

225

Abstract

This paper proposes to use neural networks to solve a

simplified version of Gomoku. More specifically,
convolutional neural network and multi-dimensional
recurrent network are trained separately using high-level
human games. While the convolutional neural network was
able to learn specific features for Gomoku without prior
knowledge, the human game data set proved to be
insufficient for a robust performance. The
multi-dimensional recurrent network also suffered from the
small database even though it was able to occasionally
occasionally expert level moves.

1. Introduction
Games are an interesting domain for artificial

intelligence research. They provide a controlled and
well-defined environment, generally straightforward rules
and clear-cut results. However, game winning formulas
are often complicated and nonsingular. These
characteristics make games suitable to test out different
artificial intelligence approaches.

Deep neural networks involving various specific
implementations have made a huge progress in the field of
image processing. Convolutional neural networks have
proven to be successful in feature recognition while
recurrent neural networks have demonstrated their ability
in handling sequences of data. Such implementations have
been used on game playing. Most notably, Google
developed the Go-playing program AlphaGo using deep
neural networks[1]. Go has long been regarded as the most
complicated chess game with a prohibitively large search
space. In fact, many aspects of the game have been proven
to be NP-hard and PSPACE-hard. However, AlphaGo has
demonstrated its ability by winning 5-0 against the
European Go champion as well as leading 3-1 against the
second highest ranking professional Go player worldwide.

Although complex in nature, Go is a perfect candidate
for evaluating neural network algorithms. The rules are
very simple: two players play on a 19x19 board. Each
player alternatively places stones onto any of the

unoccupied intersections on the board in attempt to
conquer the most territory. The player with black stones
places first but need to capture a greater area than the
player with white stones in order to win. A single stone or
a group of connected stones can be captured when it is
completely surrounded by its opponents’ stones. The only
illegal move is when it leads to previously seen position to
avoid cycling. The game ends when both players pass.
Winning is determined by counting territory captured by
each player.

One interesting and important observation is Go’s
symmetry. It has not only the straightforward axes of
symmetry, but also an approximate translational
invariance.

Conducting experiments with Go can be very difficult
due to the need for distinguishing dead group from alive
ones and handling pass moves. Many machine-learning
approaches have used simplified versions of Go as a test
bed for ideas.

Common simplified Go games include Pente, Renju,
Tanbo, Connect, Atari-Go and Gomoku. In this paper we
will focus on Gomoku due to its simplicity.

Gomoku, also know as ‘five-in-a-row’, is played on a
15x15 board, smaller than Go’s 19x19 board. The basic
rules are the same, two players place stones alternatively
on the intersections of the board. However, winning is
determined by whoever gets 5 of their stones in a row,
vertical, horizontal or diagonal. Human players strategies
usually involve blocking opponents’ lines, keeping his line
unblocked, and perform multiple attacks at the same time.
These are all heavily feature based.

These feature-based strategies provide a perfect
environment to deploy neural network based techniques.
Moreover, human players rely on past game experience to
develop these strategies. This also plays in neural
networks’ advantage.

The fact that AlphaGo did not perform perfectly against
top human player leaves room for development. This
paper is an attempt at using two different techniques for
context free game playing: convolutional neural networks
for feature recognition without human input and
multi-dimensional recurrent neural networks for scalable
performance for different sized boards. The inputs to our
algorithm are Gomoku board situations expressed as

Convolutional and Recurrent Neural Network for Gomoku

Rongxiao Zhang

Stanford University
Stanford, CA

Rzhang4@stanford.edu

226

15x15x1 matrices and the outputs are the optimal next
move for the given player.

2. Related Work

A large number of artificial intelligence approaches

have been proposed for board games. The most basic
attempt includes game-tree searching which is often
coupled with a board evaluation function as well as
alpha-beta pruning. However, as William pointed out [2],
a complete search to a depth of n moves require
evaluations of p!/(p-n)! board situations, where p is the
current number of legal moves. Although this approach
has been used to develop acceptable Gomoku AIs, the
scalability of such an algorithm is poor.

Reinforcement learning together with neural network
has been proposed by Freisleben[3]. This network is
penalized or rewarded using comparison learning, a
special reinforcement learning algorithm. Temporal
difference learning as well as adaptive dynamic
programming approaches is also two algorithms that
achieved some level of success for Gomoku. However,
neither of them is suitable for larger scale games such as
Go.

Zhao et al. improved the performance of the adaptive
dynamic programming by pairing it with a three layer
fully-connected neural network to provide adaptive and
self-teaching behaviors[3]. However, the inputs to the
neural network are consisted of 40 pre-determined
patterns. The neural network then uses these layers to
evaluate the board situation before deciding the next
move. Such a network is only effective for games with
available expert knowledge.

Another interesting approach from Schaul and
Schmidhuber [4] uses multidimensional recurrent neural
networks (MDRNNs). In their attempt, four units sweep
from four diagonal directions to obtain a heuristic view of
the board using recurrent neural networks. The training
process for this model involves evolution and doesn’t use
any expert knowledge.

Our focus is inspired by the last two approaches: the
convolutional neural network as well as the recurrent
neural network approach. We propose improvements to
both structures. For the fully connected neural network
approach, instead of using pre-selected features, we add in
convolutional layers in front to extract features without
expert knowledge. And with the recurrent neural network
approach we use professional Gomoku games to train the
network instead of using an evolution process.

3. Methods

3.1 Convolutional Neural Network Architecture
In this section we propose a possible improvement over

Zhao et. al.’s adaptive dynamic programming with neural
network approach[3]. One particular strength of
convolutional neural networks is the ability to detect
features. They perform well not only in identifying simple
features such as edges but also in combining these simple
features to understand more complex characteristics of the
input image.

Zhao et. al. used 40 features as inputs to their neural
network architecture. These features, as identified by
experienced players, indicate varying possibilities of
victory or defeat. However, such information is not
transferrable once the rules are modified even slightly or if
the scale of the game is varied. We believe that such
feature can be learned through convolutional neural
network architecture with a large number of games.

Our architecture is comprised of 3 convolutional layers
followed by 3 fully connected layers. The input data
consists of recorded games at high-level Gomoku
tournaments[6]. Since a winning move in Gomoku forms a
pattern of 5 stones in a row, we would like to capture
features that are less than 5 consecutive stones. A large
number (1024) of 5x5 filters are used for the first
convolutional layer. Smaller filters of 3x3 are used for the
following 2 convolutional layers in order to provide
relationship information for the captured features.

Each specific board incident can be viewed as a
15x15x1 image. Filters for the first convolutional layer
have the dimensions of 5x5x1. With zero padding of
dimension 2 and a stride of 1, we preserve the input image
dimension of 15x15. Since we have 1024 filters, the
output of this step is 15x15x1024.

To avoid duplicate or incomplete features, max pooling
layers are inserted after the first convolutional network.
Due to the size of the convolutional layer output we use a
3x3 max-pooling filter with a stride of 3. This will lead to
an output of 5x5x1024. The second and third
convolutional layers have 256 and 128 filters respectively
and the output from convolutional layers has the
dimension 5x5x128.

After the convolutional and pooling layers, the inputs to
the fully connected network are the activations for
recognized patterns. 3 fully connected nets are then used
to evaluate board situations. The output of these fully
connected nets are feed into a Softmax classifier in order
to select the next move. Similar to image categorization
tasks, the Softmax classifier interprets the output from the
fully connected layer as the unnormalized log probability
for each specific move. The loss function associated with
the Softmax function is as follows:

Illegal moves, such as board positions that are already

227

occupied, are ignored should it be selected as the next
move. Gradient descent using the derivative from the loss
function is then back propagated through out the network
to update the weights. All weights are initialized to be
very small random numbers in order to break symmetry.

3.2 Recurrent Neural Network Architecture
We evaluate the performance of a recurrent neural

network using similar implementation from Schaul and
Schmidhuber. However, instead of training by evolution,
we use the same dataset as we used for the convolutional
neural network architecture just like training for an image
classification test.

The recurrent neural network is constructed using 4
units that sweep through the board in four diagonal
directions. Standard recurrent neural networks are
inherently one-dimensional with abilities to handle
sequences in the time dimension. In our case, two spatial
dimensions replace the single time dimension in order to
accommodate the 2D nature of the Gomoku board.

 Each unit takes into account 3 inputs: one input comes
from the board indicating whether a stone exists at the
current location; the second and third input comes from its
own output at previous locations. For example, consider a
unit u1 that sweeps from the top left corner to the bottom
right corner. At each position (i,j) it receives an input from
the board position at (i,j) as well as a position from its own
output at u1(i, j-1) and at u1(i-1,j). It then process the inputs
and produces an output u1(i,j).

Using a recurrent unit this way captures information
from the top left corner up to its current location. If we use
four units coming in from all four diagonal directions, we
can obtain information for the entire board.

Mathematically, we have:

where î indicates the unit sweeping from top left

corner to bottom right corner and D = {îíëì}.

Figure 1. Illustration of the MDRNN Network

The four units will process the board independent of
each other. Each will have an output of 15x15x1xk where
k is the number of hidden units. The four outputs will then
be consolidated using wo into a 15x15x1 output indicating
the probability of the next best move at each board
location.

On the boundaries where the unit values are not
defined, we initialize them to a fixed value wb of
dimension 1xk. As a result, we have k2 parameters from
wh, 2k parameters from wi, k parameters from both wo ad
wb. This adds up to (4k+k2) parameters. With a k value of
10 (in accordance with Schaul’s paper), we end up with
140 parameters, significantly less than the number of
weights for other neural network structures.

The input to the network is of dimension 15x15x2. At
each location two inputs are used to specify the presence
of a stone. The first one is 1 if a stone of the same color is
present and 0 otherwise. The second input is 1 if a stone of
the opposite color is present and 0 otherwise.

At each given location, the output expresses the
network’s preference for playing at this certain location. A
move is then chosen using the Softmax classifier as in the
convolutional neural network’s case with illegal moves
ignored. Figure 2 illustrates the network’s output given a
specific board configuration. Although Gomoku board is
15x15 this network is scalable in a sense that it can be
trained on a smaller board and the training results can be
generalized to a bigger board.

228

Fig.2 Left: board given as input. Right: output of the

network

4. Dataset and Features
The training dataset is obtained from RenjuNet database

that is an online database for Gomoku games. The dataset
contains 42955 games with more than a million total
moves. The data set is split up so that each board
configuration is treated as a 15x15 image with the ‘ground
truth’ being the next move in that specific game. This
turns the Gomoku game-playing problem into an image
classification problem. Given a specific board
configuration, the neural network architecture tries to find
the most ‘logical’ next move.

One potential problem is that some moves in the dataset
might not be the ‘best’ move given they are human games
and human do make mistakes. But since these games are
high level games, we believe even if a move is not the best
possible move, it is still a good enough move that a human
expert player is likely to play.

Preprocessing involves picking out moves from the
game database and mapping them onto 15x15 matrices.
Ground truth labels are stored in a separate array matching
the indices for its associated board configuration.

5. Experiments
A custom made Gomoku engine was implemented in

Python. For evaluation purposes, a basic AI using tree
search and alpha-beta pruning was implemented. The level
of play for the tree search AI is at approximately human
amateur level for a 3-ply search.

The evaluation metrics are different for the two
architectures we propose. While both played against the
naïve tree-search AI, the convolutional neural network is
also evaluated by its ability to capture human recognizable
winning patterns while the recurrent neural network is
evaluated by its ability to play on different sized boards.

Both networks are custom coded in python without
using wrappers for educational purposes. This means the
models are neither extremely deep nor complicated. But
since Gomoku is a relatively simple game with elementary
features, a less complicated network should be robust
enough. Moreover, as there are only 140 parameters for

the MDRNN, training is not computation intensive.

5.1. Training the convolutional neural network

The dataset is grouped into training set, evaluation set
and test set using a 8:1:1 split. Adam update rule is used to
help with convergence rate. Recommended values of beta1
= 0.9, beta2 = 0.999 and eps = 1e-8 are used as default.
Hyper parameters are selected using smaller datasets of
1000 moves. The hyper parameters are shown in table 1.

Fig. 3 Loss history of convolutional neural network

training
Regularization 0.0001
Dropout 0.8
Learning rate 3.00E-03
Learning rate decay 0.95
Update Rule Adam
Batch Size 200
Number of Epochs 600
Table 1. Hyper parameters for training the

convolutional neural network architecture

5.2. Training the multi-dimensional recurrent network

With similar grouping of the dataset, the recurrent
network is configured with 10 hidden units to be in
accordance with Schaul’s results. However, the initial
weights were drawing from a normal distribution of
N(0,0.001) instead of N(0,1) as is used in Schaul’s paper.
This is because our training method is different from
Schaul’s evolution method and a big initial weight will
cause numerical instabilities during the training process.

Training the network on small sets of data determines
its hyper parameters (Table
2)

229

Fig.4 Loss history for training the MDRNN

Regularization 0.001
Hidden Dimension 10
Learning rate 1.00E-04
Learning rate decay 0.99
Update Rule Adam
Batch Size 200
Number of Epochs 600
Table 2. Hyper parameters for training the

convolutional neural network architecture

Both models are then trained on a personal computer
with a 2.3GHz Intel i7-3610QM CPU and 16GB of
memory. The training time was about 40 hours for the
convolutional network and 10 hours for the recurrent
network.

6. Results

6.1. Convolutional neural network performance

One problem during training was that we were unable to
reduce loss further and the validation accuracy was around
40%. A variety of different hyper parameters were tested
out but we were unable to reduce loss further.

The resulting model played the tree search AI and won
0 out of 1000 games. A closer look at the game revealed

that although the neural network model played good
moves occasionally, it was unable to perform consistently

due to the lack of board evaluation functionality and
policy network evaluations. We were able to pick out

some human recognizable filters from the first
convolutional layers but it was inconsistent across the

board (Figure 5).

Fig.5 A selection of convolutional filters used in the

convolutional neural network model.

6.2. MDRNN performance

The MDRNN performed better compared to the
convolutional neural network. The validation accuracy
was about 50% but it was also unable to pick out the
correct moves consistently. A win rate of 3% against the
tree-search AI was unconvincing. An example of the game
is shown in figure 6. The MDRNN model (indicated by
‘o’) played a pointless move at (12,10) when the tree
search AI had a clear winning move at (7,11).

Fig.6 Example game between MDRNN and tree-search AI

The poor performance makes scalability test also

unconvincing. We were able to obtain high performance
correlations but that was a mere result of consistent poor
performances.

230

7. Discussion
Neither of the two neural networks that we proposed

worked as expected. While the convolutional layer
captured some features through learning, many other
features were merely noises. This makes sense in
retrospect: for a simple game such as Gomoku, only a
limited number of features are important to the progress of
the game. Human players choose to neglect certain
patterns when it is clear that no gain can be made from
them (for example, a blocked pattern of 3-in-a-row).
However, when evaluating using convolutional filters,
these ‘useless’ features can still be recognized,
contributing negatively to the board evaluation process.

Another problem lies within the dataset. Although we
seemingly have more than a million board configurations,
about a third to half of these moves consist of what is
called ‘starting moves’. These moves are often, if not
always, played as a ‘fixed’ sequence at the start of the
game. This significantly decreased the number of valid
training data that we have. With a smaller dataset both the
convolutional network as well as the MDRNN architecture
are affected.

8. Conclusion and future work
The intention for this paper is to use expert human

games to train potential human-like networks. However,
neither of the proposed neural networks was successful.
Some positive performance was seen: convolutional layer
was able to pick up some of the expert human knowledge
automatically while the MDRNN was very efficient by
using a fraction of the parameters in deep neural nets.

Although one of the problems we discovered was with
the size of the dataset, applying data augmentation can
solve this problem. For example, since convolutional
layers try to pick out specific features, translating the
board configuration should not change the potential move.
Due to board symmetry, we can also flip the board
configuration along any of its symmetry axes. This will
provide a much larger dataset without accumulating more
games.

On the other hand, if developing a stronger AI for a
certain board game is the ultimate goal, self-playing is still
a powerful technique as proven by AlphaGo. Instead of
using coevolution or human game database, the MDRNN
model can also be trained to play against itself. The
scalability of the model also enables it to play on different
sized boards. Together with its efficiency, the MDRNN
model might be able to learn faster than existing
algorithms.

References
[1] Silver, David, et al. Mastering the game of Go with deep

neural networks and tree search, Nature 529.7587: 484-489,
2016

[2] T.K. William, S. Pham, Experience-based learning
experiments using Gomoku, in: Proceedings of IEEE
International Conference on Systems, Man, and
Cybernetics, Charlottesville, Virginia, USA, vol. 2, October
13–16, 1991, pp. 1405–1410.

[3] B. Freisleben, A neural network that learns to play
five-in-a-row, in: Second New Zealand International
Two-Stream Conference on Artificial Neural Net- works
and Expert Systems, 1995, pp. 87–90.

[4] Schaul, Tom, and Jürgen Schmidhuber. A scalable neural
network architecture for board games. Computational
Intelligence and Games, 2008. CIG'08. IEEE Symposium
On. IEEE, 2008.

[5] Zhao, D., Zhang, Z., & Dai, Y. Self-teaching adaptive
dynamic programming for Gomoku, 2012,
Neurocomputing, 78(1), 23-29.

[6] http://renju.net/downloads/downloads.php, 2015
[7] G. Tesauro, Neurogammon: a neural-network backgammon

program, in: Proceedings of International Joint Conference
Neural Networks, San Diego, California, USA, June 17–21,
1990, pp. 33–40.

[8] J. Baxter, A. Tridgell, L. Weaver, Learning to play chess
using temporal differences, Mach. Learn. 40 (2000)
243–263.

