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Abstract 

 
This paper proposes to use neural networks to solve a 

simplified version of Gomoku. More specifically, 
convolutional neural network and multi-dimensional 
recurrent network are trained separately using high-level 
human games. While the convolutional neural network was 
able to learn specific features for Gomoku without prior 
knowledge, the human game data set proved to be 
insufficient for a robust performance. The 
multi-dimensional recurrent network also suffered from the 
small database even though it was able to occasionally  
occasionally expert level moves. 
 

1. Introduction 
Games are an interesting domain for artificial 

intelligence research. They provide a controlled and 
well-defined environment, generally straightforward rules 
and clear-cut results. However, game winning formulas 
are often complicated and nonsingular. These 
characteristics make games suitable to test out different 
artificial intelligence approaches. 

Deep neural networks involving various specific 
implementations have made a huge progress in the field of 
image processing. Convolutional neural networks have 
proven to be successful in feature recognition while 
recurrent neural networks have demonstrated their ability 
in handling sequences of data. Such implementations have 
been used on game playing. Most notably, Google 
developed the Go-playing program AlphaGo using deep 
neural networks[1]. Go has long been regarded as the most 
complicated chess game with a prohibitively large search 
space. In fact, many aspects of the game have been proven 
to be NP-hard and PSPACE-hard. However, AlphaGo has 
demonstrated its ability by winning 5-0 against the 
European Go champion as well as leading 3-1 against the 
second highest ranking professional Go player worldwide. 

Although complex in nature, Go is a perfect candidate 
for evaluating neural network algorithms. The rules are 
very simple: two players play on a 19x19 board. Each 
player alternatively places stones onto any of the 

unoccupied intersections on the board in attempt to 
conquer the most territory. The player with black stones 
places first but need to capture a greater area than the 
player with white stones in order to win. A single stone or 
a group of connected stones can be captured when it is 
completely surrounded by its opponents’ stones. The only 
illegal move is when it leads to previously seen position to 
avoid cycling. The game ends when both players pass. 
Winning is determined by counting territory captured by 
each player. 

One interesting and important observation is Go’s 
symmetry. It has not only the straightforward axes of 
symmetry, but also an approximate translational 
invariance.  

Conducting experiments with Go can be very difficult 
due to the need for distinguishing dead group from alive 
ones and handling pass moves. Many machine-learning 
approaches have used simplified versions of Go as a test 
bed for ideas.  

Common simplified Go games include Pente, Renju, 
Tanbo, Connect, Atari-Go and Gomoku. In this paper we 
will focus on Gomoku due to its simplicity.  

Gomoku, also know as ‘five-in-a-row’, is played on a 
15x15 board, smaller than Go’s 19x19 board. The basic 
rules are the same, two players place stones alternatively 
on the intersections of the board. However, winning is 
determined by whoever gets 5 of their stones in a row, 
vertical, horizontal or diagonal. Human players strategies 
usually involve blocking opponents’ lines, keeping his line 
unblocked, and perform multiple attacks at the same time. 
These are all heavily feature based.   

These feature-based strategies provide a perfect 
environment to deploy neural network based techniques. 
Moreover, human players rely on past game experience to 
develop these strategies. This also plays in neural 
networks’ advantage. 

The fact that AlphaGo did not perform perfectly against 
top human player leaves room for development. This 
paper is an attempt at using two different techniques for 
context free game playing: convolutional neural networks 
for feature recognition without human input and 
multi-dimensional recurrent neural networks for scalable 
performance for different sized boards. The inputs to our 
algorithm are Gomoku board situations expressed as 
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15x15x1 matrices and the outputs are the optimal next 
move for the given player. 
 
2. Related Work 

 
A large number of artificial intelligence approaches 

have been proposed for board games. The most basic 
attempt includes game-tree searching which is often 
coupled with a board evaluation function as well as 
alpha-beta pruning. However, as William pointed out [2], 
a complete search to a depth of n moves require 
evaluations of p!/(p-n)! board situations, where p is the 
current number of legal moves. Although this approach 
has been used to develop acceptable Gomoku AIs, the 
scalability of such an algorithm is poor.  

Reinforcement learning together with neural network 
has been proposed by Freisleben[3]. This network is 
penalized or rewarded using comparison learning, a 
special reinforcement learning algorithm. Temporal 
difference learning as well as adaptive dynamic 
programming approaches is also two algorithms that 
achieved some level of success for Gomoku. However, 
neither of them is suitable for larger scale games such as 
Go. 

Zhao et al. improved the performance of the adaptive 
dynamic programming by pairing it with a three layer 
fully-connected neural network to provide adaptive and 
self-teaching behaviors[3]. However, the inputs to the 
neural network are consisted of 40 pre-determined 
patterns. The neural network then uses these layers to 
evaluate the board situation before deciding the next 
move. Such a network is only effective for games with 
available expert knowledge. 

Another interesting approach from Schaul and 
Schmidhuber [4] uses multidimensional recurrent neural 
networks (MDRNNs). In their attempt, four units sweep 
from four diagonal directions to obtain a heuristic view of 
the board using recurrent neural networks. The training 
process for this model involves evolution and doesn’t use 
any expert knowledge. 

Our focus is inspired by the last two approaches: the 
convolutional neural network as well as the recurrent 
neural network approach. We propose improvements to 
both structures. For the fully connected neural network 
approach, instead of using pre-selected features, we add in 
convolutional layers in front to extract features without 
expert knowledge. And with the recurrent neural network 
approach we use professional Gomoku games to train the 
network instead of using an evolution process. 

3. Methods 

3.1 Convolutional Neural Network Architecture 
In this section we propose a possible improvement over 

Zhao et. al.’s adaptive dynamic programming with neural 
network approach[3]. One particular strength of 
convolutional neural networks is the ability to detect 
features. They perform well not only in identifying simple 
features such as edges but also in combining these simple 
features to understand more complex characteristics of the 
input image.  

Zhao et. al. used 40 features as inputs to their neural 
network architecture. These features, as identified by 
experienced players, indicate varying possibilities of 
victory or defeat. However, such information is not 
transferrable once the rules are modified even slightly or if 
the scale of the game is varied. We believe that such 
feature can be learned through convolutional neural 
network architecture with a large number of games. 

Our architecture is comprised of 3 convolutional layers 
followed by 3 fully connected layers. The input data 
consists of recorded games at high-level Gomoku 
tournaments[6]. Since a winning move in Gomoku forms a 
pattern of 5 stones in a row, we would like to capture 
features that are less than 5 consecutive stones. A large 
number (1024) of 5x5 filters are used for the first 
convolutional layer. Smaller filters of 3x3 are used for the 
following 2 convolutional layers in order to provide 
relationship information for the captured features.  

Each specific board incident can be viewed as a 
15x15x1 image. Filters for the first convolutional layer 
have the dimensions of 5x5x1. With zero padding of 
dimension 2 and a stride of 1, we preserve the input image 
dimension of 15x15. Since we have 1024 filters, the 
output of this step is 15x15x1024. 

To avoid duplicate or incomplete features, max pooling 
layers are inserted after the first convolutional network. 
Due to the size of the convolutional layer output we use a 
3x3 max-pooling filter with a stride of 3. This will lead to 
an output of 5x5x1024. The second and third 
convolutional layers have 256 and 128 filters respectively 
and the output from convolutional layers has the 
dimension 5x5x128.  

After the convolutional and pooling layers, the inputs to 
the fully connected network are the activations for 
recognized patterns. 3 fully connected nets are then used 
to evaluate board situations.  The output of these fully 
connected nets are feed into a Softmax classifier in order 
to select the next move. Similar to image categorization 
tasks, the Softmax classifier interprets the output from the 
fully connected layer as the unnormalized log probability 
for each specific move. The loss function associated with 
the Softmax function is as follows: 

 
Illegal moves, such as board positions that are already 
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occupied, are ignored should it be selected as the next 
move. Gradient descent using the derivative from the loss 
function is then back propagated through out the network 
to update the weights. All weights are initialized to be 
very small random numbers in order to break symmetry.  

3.2 Recurrent Neural Network Architecture 
We evaluate the performance of a recurrent neural 

network using similar implementation from Schaul and 
Schmidhuber. However, instead of training by evolution, 
we use the same dataset as we used for the convolutional 
neural network architecture just like training for an image 
classification test. 

The recurrent neural network is constructed using 4 
units that sweep through the board in four diagonal 
directions. Standard recurrent neural networks are 
inherently one-dimensional with abilities to handle 
sequences in the time dimension. In our case, two spatial 
dimensions replace the single time dimension in order to 
accommodate the 2D nature of the Gomoku board. 

 Each unit takes into account 3 inputs: one input comes 
from the board indicating whether a stone exists at the 
current location; the second and third input comes from its 
own output at previous locations. For example, consider a 
unit u1 that sweeps from the top left corner to the bottom 
right corner. At each position (i,j) it receives an input from 
the board position at (i,j) as well as a position from its own 
output at u1(i, j-1) and at u1(i-1,j). It then process the inputs 
and produces an output u1(i,j). 

Using a recurrent unit this way captures information 
from the top left corner up to its current location. If we use 
four units coming in from all four diagonal directions, we 
can obtain information for the entire board. 

Mathematically, we have: 
 

 
where î indicates the unit sweeping from top left 

corner to bottom right corner and D = {îíëì}. 

 
Figure 1. Illustration of the MDRNN Network 

The four units will process the board independent of 
each other. Each will have an output of 15x15x1xk where 
k is the number of hidden units. The four outputs will then 
be consolidated using wo into a 15x15x1 output indicating 
the probability of the next best move at each board 
location. 

On the boundaries where the unit values are not 
defined, we initialize them to a fixed value wb of 
dimension 1xk. As a result, we have k2 parameters from 
wh, 2k parameters from wi, k parameters from both wo ad 
wb. This adds up to (4k+k2) parameters. With a k value of 
10 (in accordance with Schaul’s paper), we end up with 
140 parameters, significantly less than the number of 
weights for other neural network structures. 

The input to the network is of dimension 15x15x2. At 
each location two inputs are used to specify the presence 
of a stone. The first one is 1 if a stone of the same color is 
present and 0 otherwise. The second input is 1 if a stone of 
the opposite color is present and 0 otherwise.  

At each given location, the output expresses the 
network’s preference for playing at this certain location. A 
move is then chosen using the Softmax classifier as in the 
convolutional neural network’s case with illegal moves 
ignored. Figure 2 illustrates the network’s output given a 
specific board configuration. Although Gomoku board is 
15x15 this network is scalable in a sense that it can be 
trained on a smaller board and the training results can be 
generalized to a bigger board. 
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Fig.2 Left: board given as input. Right: output of the 

network 

4. Dataset and Features 
The training dataset is obtained from RenjuNet database 

that is an online database for Gomoku games. The dataset 
contains 42955 games with more than a million total 
moves. The data set is split up so that each board 
configuration is treated as a 15x15 image with the ‘ground 
truth’ being the next move in that specific game. This 
turns the Gomoku game-playing problem into an image 
classification problem. Given a specific board 
configuration, the neural network architecture tries to find 
the most ‘logical’ next move. 

One potential problem is that some moves in the dataset 
might not be the ‘best’ move given they are human games 
and human do make mistakes. But since these games are 
high level games, we believe even if a move is not the best 
possible move, it is still a good enough move that a human 
expert player is likely to play. 

Preprocessing involves picking out moves from the 
game database and mapping them onto 15x15 matrices. 
Ground truth labels are stored in a separate array matching 
the indices for its associated board configuration. 

5. Experiments 
A custom made Gomoku engine was implemented in 

Python. For evaluation purposes, a basic AI using tree 
search and alpha-beta pruning was implemented. The level 
of play for the tree search AI is at approximately human 
amateur level for a 3-ply search.  

The evaluation metrics are different for the two 
architectures we propose. While both played against the 
naïve tree-search AI, the convolutional neural network is 
also evaluated by its ability to capture human recognizable 
winning patterns while the recurrent neural network is 
evaluated by its ability to play on different sized boards. 

Both networks are custom coded in python without 
using wrappers for educational purposes. This means the 
models are neither extremely deep nor complicated. But 
since Gomoku is a relatively simple game with elementary 
features, a less complicated network should be robust 
enough. Moreover, as there are only 140 parameters for 

the MDRNN, training is not computation intensive. 

5.1. Training the convolutional neural network 

The dataset is grouped into training set, evaluation set 
and test set using a 8:1:1 split. Adam update rule is used to 
help with convergence rate. Recommended values of beta1 
= 0.9, beta2 = 0.999 and eps = 1e-8 are used as default. 
Hyper parameters are selected using smaller datasets of 
1000 moves. The hyper parameters are shown in table 1. 

 
Fig. 3 Loss history of convolutional neural network 

training 
Regularization 0.0001 
Dropout 0.8 
Learning rate 3.00E-03 
Learning rate decay 0.95 
Update Rule Adam 
Batch Size 200 
Number of Epochs 600 
Table 1. Hyper parameters for training the 

convolutional neural network architecture 

5.2. Training the multi-dimensional recurrent network 

With similar grouping of the dataset, the recurrent 
network is configured with 10 hidden units to be in 
accordance with Schaul’s results. However, the initial 
weights were drawing from a normal distribution of 
N(0,0.001) instead of N(0,1) as is used in Schaul’s paper. 
This is because our training method is different from 
Schaul’s evolution method and a big initial weight will 
cause numerical instabilities during the training process. 

Training the network on small sets of data determines 
its hyper parameters (Table 
2)
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Fig.4 Loss history for training the MDRNN 

 
Regularization 0.001 
Hidden Dimension 10 
Learning rate 1.00E-04 
Learning rate decay 0.99 
Update Rule Adam 
Batch Size 200 
Number of Epochs 600 
Table 2. Hyper parameters for training the 

convolutional neural network architecture 
 

Both models are then trained on a personal computer 
with a 2.3GHz Intel i7-3610QM CPU and 16GB of 
memory. The training time was about 40 hours for the 
convolutional network and 10 hours for the recurrent 
network. 

6. Results 

6.1. Convolutional neural network performance 

One problem during training was that we were unable to 
reduce loss further and the validation accuracy was around 
40%. A variety of different hyper parameters were tested 
out but we were unable to reduce loss further. 

The resulting model played the tree search AI and won 
0 out of 1000 games. A closer look at the game revealed 

that although the neural network model played good 
moves occasionally, it was unable to perform consistently 

due to the lack of board evaluation functionality and 
policy network evaluations. We were able to pick out 

some human recognizable filters from the first 
convolutional layers but it was inconsistent across the 

board (Figure 5). 

 
Fig.5 A selection of convolutional filters used in the 

convolutional neural network model.  

6.2. MDRNN performance 

The MDRNN performed better compared to the 
convolutional neural network. The validation accuracy 
was about 50% but it was also unable to pick out the 
correct moves consistently. A win rate of 3% against the 
tree-search AI was unconvincing. An example of the game 
is shown in figure 6. The MDRNN model (indicated by 
‘o’) played a pointless move at (12,10) when the tree 
search AI had a clear winning move at (7,11).   
 

 
Fig.6 Example game between MDRNN and tree-search AI 

 
The poor performance makes scalability test also 

unconvincing. We were able to obtain high performance 
correlations but that was a mere result of consistent poor 
performances.  
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7. Discussion 
Neither of the two neural networks that we proposed 

worked as expected. While the convolutional layer 
captured some features through learning, many other 
features were merely noises. This makes sense in 
retrospect: for a simple game such as Gomoku, only a 
limited number of features are important to the progress of 
the game. Human players choose to neglect certain 
patterns when it is clear that no gain can be made from 
them (for example, a blocked pattern of 3-in-a-row). 
However, when evaluating using convolutional filters, 
these ‘useless’ features can still be recognized, 
contributing negatively to the board evaluation process.  

Another problem lies within the dataset. Although we 
seemingly have more than a million board configurations, 
about a third to half of these moves consist of what is 
called ‘starting moves’. These moves are often, if not 
always, played as a ‘fixed’ sequence at the start of the 
game. This significantly decreased the number of valid 
training data that we have. With a smaller dataset both the 
convolutional network as well as the MDRNN architecture 
are affected. 
 

8. Conclusion and future work 
The intention for this paper is to use expert human 

games to train potential human-like networks. However, 
neither of the proposed neural networks was successful. 
Some positive performance was seen: convolutional layer 
was able to pick up some of the expert human knowledge 
automatically while the MDRNN was very efficient by 
using a fraction of the parameters in deep neural nets. 

Although one of the problems we discovered was with 
the size of the dataset, applying data augmentation can 
solve this problem. For example, since convolutional 
layers try to pick out specific features, translating the 
board configuration should not change the potential move. 
Due to board symmetry, we can also flip the board 
configuration along any of its symmetry axes. This will 
provide a much larger dataset without accumulating more 
games. 

On the other hand, if developing a stronger AI for a 
certain board game is the ultimate goal, self-playing is still 
a powerful technique as proven by AlphaGo. Instead of 
using coevolution or human game database, the MDRNN 
model can also be trained to play against itself. The 
scalability of the model also enables it to play on different 
sized boards. Together with its efficiency, the MDRNN 
model might be able to learn faster than existing 
algorithms. 
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