilla SGD diverged with rates higher than 1. The
models’ relative robustness to larger learning rates supports
the intuition that momentum helps by slowing down learn-
ing along turbulent dimensions, preventing diverging at the
beginning of training.

We compared using no schedule, using the initialization-
bias correction schedule, and using a handcrafted sched-
ule adapted from Sutskever et al [9] (that also avoided ini-
tialization bias). The handcrafted schedule performed ex-
tremely poorly compared to the constant schedule and the
bias-correction schedule–this is likely because µ started out
far too small at the beginning of training, and consequently
the model couldn’t take advantage of the properties of mo-
mentum that prevent divergeance when using a large learn-
ing rate. Using an initialization bias correction schedule re-
sulted in underperforming models–this may be because the
models gave too much weight to large, noisy gradients early
on in training

The choice of storing the scaled gradients (SG) or the un-
scaled gradients (UG) in mt was generally of little conse-
quence. However, the choice of using CM or NAG did make
a difference, but not in the expected direction–one would
expect NAG to categorically outperform CM, but here NAG
generally performed noticeably worse when using the larger
learning rates that led to the best performance. Why might
this be, given that NAG has been generally seen as an im-
proved form of momentum? It seems likely that the large
learning rate and leaky ReLUs (possibly weight initializa-
tion as well) may have played a part. The update rule for
scaled-gradient NAG, written in terms of gt and mt−1 and
using a constant momentum schedule, can be simplified to
the following:4

θt ← θt−1 − (µ2mt−1 + (1− µ2)gt)

When rewritten like this, it becomes clear that this variant
of NAG is reweighting the update to give more weight to
the current gradient than the momentum vector, which it
depends on for offsetting large values of gt that might re-
sult in significant overshooting. Thus when large learning

4Note that while µ2 gets used in the update of θ, only µ gets used
in the update of mt, so NAG is not equivalent to simply using a smaller
momentum parameter.

3



Figure 1. Graph of Momentum and Nesterov (µ = .9) with a con-
stant schedule and an initialization-bias correction schedule with
learning rate 2 and scaled gradients. The bias-fixed momentum di-
verged, whereas the bias-fixed Nesterov appears slated to overtake
momentum within a few more training epochs.

rates collide with the large, unreliable gradients that begin
training, it is easy for the optimizer to take large steps in
the wrong direction relatively early on, and these steps may
take a while to recover from (especially when using leaky
ReLUs that have a very small gradient when nearly dead).
So while NAG will probably eventually overtake CM and
converge to a better solution, it may take more training time
for this to happen.

CM None Bias-fix NAG None Bias-fix
µ = .9 9.30 9.98 µ = .9 11.92 11.09
µ = .95 9.49 10.70 µ = .95 9.65 11.58

Table 1. MSE (×1000) on the autoencoder task after 50 epochs
with α0 set to 2 and storing the unscaled gradients in mt, compar-
ing the performance of classical momentum and Nesterov’s accel-
erated gradient with two values of µmax and two kinds of schedules
(constant µ and bias correction).

4.3. Adaptive Learning Rates

In this section we examine how different adaptive learn-
ing rate optimizers perform. In particular, we focus on the
choice of the uncentered variance parameter ν and its sched-
ule, as well as the norm parameter p. The results are shown
in Table 4.3.

The first interesting observation–other than that they all
perform significantly better than even NAG–is that most

variants perform reasonably well no matter what the hyper-
parameter setting, and the L1 and L2 norm variants gen-
erally outperform the max norm ones. Interestingly, how-
ever, each of the three tested norm variants “prefers” a dif-
ferent initial learning rate–the L1 norm worked best with
α0 = .001, the L2 variant liked α0 = .002, and the L∞
norm preferred α0 = .005. This makes sense given the na-
ture of the norms–the L1 norm of a vector whose values are
all less than one will be smaller that theL2 norm of the same
vector, and the L∞ norm will obviously be the largest. So
when we invert that in the learning algorithm, we have that
the algorithm using the L1 norm will make larger steps than
the other two (given the same learning rate) and the max
norm will take smaller ones. In order to ensure that they all
take steps of roughly the same magnitude, we need to give
them different learning rates.

The only other noteworthy pattern to be seen here is that
when ν is larger than .9, the variants that use no sched-
ule (and therefore aren’t corrected for initialization bias)
significantly underperform, either completely diverging or
simply failing to reach anything resembling a good solu-
tion. This has a fairly intuitive explanation: the update rule
for RMSProp using constant ν can be rewritten in terms of
the squared gradients (or hessian-vector products if using
EGD):

θt =
αt√

(1− ν)
t∑
i=1

νt−ih2
i + ε

gt

The factor of 1√
1−ν evaluates to about 31.6 for ν = .999–

that is, not using initialization bias correction is equivalent
to multiplying the learning rate by 31.6. Obviously, one can
correct for this by using a smaller learning rate–however, as
training proceeds, the sum in the denominator gets larger,
meaning the effective learning rate gets even smaller. While
I don’t have the data to scrutinize the interaction between
the learning rate, schedule, and variance parameter, I sus-
pect that starting with a learning rate small enough to com-
pensate for a large ν early on may hinder later training, and
this seems to be consistent with what Kingma & Ba found
[5].

While equilibrated gradient descent (EGD) shows
promise as a powerful learning algorithm5, for this task it
appeared to fail miserably–even the best optimizer using
EGD vastly underperformed compared to optimizers that
only use first-order information. This is particularly surpris-
ing because the researchers who proposed the algorithm use
a convolutional autoencoder trained on MNIST and show
that it outperforms some of the baselines discussed here.
There are a number of possible reasons for this discrepancy.
The first is that EGD approximates the diagonal of the Hes-

5Anecdotally, it is very good at avoiding attractive local minima in
other tasks

4



sian by repeatedly sampling random vectors and performing
an efficient computation of the Hessian-vector product on
these–it seems plausible that models with many parameters
would need many samples before gains from the more pow-
erful second-order information could be seen. Since these
models presented here were only trained for 50 epochs, per-
haps it simply needed more passes through the dataset to
build up its variance vector vt. Another possible expla-
nation is that Theano’s L-op, which is used for efficient
computation of the Hessian-vector product, is not suited to
the particular model architecture employed in this research.
Specifically, it produced nan values for every parameter be-
low the highest max-pooling layer in the encoder.6 In an
attempt to accommodate the algorithm anyway, the imple-
mentation employed here backed off to the original gradi-
ent wherever nan’s occurred in the Hessian-vector product
(slightly scaled up, since the gradient was on average a few
times smaller)–however, it’s possible that combining the al-
gorithms in this way–with some layers using EGD and some
using RMSProp–simply doesn’t work. In any case, the fact
that many deep learning packages don’t yet fully support
the tools needed to implement EGD (Theno’s R-op and L-
op seem to be not fully incorporated into the framework,
and I believe TensorFlow lacks them altogether) is certainly
a blow against the algorithm’s current viability.

L1 None Bias-fix L2 None Bias-fix
ν = .9 6.98 6.91 ν = .9 7.08 7.10
ν = .999 nan 7.22 ν = .999 44.35 7.15

L∞ None Bias-fix
ν = .9 7.63 -
ν = .999 10.61 -

Table 2. MSE (×1000) on the autoencoder task after 50 epochs
with α0 set to .001, .002, and .005 for the L1, L2, and L∞ norms,
respectively, comparing the performance of of the three kinds of
norms with two values of νmax and two kinds of schedules (con-
stant ν and bias correction). Other results involving the true mean
and hand-crafted schedule are comparable to ν = .999 and the
bias correction schedule.

4.4. Combinations

Kingma & Ba [5] showed that momentum and
RMSProp-based methods can be combined. Here we ex-
amine the performance of different variant combinations
as well as their sensitivity to hyperparameters, focusing on
the values of µ and ν as well as the choice of momentum
type (CM vs NAG) and norm (L1, L2, L∞). Unfortunately,
practical constraints have prevented an exploration of how
scaled-gradient momentum interacts with RMSProp, and all
experiments here use bias-initialization schedules for both

6It may be that the Hessian for max pooling layers actually is zero or
undefined; I haven’t worked out the math myself yet.

Figure 2. Graph of decaying mean variants of AdaGrad with dif-
ferent schedules for ν. Most achieve comparable performance, but
the max-norm version is clearly behind.

decaying mean hyperparameters. The results are given in
4.4.

Firstly, when unscaled-gradient momentum (either CM
or NAG) with a decaying mean (as opposed to a decaying
sum) is switched in for gt in an AdaGrad variant, the pre-
ferred learning rate stays the same–that is, L1 the variant
still prefers .001, theL2 variant still prefers .002, etc. In one
sense, this is what we would expect if the momentum vec-
tor mt represents an estimate of the true gradient of the loss
function–presumably the gradient of the true cost function
f(θ) (the batch gradient) has approximately the same mag-
nitude as the gradient of any of the stochastically generated
cost functions (the minibatch gradient), so we would want
the model to travel approximately the same distance no mat-
ter which gradient it used. However, as we saw above,
the momentum methods tolerate higher learning rates than
SGD, so we might expect Momentum+AdaGrad combina-
tions to tolerate higher learning rates as well. One explana-
tion for this not apparently holding is that the AdaGrad vari-
ants actually do do some of the same things the momentum
variants do, namely help prevent divergeance–while infre-
quent activation patterns can still undergo extreme changes
with AdaGrad, common ones that are more at rist of trig-
gering oscillations that ultimately lead to divergeance are
automatically slowed down after their first few large jumps.
So because AdaGrad variants and momentum variants both
prevent early-stage learning oscillations and divergeance, it
would make sense that one could swap out gt in the Ada-
Grad variants for a decaying mean version of mt or m̄t

5



CM, L1 µ = .9 µ = .95 NAG, L1 µ = .9 µ = .95
ν = .9 6.65 6.95 ν = .9 6.80 7.12
ν = .999 7.26 7.36 ν = .999 7.42 7.09

CM, L2 µ = .9 µ = .95 NAG, L2 µ = .9 µ = .95
ν = .9 6.51 6.31 ν = .9 6.56 7.00
ν = .999 6.75 6.95 ν = .999 6.36 7.48

CM, L∞ µ = .9 µ = .95 NAG, L∞ µ = .9 µ = .95
ν = .9 6.95 8.35 ν = .9 5.90 7.58
ν = .999 7.65 7.30 ν = .999 7.80 7.46

Table 3. MSE (×1000) on the autoencoder task after 50 epochs.
The learning rates are the same as in Table 4.3, both µ and ν
use the initialization-bias correction schedule, and all variants use
unscaled-gradient momentum (as in Adam).

without having to re-tune the learning rate.
Using NAG momentum without any kind of adaptive

learning rate was generally worse than CM in this setting–
however, when adaptive learning rates are incorporated
back into the algorithm, algorithms with NAG instead of
CM become competitive again. However, unless the learn-
ing rate is reduced (which results in worse performance for
both CM and NAG, at least after 50 epochs), they still don’t
consistently outperform those that only use CM. This sug-
gests that combining NAG variants with AdaGrad variants
alleviates some of the issues that arise from assigning more
weight to the current gradient during early-stage learning
updates, but not all of them. The initial steps that NAG takes
still overweight the current gradient, which still means of-
ten leaving large swaths of leaky ReLUs nearly dead, but
because the nearly dead leaky ReLUs will have consistently
small gradients until something in the data manages to trig-
ger them, the denominator of the AdaGrad component will
gradually shrink as the large initial steps start to wear off,
resulting in larger steps to recovery than NAG by itself sees.

Finally, incorporating momentum–of any kind–into
EGD produced few if any noticeable gains.

4.5. Summary

There are a number of key takeaways that we can learn
from this discussion. First, using leaky ReLUs was inte-
gral for achieving the best performance in as few epochs
as possible. However, they seemed not to play as nicely
with NAG. Regarding the hyperparameters µ and ν: the
best values for both parameters seem to be around .9 for
this task, although the algorithms seem more robust to vari-
ations in ν than µ. For the momentum hyperparameter µ,
zero-initialization bias correction seems not to help in gen-
eral (and sometimes even to hurt), but for ν, it’s much more
important. The max-norm variants of AdaGrad are at best
very sensitive to hyperparameters and at worst just not as
good–using L1 and L2 norms seems to work better, and
when combined with momentum, the L2 norm variants gen-

Figure 3. Graph of initialization bias-corrected combinations of
unscaled-gradient momentum and decaying mean AdaGrad.

erally achieve lower training error (although it is worth ac-
knowledging that the L∞ variant with NAG achieved the
lowest training error overall).

5. ResNets
The task above is essentially a toy task–the input dataset

is simple, the model is relatively small, and the goals are
not useful for practical purposes. So how do we know that
the observations above will carry over into tasks involving
more complex datasets, with larger models, with real pur-
poses? Residual Networks (ResNets) [3] were originally
designed for image recognition and have a relatively sim-
ple structure that nonetheless facilitates backpropagation
through the network. Because this model is designed to fa-
cilitate efficient learning, we might ask whether the model
structure renders the choice of optimization algorithm or
hyperparameter settings inconsequential.

Limited again by time and computing power, we were
only able to train a few fairly shallow models on CIFAR-10
with a representative sample of learning algorithms. Specif-
ically, we examined unscaled-gradient NAG with α0 = 1,
L2 and L1 norm variants of decaying-mean AdaGrad, L1

and L2 variants of AdaGrad, and L2 AdaGrad with NAG.
EGD again failed to compile. µ was set to .9, ν was set to
.9997, and all used initialization-bias correction schedules.
In order to provide a more complete analysis we present
both training and validation error in Table 5.

There are a few interesting things to note–the first is that

7This value was chosen before we realized that .9 may be more robust

6



Figure 4. Training/validation cross entropy of resnets trained on CIFAR-10

once again, all adaptive learning rate methods outperform
the momentum one. And in fact, the AdaGrad-based ap-
proaches without momentum end with slightly lower train-
ing and testing error, although based on Figure 4, clearly 50
epochs were insufficient to achieve convergeance–it’s very
possible that the variants with momentum would eventually
overtake them. Additionally, the algorithms that used the
L1 norm instead of the L2 norm achieved lower training er-
ror but were exceptionally poor at generalizing. In contrast,
the three L2 models are fairly consistently lowest in terms
of test error, suggesting that either a .001 learning rate for
the L1 norm doesn’t transfer over to other tasks as well in
practice, and is too high here, or that L2 norms are in gen-
eral more conservative and robust to small perturbations in
the input.

Train Test
NAG 0.289 0.419
L2 AdaGrad 0.232 0.376
L1 AdaGrad 0.214 0.410
L2 Adam 0.230 0.406
L1 Adam 0.214 0.438
L2 Nadam 0.230 0.388

Table 4. The results of training resnets with different optimization
algorithms.

6. Conclusion
This exploration makes a few contributions. First, it finds

that the value for ν for Adam (and which should be just
as applicable to RMSProp) suggested by Kingma & Ba [5]
may be too high, and that ν = .9 may be better in practice.
Similarly, it finds that not correcting for initialization bias
in momentum methods may be better that the alternative. It
explored the effect of the norm used in extensions of Ada-
Grad, finding that the originalL2 norm seems to be the most

robust (although it may be the case that using an L1 norm
instead sometimes works just as well or better). One must
be careful when working with ReLUs, especially when us-
ing some kind of momentum, as this work seems to have run
into problems with them. Equilibrated gradient descent–
while extremely theoretically appealing–seems to have im-
plementational problems that prohibit its use in some mod-
els. Finally, even when working with architectures specif-
ically designed to facilitate gradient propagation and speed
up training, using a fast and more powerful optimization al-
gorithm still allows for even faster convergeance.

References
[1] Y. Dauphin, H. de Vries, and Y. Bengio. Equilibrated adap-

tive learning rates for non-convex optimization. In Ad-
vances in Neural Information Processing Systems, pages
1504–1512, 2015.

[2] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradi-
ent methods for online learning and stochastic optimization.
The Journal of Machine Learning Research, 12:2121–2159,
2011.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[4] M. S. Jones. Convolutional autoencoders in
python/theano/lasagne. Blog post (retrieved February
17, 2016, April 2015.

[5] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[6] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database
of handwritten digits, 1998.

[7] Y. Nesterov. A method of solving a convex programming
problem with convergence rate O(1/k2). In Soviet Mathe-
matics Doklady, volume 27, pages 372–376, 1983.

[8] B. T. Polyak. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics and
Mathematical Physics, 4(5):1–17, 1964.

[9] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the
importance of initialization and momentum in deep learning.

7



In Proceedings of the 30th International Conference on Ma-
chine Learning (ICML-13), pages 1139–1147, 2013.

[10] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning, 4,
2012.

8


