
Loopy Neural Nets: Imitating Feedback Loops in the Human Brain

Caswell, Isaac
icaswell@stanford.edu

Shen, Chuanqi
shencq@stanford.edu

Stanford University
450 Serra Mall, Stanford, CA 94305

Wang, Lisa
lisa1010@stanford.edu

Abstract

Artificial Neural networks purport to be biomimetic, but
are by definition acyclic computational graphs. As a corol-
lary, neurons in artificial nets fire only once and have no
time-dynamics. Both these properties contrast with what
neuroscience has taught us about human brain connectiv-
ity, especially with regards to object recognition. We there-
fore propose a way to simulate feedback loops in the brain
by unrolling loopy neural networks several timesteps, and
investigate the properties of these networks. We compare
different variants of loops, including multiplicative com-
position of inputs and additive composition of inputs. We
demonstrate that loopy networks outperform deep feedfor-
ward networks with the same number of parameters on the
CIFAR-10 dataset, as well as nonloopy versions of the same
network, and perform equally well on the MNIST dataset.
In order to further understand our models, we visualize
neurons in loop layers with guided backprop, demonstrat-
ing that the same filters behave increasingly nonlinearly at
higher unrolling levels. Furthermore, we interpret loops as
attention mechanisms, and demonstrate that the composi-
tion of the loop output with the input image produces images
that look qualitatively like attention maps.

1. Introduction
Neural networks, in particular deep neural networks,

comprise a nascent field that has seen much active research
in recent years. A model that was inspired by the brain,
whereby each neuron supports simple, primitive functions
but an entire network of them allows the brain to perform
complicated tasks, a neural network consists of a series of
interconnected layers. Each layer of neurons computes a
simple function of the previous layer, but amalgamating
many layers together allows the final network to perform
a range of arbitrarily complex tasks. Active research, fu-
elled by a huge increase in computing power, has trans-
formed neural networks into a state-of-the-art technology.
With neural networks, computers nowadays can act as per-

sonal assistants (Siri and Cortana), play video games [7],
and identify cat videos [5].

However, artificial neural networks differ from their
counterparts from nature in a distinct way; artificial neu-
ral networks are directed acyclic graphs (DAGs), but the
network of neurons in our brains contain many feedback
loops. In fact, neuroscience tells us that the architecture of
the human brain is fundamentally cyclic. For instance, the
well-documented “what pathway” and “where pathway”,
the two main visual object recognition systems in humans,
contain many feedback loops, leading for instance to the
phenomenon known as top down attention [1].

In this paper, we propose a new model, which we call
loopy neural networks (LNNs). At a high level, a LNN
mimics the cyclic structures in the human brain and is
created by augmenting conventional neural networks with
”loop layers” that allow information from deeper layers to
be fed to lower layers.

2. Our Model

2.1. Theoretical Model

Fig 1 shows an simple example of our proposed model.
In this example we use convolutional layers, but the same
idea can also be applied to any type of layer. While neural
networks are in general acyclic, the model above contains a
loop. In particular, the output from loop undergoes elemen-
twise addition with the input layer before being fed as input
to the first layer again.

It would be ideal if the loop continued being processed
until the result converged. However, in general convergence
is not guaranteed, and neither would this be computation-
ally feasible. Neither is this in fact especially biomimetic,
as the input to a real brain is constantly changing. There-
fore we approximate the loopy structure by simulating the
execution of a small number of passes through the feedback
loop.

To accomplish this, we propose a mechanism similar to
that in recurrent neural networks (RNNs). The model is
further defined by a parameter k (called the unroll factor),

1



Figure 1. CIFAR-10 loopy model with loop layer. Unrolled net-
work on the right.

which determines the number of times the loop will be pro-
cessed. k is so named because it is very similar to the un-
rolling mechanism in RNNs. For example, the diagram on
the right in fig. 1 depicts what happens when the network
on the left is unrolled 3 times.

With the addition of loops, it is hoped that LNNs im-
prove upon vanilla neural networks in the following ways.

1. Feedback mechanism By allowing lower-level layers
to know the weights of higher-level features, a more re-
fined choice of weights for the lower-level layers may
be possible.

2. Compact Representation Even a shallow LNN can
resemble a deep neural network when unrolled several
times. Yet, the unrolled network uses far fewer param-
eters when compared to a deep neural network of the
same depth. It is hoped that both networks can pro-
vide similar expressive power despite the discrepancy
in the number of parameters. If this is found to be true,
then LNNs can serve as a compact representation of
complicated, deep models.

Training a LNN is very similar to training a vanilla neural
network. After a LNN is unrolled, forward propagation can
be performed in the standard manner. Backward propaga-
tion can also be done on unrolled LNN in the standard man-
ner. However, due to shared parameters between layers in
the unrolled network, the gradient needs to be updated dif-
ferently. For example, in fig. 1, we will treat each layer in
each unrolled layer as distinct and perform backward prop-
agation as normal. However, the actual gradient of W1 will

be the sum of gradients of W1 in each layer. In other words,

dWi =

k∑
j=1

dWi,j

where dWi is the gradient of layer Wi and dWi,j is the
gradietn of Wi at the jth unroll.

2.2. Architecture

We wrote a library based on Lasagne 1 that allows us to
specify the layer details, loop configurations, relevant hy-
perparameters etc in a config file2. We accomplish layer
duplication in the unrolled case by tying the weights among
layers which correspond to the same layer in the loopy
model. This is as simple as passing in the same Theano
shared variable to all unrolled layers.

3. Data Sets

Since our project is focusing on the design of a new neu-
ral net architecture, we decided to use two standard Com-
puter Vision datasets, MNIST and CIFAR-10.

3.1. MNIST

MNIST is a dataset of handwritten digits [6]. It is
considered a standard dataset in computer vision and pat-
tern recognition. We started with this dataset since it re-
quires less memory than datasets with color images. We
used 40,000 images for training, 10,000 for validation and
10,000 for test. There 10 classes, one for each digit. The im-
ages are in grey-scale and the size of each image is 28x28
pixels. We did not do any other processing on the MNIST
images before feeding them into our neural nets.

3.2. CIFAR-10

CIFAR-10 is a subset of the Tiny Images dataset.
CIFAR-10 contains 60,000 color images from ten object
classes and is also considered a standard dataset in com-
puter vision. The ten classes are airplane, automobile, bird,
cat, deer, dog, frog, horse, ship and truck. The distribution
of classes across the data set is even and each image can
only belong to one class of the ten classes. Examples from
the CIFAR-10 dataset can be seen in (fig. 2)
Since the images are in color, each image is represented in 3
color channels. The image size is 32x32 pixels, resulting in
a 3x32x32 representation for each image. We used 20,000
for training, 1000 for validation and 1000 for test. We did
not do any other processing on the CIFAR-10 images before
feeding them into our neural nets.

1which is based on Theano, which is based on C, which is based on
assembly...a deep framework for a deep problem.

2See https://github.com/icaswell/loopy_CNNs

2

https://github.com/icaswell/loopy_CNNs


Figure 2. Sample images from CIFAR-10.

4. Related Work
There are models in existing literature that also try to

incorporate loops into the model, and we derived some of
our ideas from these models.

Recurrent Neural Networks. A Recurrent Neural Net-
work (RNN) is a model that takes at each timestep an input
from the external world and an input from itself from a pre-
vious timestep, summarizing all the information it’s seen so
far. The way that we unroll our networks leads to a very
similar architecture: each copy of the network (each ‘un-
roll’) takes as input all outputs from loops from the previ-
ous unroll, as well as the output of the highest layer in the
network with no upstream loop

The unrolled structure looks very much like an RNN,
with the same input at every timestep. There are then
two main conventional differences between LNN and RNN:
firstly, as noted, the input is static, and secondly, there may
be an arbitrary number of ‘hidden states’ output by a cell
that are inserted into different points in the computational
machinery of the next cell, usually by direct elementwise
composition rather than pre-processing through a fully con-
nected layer first. These are conventional differences in
that they differ in the convention of how RNNs are con-
structed, rather than in their definition: one does not tend to
see RNNs with elementwise multiplication of hidden state
with input, for instance, or internal convolutional layers, or
deep processing of input variables.

In summary: LNNs should be thought of as a generaliza-
tion or a reformulation of an RNN with different semantics,
approaching the problem of refining judgment on a static
input rather than characterizing timeseries data.

ResNet: Deep Residual Learning. Deep residual nets
try to address the problems that arise with very deep net-
works by reformulating layers as learning residual functions
[3]. In their work, He et al. propose ResNet, a residual net
with 152 layers, which won 1st places in all five main tracks
of the ILSVRC & COCO 2015 competitions. Over the past
six years of ILSVRC competitions from 2010 to 2015, the
winning neural net architecture always had more layers than
the winning net of the previous year. This suggested that

Figure 3. Building block of residual learning.

high accuracies on image recognition tasks are correlated
with the depth of the neural net.

However, with deeper networks, the problem of degrada-
tion arises. With increasing the depth, the validation accu-
racy saturates at some point and degrades afterwards. Ac-
cording to He et al., this is not a problem with overfitting,
since the training accuracy goes down as well. Deep resid-
ual learning addresses degradation by adding identity short-
cut connections, which skip layers. Fig. 3 shows a building
block of residual learning with the identity shortcut. Our
loopy network, once unrolled, is similar to a network with
skip connections, with the difference that the loop connec-
tions feed into layers that share parameters with previous
layers. Our addition loops are similar to these identity skip
connections since they do not introduce extra parameters
and feed into an addition node that combines two outputs
from different layers. However, unlike the layers between
the loop connection in our loopy networks, the layers of
residual networks do not share parameters. Each weight
layer in ResNet has its own individual set of parameters.

Recurrent CNN[9] The authors tackled the scene
labelling problem i.e. provide each pixel of the image
with a label that determines which class the pixel belongs
to. To do so, they used a ”recurrent convolutional neural
network” model. The underlying CNN takes as input an
image and the label predictions from the previous run
(for the first run this is initialized to 0), and outputs the
label scores for each context patch of the input image.
The new set of label predictions is then fed into the CNN
again with a scaled3 version of the original image. This
process continues for k iterations for a predetermined k.
This is very similar to a specific subset of LNNs, namely
those which have a loop output composed with the input
image. The parameter k is analogous to our unrolling
depth, specifying in both cases how often to digest the input
image. Recurrent CNN attained 80.2% pixel accuracy and
69.9% class accuracy on the Stanford Background Dataset,
on par with then-state-of-the-art results.

dasNet[10] The authors worked on the image classifica-

3scaled to the same size as the new set of label scores

3



tion problem on the CIFAR-10 dataset and employed rein-
forcement learning on a pretrained model. Their motiva-
tion, like ours, was specifically to imitate feedback loops in
the brain. First, the authors constructed a pre-trained Max-
out network[2] that could achieve an accuracy of 90.39%.
Then, they used reinforcement learning to train a determin-
istic policy π based on the Maxout model. The policy out-
puts a vector a that scales each filter by a certain value
(hence causing the model to focus its attention on certain
filters/features). Initially a is set to all 1s (so all filters have
equal importance). The input image is fed through the Max-
out network and certain set of statistical values o are com-
puted based on the output of each filter. o is then fed into π
to obtain a′, after which the input image is fed through the
Maxout network again, this time parameterized by a′. This
process continues for T iterations for a predefined T , and
the class scores of the final run gives the desired prediction.
With this new model, the authors achieved an accuracy of
91.19%.

This model is created under similar motivations, and its
realization (multiple passes through an almost identical net-
work) is also similar to our loop mechanism. However,
while dasNet improves upon a network that already per-
forms very well, we train models from scratch.

Aside: Loopy Belief propagation The loopy
model is reminiscent of a cyclic probabilistic graphi-
cal model/Markov random field. For such instances,
a popular class of inference techniques is loopy belief
propagation (e.g. [8]), in which gradient-like signals
are passed from each node (neuron) to all those nodes
dependent on them, until convergence comes (in the ideal
case). Unrolling could be seen as a variant of loopy
belief propagation in with a specified order of message
passing and a fixed number of iterations. Pure loopy belief
propagation would have the advantage that it could be
parallelized for each layer and even each filter, lending the
possibility that given the right architecture, learning our
models could be sped up significantly. This asynchronous,
parallel approach is also more closely related to the neural
reality we’re trying to imitate.

5. Models
5.1. MNIST Models

We used a simple architecture with 3 layers for MNIST.
All 3 layers consist of 3x3 filters, and the 3 layers have 16, 8
and 1 filter(s) respectively (fig. 4). There also exists a loop
from the third layer to the first layer via an addition node.
The model is unrolled 14, 2, 3 times and the results are an-
alyzed. As simple models could achieve high test accuracy
on MNIST, we did not experiment with different models on
this dataset.

4Note that unrolling the model once means the loop is not utilized

Figure 4. MNIST Loopy network with 3 conv layers.

5.2. CIFAR-10 Models

5.2.1 Degrees of Freedom

To compare the effectiveness of our proposed loopy net-
work architecture with non-loopy models, we experimented
with the following variations:

1. Loop vs. no loop We want to evaluate whether adding
a loop without changing the number of parameters can
affect accuracies and training behaviors.

2. Unrolled loopy network vs. deep network Adding
loops might help networks learn more features and
be more expressive. It could also offer a more com-
pact model compared to a deeper network. Hence, we
are interested in comparing a loopy net with its deep
equivalent, i.e. a deep network with the same architec-
ture but untied weights.

3. Loop without parameters vs. loop with parameters
Finally, we can also add parameters within the loop
itself. We would like to explore how the loop param-
eters influence the learning behavior by comparing its
performance to a similar network that does not have
parameters in the loop.

Based on these parameters, we designed the following four
models:

1. Vanilla. The Vanilla net is a simple architecture with
three convolutional layers. The first two conv layers
have 64 3x3 filters, followed by a conv layer with 3
3x3 filters and a fully connected layer (fig. 5). The
third conv layer has exactly 3 filters to allow us to add
in a loop back into the first layer for the Loopy model.

2. Loopy. By extending the vanilla model with a loop
around all three convolutional layers and unrolling
three times, we get the loopy model. Note that the in-
put has a depth of 3, hence the output from the loop

4



Figure 5. CIFAR-10 vanilla network with 3 conv layers.

Figure 6. CIFAR-10 loopy network with 3 conv layers and 3 un-
rolls.

must also have a depth of 3. This explains why the
third conv layer has exactly 3 filters. It has exactly
the same number of parameters as the Vanilla network,
since the loop does not introduce any new parame-
ters. Comparing the results of Vanilla and Loopy
allows us to evaluate the first metric and determine
whether adding loops can improve the expressiveness
or learning behavior of neural nets. Fig. 6 shows the
Loopy net and its unrolled architecture.

3. Deep. This net has a very similar architecture com-
pared to Loopy, but the layers in the unrolled net-
work do not share parameters. It has three times more
parameters than Vanilla and Loopy, and has the
same depth as Loopy. We can compare the results

Figure 7. CIFAR-10 deep network with 9 conv layers.

of Loopy and Deep to evaluate whether a loop on a
shallow net can imitate the behavior of a deeper net.
Fig. 7 illustrates the architecture of the deep net.

4. Loopy with loop parameters. This net has one loop
around the conv layers in the main stack and a conv
layer in the loop itself. To keep the number of param-
eters the same, we reduced the number of conv lay-
ers in the main stack to two. We unrolled this model
three times. Interestingly, once unrolled, this network
looks almost identical to Loopy, but without the fi-
nal 3 filter conv layer. This top layer can be seen
as an informational bottleneck in Loopy as it com-
presses the final activations to only three filters (Fig 1),
and as a result we might expect Loopy with loop
parameters to be more expressive. In addition,
having loop parameters implies that the the last conv
layer before the fully-connected layer doesnt have to
“split its purpose” between predicting labels and di-
recting attention, since the semantics of attention di-
recting can be handled entirely in the loop layer.

6. Results and Discussion
6.1. Training Time

Due to time constraints, we trained the models over a va-
riety of machines with different configurations. However,
the ratios between training times of the different models are
consistent across all platforms used. Vanilla models have
the shortest training time, while loopy and deep models
have almost identical training times, taking about k times
the training time used for the vanilla model. This coincides
with our expectations, as the loopy model is trained after be-

5



train acc vanilla loopy +layer ×layer deep
batch 5 61.9% 72.6% 90.5% 89.9% 69.8%

batch 32 43.7% 45.2% - - 35.6%
val acc vanilla loopy +layer ×layer deep
batch 5 46.6% 57.4% 51.8% 37.7% 56.1%

batch 32 47.3% 42.45% - - 28.3%
test acc vanilla loopy +layer ×layer deep
batch 5 49.7% 56.4% 53.5% 45.1% 50.2%

batch 32 37.9% 40.8% - - 34.7%

Figure 8. CIFAR-10 accuracy results after 24 epochs, comparing
different architectures with the same number o parameters: (1)
vanilla network, (2) loopy network, (3) loopy network with loop
layer and addition node, (4) loopy network with loop layer and
multiplication node, and (5) deep network with the same architec-
ture as (2) but untied weights. The two loop layer models were not
trained with batchsize 32.

ing unrolled, and unrolled loopy model has the same config-
uration as that of the deep model. Therefore, while LNNs
can provide savings in terms of memory, with the current
implementation there is no savings in terms of training time.

6.2. Benchmarking Results

6.2.1 MNIST

With one unroll, a validation accuracy of 97% was achieved
without any hyperparameter search. Increasing the number
of unrolls did not decrease this value. This at least shows
that adding loops does not make the model worse. It is
hard, however, to distinguish between the performances of
the models due to high accuracies.

6.2.2 CIFAR-10

Fig 8 shows our experimental results for CIFAR-10. We can
observe several interesting trends.

1. Loop vs. no loop As expected, the loopy model per-
forms significantly better than the vanilla model in all
cases. This shows that LNNs are indeed an improve-
ment over vanilla neural networks and give the model
more expressive power.

2. Unrolled loopy network vs. deep network The
loopy model is in fact able to outperform the deep net-
work in all cases, confirming our hope that an LNN can
be as expressive as (if not more than) a deep neural net-
work of the same unrolled depth, despite the smaller
number of parameters.

Contrary to our expectations, the deep model some-
times performed worse than the vanilla model. There
are several possible reasons for this. Firstly it could

be due to computational constraints, as we did lit-
tle hyperparameter tuning, and it could be that the
loopy model is more robust to perturbations in hyper-
parameters than the deep model. Secondly, the deep
model may require more epochs to attain better results.
Thirdly, a deep neural network with the same depth as
an unrolled LNN can be very deep when k is large, and
such a network can experience problems with vanish-
ing or exploding gradients. Because the gradient of a
layer in an LNN is the summation of gradients of the
layer in each unroll, layers in LNN are more robust to
vanishing gradients. More experiments may need to be
carried in this area to explore the discrepancies in the
accuracy of the models.

Building off this idea, another way of viewing the suc-
cess of LNNs in our experiments is from a training-
efficiency perspective. In the tied-weights scenario
(Loopy), each update higher in the network simulta-
neously updates parameters at many layers in the net-
work. Therefore, even in the case that the gradient
vanishes completely before reaching the lowest layers,
they will still receive meaningful updates. In addition5,
since there are multiple updates to each matrix per
backwards pass, the training process may be sped up.
We speculate that these may be some of the most im-
portant factors in our increased performance, and even
if the idea of an LNN as we conceive it is completely
superseded, this paradigm (updating parameters at a
variety of depths with the higher, less corrupted error
signal) may be used to train prohibitively large net-
works more effectively. (ResNet is an example of a
similar principle.)

3. Loop without parameters vs. loop with parameters
Both models with loop layers (multiplicative com-
position and additive composition) performed worse
than the loopy model with lower validation and test
accuracy—yet the models with loop layer have sig-
nificantly higher training accuracy. This suggests
that models with loop parameters overfit much more
severely than models without loop parameters, indicat-
ing that they have higher expressive capacity. One sus-
pects that with enough hyperparameter tuning, these
models can outperform the other models.

Curiously, additive composition performs significantly
better than multiplicative composition, and multiplica-
tive composition in fact has lower test accuracy than
the vanilla network. We are unable to explain why this
is so.

Aside: we initially used a batch size of 32 but decreased
it to 5 in order to train different models more quickly. While

5pun intended

6



we expected models trained with larger batch size to per-
form better (because they are more resistant to the inher-
ent randomness in stochastic gradient descent), we obtained
consistently better results with batch size 5. We speculate
that this is because the function space contains many local
minima that are close together. Therefore, while a smaller
batch size results in noisier gradients, it helps to escape lo-
cal minima.

6.3. Guided Backprop

To get a better idea of what different filters in different
layers respond to, we implemented guided backpropagation
[4]. This entails introducing an artificial gradient at the fil-
ter wherein the gradient values for that filter are set to 1
and the values for all other filters in that layer are set to
0. This signal is then propagated into the original image.
Guided backpropagation refines this technique, with the ad-
dition that all negative values in intermediate gradients are
masked out, with the justification that this prevents interme-
diate neurons from decreasing the activation of the higher
layer unit one aims to visualize.

The results of a sample run of guided backpropagation
are shown in Fig 10 and 11. These figures show the reac-
tion of the same filter at different levels of unrolling. Im-
portantly, the same neuron seems to react in a more refined
and nonlinear fashion when the number of unrolls increases.
This lends further credence to the idea that LNNs can sim-
ulate the expressive power of a deeper network.

6.4. Merge Layer Visualizations

In our experiments we had exactly one loop, which was
pointwise composed directly with the input. For this reason
we also had the opportunity to visualize this merge node
directly. (Recall that a merge node is the pointwise addition
or multiplication of a loop output with the output of some
other layer, in our case the input image.) The output of
the merge node is a modified version of the input, and as
such can be seen as a weighting of what higher levels in the
network deem to be important elements of the input image.
In the language of attention models, it can be interpreted as
an attention map.

What we found is that for multiplication nodes, the mod-
ified input resembled an attention map, supporting the hy-
pothesis that that loop output learns to weight the important
parts of the input. (Curiously, for addition nodes, merge
layers were very close to the original image.) Fig 9 shows
images after the loop output from the first unroll has high-
lighted the important elements of the image, and then after
the loop output from the second unroll has done the same.
The higher the unroll layer, the more precise the attention
map.

Figure 9. Original CIFAR image (row 1), followed by its attention
map after the first and then second unrolling.

7. Future Work and Conclusion
We have demonstrated that LNNs are promising models

that not only are more robust, but also give better perfor-
mance when compared to their unrolled deep counterparts.
The visualization experiments also suggest that even shal-
low layers in an LNN can exhibit characteristics of deep
layers when unrolls are performed. Nevertheless, there still
exist many experimental angles left to explore, and we dis-
cuss some of them below.

1. Loop location/tightness - All LNNs we explored con-
tain a loop from the last convolutional layer to the
first convolutional layer. It would be interesting to ex-
plore how loop tightness (e.g. loops between interme-
diate (even adjacent) convolutional layers) affect per-
formance. We expect loops that are too tight to have
little utility and possibly drown out higher level fea-
tures.

2. Loop complexity - currently we test models with a sin-
gle loop. An LNN with multiple loops may be able to
achieve better performance.

3. Optimizing Training Time Even though LNNs con-
tain much fewer parameters than their unrolled deep
counterparts, the training time for both models is very
similar. This is because we explicitly unroll the LNN
and treat it as an unrolled deep network when perform-
ing forward and backward propagation. Given that
each unroll is basically performing the same compu-

7



Figure 10. Guided back propagation on the same filter at different
unrollings for an MNIST image. Note how it responds to different
stimuli at different levels.

tations again on a different “input”, perhaps there ex-
ists a way to speed up this process. An example of such
could be a closer imitation of loopy belief propagation.

4. Experiments with larger models and more unrolls
These were out of our computational budget this time
through, but perhaps next unrolling of this project we
can demonstrate more expressive results...

References
[1] M. A. Goodale and A. D. Milner. Separate visual path-

ways for perception and action. Trends in neurosciences,
15(1):20–25, 1992.

[2] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville,
and Y. Bengio. Maxout networks. CoRR, abs/1407.3068,
2013.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[4] T. B. M. R. Jost Tobias Springenberg, Alexey Dosovitskiy.
Striving for simplicity: the all convolutional net. ICLR, 2015.

[5] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Cor-
rado, J. Dean, and A. Ng. Building high-level features using

Figure 11. Guided back propagation on the same filter at different
unrollings for an CIFAR-10 image. The responses become more
refined.

large scale unsupervised learning. In International Confer-
ence in Machine Learning, 2012.

[6] Y. LeCun, C. Cortes, and C. J. Burges. The mnist database
of handwritten digits, 1998.

[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,
I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Play-
ing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

[8] K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief
propagation for approximate inference: An empirical study.
CoRR, abs/1301.6725, 2013.

[9] P. H. O. Pinheiro and R. Collobert. Recurrent convolutional
neural networks for scene parsing. CoRR, abs/1306.2795,
2013.

[10] M. Stollenga, J. Masci, F. J. Gomez, and J. Schmidhuber.
Deep networks with internal selective attention through feed-
back connections. CoRR, abs/1407.3068, 2014.

8


