
The Game Imitation: A Portable Deep Learning Model for Modern Gaming AI

Zhao Chen
Department of Physics

Stanford University, Stanford, CA 94305
zchen89[at]Stanford[dot]EDU

Darvin Yi
Department of Biomedical Informatics

Stanford University, Stanford, CA 94305
darvinyi[at]Stanford[dot]EDU

Abstract

We present a purely convolutional model for gaming
AI which works on modern games that are too com-
plex/unconstrained to easily fit a reinforcement learning
framwork. We train a late-integration parallelized AlexNet
on a large dataset of Super Smash Brothers (N64) game-
play, which consists of both gameplay footage and player
inputs recorded for each frame. Our model learns to mimic
human behavior by predicting player input given this visual
gameplay data, and thus operates free of any biased infor-
mation on game objectives. This allows our AI framework
to be ported directly to a variety of game titles with only mi-
nor alterations. After training, we report a top 1,2, and 3 (of
30) classification accuracy of 80%, 92%, and 95%, respec-
tively. We also demonstrate that for Super Smash Brothers,
our AI can run in real-time on moderate hardware and, with
minimal test-time tweaking, is competitive with the most dif-
ficult CPU AI available within the game.

We also discuss results of applying our model to Mario
Tennis, a different game with vastly different objectives from
those of Super Smash Brothers. We finish with a discussion
of model advantages and disadvantages and also consider
methods of building more complexity into our model for in-
creased robustness.

1. Introduction and Related Work
In 2014, Google DeepMind successfully used convo-

lutional neural networks with deep reinforcement learn-
ing to teach a computer to play classic score-based Atari
games[1]. We propose to study a complementary problem
- that of teaching a computer to play modern games that
are not score-based through pure mimicry of human ac-
tions viewed through gameplay screenshots. Primarily, we
propose training a convolutional network system on Super
Smash Brothers on the Nintendo 64 using both gameplay
frames (∼128x128px images) and key input generated from
a human player (who will be one of the researchers). Given
a large set of data, we hope to show that a computer will

be able to successfully play in real time a complex game at
the level of a competent human player. For comparison pur-
poses, we will also train the same model on a Mario Tennis
dataset to demonstrate the portability of our model to dif-
ferent titles.

Reinforcement learning requires some high bias metric
for reward at every stage of gameplay, i.e. a score, while
many of today’s games are too inherently complex to eas-
ily assign such values to every state of the game. Not
only that, but pure enumeration of well-defined game states
would be an intractable problem for most modern games;
DeepMind’s architecture, which takes the raw pixel val-
ues as states, would be difficult in games with 3D graph-
ics, dynamic camera angles, and sporadic camera zooms.
Our aim is to create an algorithm that would extend pre-
vious AI gameplay capabilities to games that are too com-
plex to easily solve via a predefined notion of value, and
would also imbue computers with more human-like behav-
iors that make for more realistic AIs in game applications.
To circumvent the complexity issues that arise with deep
reinforcement learning techniques, our method will solely
rely on learning how to mimic human gameplay from cor-
relating on-screen visuals with their corresponding human
actions. We will show that we achieve reasonable results
with our framework despite having much fewer data points
and much less training time compared to the deep reinforce-
ment learning setting. Our model would also be more easily
portable across game titles, as the algorithm operates free of
any assumptions of same objectives and a new system can
be trained for a different game as soon as more gameplay is
captured.

Also related to our topic is work on video classification.
Our algorithm is fundamentally a frame classification al-
gorithm, i.e. what button combination (out of 30 possible
classes) should be pressed at any given frame for some point
in time? However, it is natural that information in tempo-
rally earlier frames should affect our decision for what to
do next. Looking into previous experiments done on large-
scale video classification[2], we can see that there are sev-
eral different ways to deal with input data with temporal

1

information: the three primary methods are single frame,
early integration, and late integration. We discuss these
methods and their implementations on our data set in sec-
tion 4.

2. Problem Description
As mentioned in Section 1, we propose a supervised

learning, classification problem as an alternative to deep Q
learning for gaming AI. More precisely, our eventual final
classification pipeline takes as input a concatenation of four
temporally sequential gameplay images, each of dimension
(128, 128, 3), making the input a total size (4, 128, 128, 3).
We then use a convolutional neural network to output 30
class scores, each corresponding to a different possible in-
put command on the Nintendo 64 console. We not only
want to see that our model can correctly predict button
presses on a held-out test dataset, but also want to evalu-
ate the efficacy of our neural network in actually control-
ling a game character, and so will feed these scores into a
test-time module which will then send input commands to a
game character during a live game against a CPU opponent.

3. Data Collection and Preprocessing

Figure 1: Data Collection Pipeline.

The data was collected by the authors via a combina-
tion of Nintendo 64 emulation and screen capture tools.
The Nintendo 64 and games (Super Mario Bros and Mario
Tennis) were emulated using Project 64 v2.1[3]1. Key-
board Test Utility, which visually registers key pushes on
a windows machine, was used in parallel to keep track of
the button presses made during the gameplay. The full
gameplay was captured with the screen capture program
Fraps v3.5.99[4] at 30 frames per second. Figure 2 shows
a frame of the screen capture data. We then extract the
game window frames as our inputs and the keyboard win-
dow from which we can extract our ground truth. 60 5-
minute games were played of Super Smash Bros, giving ap-
proximately 600,000 frames of gameplay with correspond-

1An official copy of Super Smash Bros. and Mario Tennis along with
a Nintendo 64 machine are owned by the authors ensuring fair use, but an
emulator software was used for easier interfacing with computer software.

ing key presses. 25 games (each game the length of a nor-
mal game in tennis) were played of Mario Tennis, giving
approximately 125,000 frames of data. To create a more
structured data set, the game parameters were kept constant.
The player always played as Pikachu against Mario in Su-
per Smash Bros., (see figure 3), and the game stage was also
always Hyrule Castle. In Mario Tennis, the player always
played Yoshi against Birdo on a clay court. A schematic of
the data collection pipeline is shown in Figure 1.

For our model to truly fit within an end-to-end con-

Figure 2: Screenshot. Our screen capture setup. We cap-
ture the visual game data together with the keys pressed for
each frame of gameplay. The keyboard in the bottom right
shows currently pushed keys (orange), previously pushed
keys (yellow), and inactive keys (white).

(a) Pikachu (b) Mario

Figure 3: Character Sprites

text, preprocessing was done only to a minimal extent.
Each frame of the video was downsampled from an orig-
inal size of (334, 246) (in pixels) to (128, 128). The down-
sampling was not done by bicubic interpolation, which is a
pretty standard image resizing metric, but rather by a near-
est neighbor interpolation. Thus, every pixel in our final
downsampled frame will be a pixel from the original image
that was close in position to its final downsampled location.
We made this choice because we realized that as these game
sprites are somewhat small (they occupy about 1-3% of the
screen as can be seen in figure 2), bicubic downsampling
muted a lot of the colors of these sprites. By averaging over
a larger area, specific textures and features could be lost.

2

Thus, even though nearest neighbor sampling is known to
be a much noisier downsampling metric, we chose to try
to preserve the stronger colors of our images. The only
other pre-processing we did before inputting our data into
the models described in section 4 is subtracting the mean
image. Once we split up our data into training, validation,
and testing sets, we took a pixel-wise mean over all frames
in our training set, and all frames had that mean image sub-
tracted before being input through our neural net.

4. Model and Methods
Three main convolutional neural network architectures

were considered as possible solutions to our “frame clas-
sification” problem: single frame classification, CNN with
early integration of video frames, and CNN with late in-
tegration of video frames. The foundational CNN archi-
tecture for all three of our models is an AlexNet. We will
minimize Softmax Loss

Li = −fyi + log
∑
j

efj (1)

with respect to our backpropagation. As we discussed in
lecture, the Softmax Classifier minimizes the cross-entropy
between the “true” distribution of our class probabilities
(which should have p = 0 everywhere except a p = 1 at
our correct class) and our estimated distribution. This is
useful for us as it will allow us to treat the final scores as
probabilities from a sampling distribution (see section 4.5).

Below, we describe our three main approaches in detail.
We will then go into detail about how we trained those mod-
els and how we tweaked the model at test time to optimize
performance during live gameplay.

4.1. Single Frame CNN

For our single frame CNN, we use a vanilla AlexNet
structure. We design our AlexNet to have the following lay-
ers:

1. INPUT: 128× 128× 3
2. CONV7: 7× 7 size, 96 filters, 2 stride
3. ReLU: max(xi, 0)
4. NORM: xi = xi

(k+(α
∑
j x

2
j))

β

5. POOL: 3× 3 size, 3 stride
6. CONV5: 5× 5 size, 256 filters, 1 stride
7. ReLU: max(xi, 0)
8. POOL: 2× 2 size, 2 stride
9. CONV3: 3× 3 size, 512 filters, 1 stride

10. ReLU: max(xi, 0)
11. CONV3: 3× 3 size, 512 filters, 1 stride
12. ReLU: max(xi, 0)
13. CONV3: 3× 3 size, 512 filters, 1 stride
14. ReLU: max(xi, 0)
15. POOL: 3× 3 size, 3 stride

16. FC: 4096 Hidden Neurons
17. DROPOUT: p = 0.5
18. FC: 4096 Hidden Neurons
19. DROPOUT: p = 0.5
20. FC: 30 Output Classes

Figure 4: Single Frame and Early Integration. This fig-
ure shows two of the three convolutional neural network
architectures that we considered. On the left is the sin-
gle frame CNN, which is just a vanilla image classifica-
tion CNN. On the right is our early fusion model as de-
scribed in section 4.2. This figure was taken from Karpa-
thy’s “Large-scale Video Classification with Convolutional
Neural Networks.”[2]

We can see that our single frame CNN turns our supervised
learning problem into a simple single image classification
problem. Given any frame, we will learn what would be the
most probable button press class for that frame. We can see
the validation accuracy through train-time in figure 7.

However, it does not make sense to ignore the temporal
information of our data set in our model. For example, we
can think of one possible frame where Pikachu is next to
Mario. In such a situation, depending on whether they are
currently moving together or moving apart, we might want
to choose a different action at that given state. This brings in
the idea of using previous frames to better understand fea-
tures such as velocity, acceleration, and higher-order tem-
poral derivatives.

4.2. Early Integration CNN

The most naive incorporation of temporal information
would be to treat the time dimension as another channel in
the depth dimension of our input data. That is, if we con-
sider four time-points of image data, each image already
having 3 RGB channels, we would concatenate these frames
for a final input of dimension of 128 × 128 × 12. This is
exactly the idea behind an early integration CNN. We will
use the same layers 2-20 proposed in section 4.1, but our
first layer will be

1. INPUT: 128× 128× 12
as we will consider four time-points of image data.

Our frames will be t = 1
6 s apart. Thus, a single input

piece of data for us covers a timespan of half a second. This
separation value was chosen through intuition, as 1

2 s seems

3

to be a reasonable timescale for gameplay memory, and due
to time constraints was not tuned as a hyperparameter.

The main problem with this method lies within the fact
that in an early integration CNN, only the first convolu-
tional layer is directly coupled with time. Once the first
layer does its convolutions, all temporal information has
been collapsed into the first layer activations. Thus, all sub-
sequent layers do not have direct access to the time infor-
mation in a separated format, diminishing their ability to
learn temporal features. Our desire for effective learning of
temporal features leads us to our final model: the late inte-
gration CNN.

4.3. Late Integration CNN

Similar to section 4.2, we will still consider four time
points of image data, each consecutive points separated by
1
6 s. However, rather than combining all of our input data at
once in the beginning as in early integration, we will let each
frame go through a fully convolutional network first. We
apply layers 2-15 from the architecture presented in section
4.1 on each of our four frames of size (128, 128, 3).

We can then merge the final activations from these four
independent fully convolutional networks and connect them
to a fully connected neural network. The fully connected
neural network will have the same design as layers 16-20
from the architecture presented in section 4.2. Our final
model architecture is schematically shown in figure 5. We

Figure 5: Late Integration. This figure shows our imple-
mentation of a late integration convolutional neural network
as described in section .

will see in section 5 that our choice of the late integration
model is supported by improved validation accuracy.

4.4. Model Training

We perform training on a Nvidia GTX 870M GPU and
primarily use Lasagne/Theano to build our network.[7, 8, 9]
We run a small number (less than 10) of cross-validation

tests on training loss with randomized learning rate and reg-
ularization, running our model for less than 500 iterations
to save on compute time. We use training loss because it
is much smoother and easier to interpret than validation ac-
curacy especially given the low number of cross-validation
iterations. We also check that our final model has validation
accuracy which follows training accuracy closely, showing
a lack of overfitting and thus that doing cross validation on
training loss is valid. We find that the model training ef-
ficacy is generally insensitive to regularization but is very
dependent on learning rate, and we settle on the following
training parameters:
• Learning Rate: 1e-4
• Regularization Constants: 1e-7
• Update Rule: Adam (used as a safe default)
• Annealing: 0.95 every 5000 iterations
• Batch Size: 25 (maximal size given our GPU capacity)
• Training Time: 2 epochs over 2 days.

Note that this is significantly less training on much less data
when compared to deep Q learning methods like in [1],
which used 10 million frames of gameplay and 100 epochs.

Batches were randomized across the entire training data
set and saved in hdf5 format before training began. 15000
batches were generated for Super Smash Bros to correspond
to 1 epoch of training, while 5000 were generated for Mario
Tennis. We do not use transfer learning, as we are classi-
fying actions and not object type. Our input resolution of
(128, 128) is also different from the input resolution many
of these other models are expecting - this does not break
transfer learning, but may degrade performance. We also
do not augment our data; since all our data was generated in
an identical context of a game emulator, we expect the data
set to be quite robust and for augmentation to have limited
benefit.

4.5. Test-Time Tweaking for Live Simulations

Unfortunately, taking the pure maximum softmax class
score as the next input for a live simulator does not produce
reasonable test-time behavior; the reason for this becomes
evident if we look at the histogram in figure 6, which shows
the frequency of occurrences of each class in the training
data. We can see that classes 0 (None), 26 (Left), and 27
(Right) are by a large margin the most represented in the
training set, and thus their scores will tend to be inflated at
test-time as well. For reasonable test-time performance, we
must compensate for the fact that our training data was quite
lopsided.

First, because our top 3 validation score (see Section 5)
exceeds 96%, we take the top 3 class scores for each for-
ward pass, renormalize them to sum to one, and then treat
those renormalized scores as a probability distribution. We
sample from this distribution to arrive at the final chosen
class. This allows us to inject some notion of stochasticity

4

Figure 6: Training Data Histogram. Histogram of the fre-
quency of all 30 classes in our full training data set.

into our model, and incorporates within our model the fact
that a human player may act differently in similar situations.

This, however, still leaves some classes at a disadvantage
because they were highly unrepresented in our data set and
do not have a score in the top 3 classes very often. One solu-
tion is to weight the loss function at training time so that the
loss penalty of misclassifying any particular class is equal-
ized. However, this poses major disadvantages: this will
necessarily decrease our validation accuracy and muddy our
interpretation of this test metric, and it is also not neces-
sarily true that equal penalties across classes is the correct
weighting scheme. Finding optimal class weights would
also be very computationally expensive, as we would have
to re-tune the network each time. Thus, we keep the net-
work we train unweighted and rely on test-time tweaking to
adjust for training set imbalance.

Our solution is to bias each softmax class score by two
weights:

sc 7→
bcsc

|#c|train
(2)

where sc is the score for class c and |#c|train is the number
of occurrences of class c in the training set. Thus, we see
that we first linearly penalize class scores by their training
set class frequency. Beyond that, we also assign each class
a weight bias bc which accounts for any additional bias nec-
essary to allow under-represented classes to be represented
in the final results. For instance, if it is found that Pikachu
never uses the Up+B button combination during gameplay,
bc for this class can be adjusted upwards. Currently, this
presents an additional 30 hyperparameters to search over
manually, but there are ways to learn these biases automati-
cally from simulated gameplay (see Section 6.2).

5. Results and Discussion

Our major results are for Super Smash Bros. We dis-
cuss comparisons with Mario Tennis in a later session. We
use top N validation accuracy2 as a metric for preliminary
model evaluation; we can also generate a 30 x 30 confusion
matrix heat map on a test set to visualize specific problem
areas with our final classifier. We also use performance in
live games of our neural network player as a crucial evalua-
tion metric.

5.1. Validation Accuracy

For comparison of the three main models we described
in section 4, we recorded top-1 validation accuracies over
one epoch of training, and the results are shown in figure
7. We can see that the late integration does indeed beat out
both early integration and the single frame model. How-
ever, this difference is not huge, and we hope to show with
some visualizations in section 5.2 that the late integration
model can really learn not just spatial information, but the
evolution of spatial information over time.

Another metric we can use to check our classification

Figure 7: Validation Accuracy of our Three Models.
This figure shows the validation accuracy of all three time-
integration models investigated in section 4. We trained all
three models for 1 epoch (15000 batches of 25 frames each).

accuracy is a confusion matrix for all 30 classification. As a
30×30 grid of numbers is a bit difficult to parse, we will be
using a heatmap to visualize our predictions. We can see our
confusion matrix below in figure 8. The heat map on the left
represents the raw confusion matrix counts. Because of the
highly skewed distribution of class 0 in our dataset, a better
way to visualize the matrix might be to normalize by rows
(corresponding to true class values). We see by this heatmap

2Note that because we cross-validated on training loss instead of vali-
dation accuracy, the validation accuracy is equivalent to a test accuracy.

5

that the by far the classes that induce the most misclassifica-
tions are classes 0, 26, and 27 (their columns in the heat map
are significantly more lit up). This is very consistent with
the lopsided training data issue discussed in 4.5 and even
further demonstrates that the bias offsets discussed in that
same section are well-motivated. After 2 epochs of training

(a) Raw Confusion Matrix (b) Normalized by Truth

Figure 8: Confusion Matrix Heatmap

each, we arrive at the validation scores in table 1. We can
see that the correct button is within the top 3 softmax scores
over 96% of the time, which is quite a high accuracy.

Game Top 1 Error Top 3 Error Top 5 Error
Super Smash Bros. 79.9% 96.2% 98.7%

Mario Tennis 75.2% 96.0 % 99.5%

Table 1: Validation Accuracy After 2 Epochs Training

5.2. Validation Set Saliency Maps

We will visualize the saliency map for one particular
move: “DOWN+B”. Figure 9 shows the saliency map, which
is visualized with respect to our 2-epoch late integration
model.

We chose the move “DOWN+B” because it is a move that
generally takes aforethought. The fact that the move incurs
a latency before the attack executes necessitates the player
to anticipate when it would be a wise time to use the move.
With figure 9, we can show that our model did learn a strong
time-dependent relationship when it came to this move.

Starting from t = −15 frames, we can see that our net-
work concentrates on Mario’s position. However, when
compared to the next sequential saliency map frames, we
can see that the response is much more diffuse. Indeed, for
t = −10 and t = −5, we see significantly stronger local-
ized responses with respect to both Mario and Pikachu, vi-
sualized as tighter clusters of red and yellow. Finally, what
is also interesting is that with at least the “DOWN+B” class,
the t = 0 frame seems to be the least important in terms of
response. We do see some yellow and blue (the complement
of yellow) around Pikachu’s location, showing some level
of localization for the Pikachu sprite, but when compared

Figure 9: Saliency Maps. We show a saliency map for
input data to our late integration CNN with particularly high
score for the “DOWN+B” class. As our data comes from four
different time points, we have divided up our saliency map
into four images for each of those time points for easier
visualization. The units of the time points are in frames,
with each frame corresponding to 1

30 s.

to the other three saliency maps, the signal is quite mute.
With this visualization, we can see that our late-integration
model successfully incorporates previous temporal frames
to make its decision.

5.3. Performance on Live Gameplay

We find that our model runs at test-time with a latency of
300ms. This is only slightly below the average human reac-
tion time (∼ 250ms) and so we can reliably run our neural
network in real time at 60fps.

To evaluate our model’s practical performance, we pit
our fully CNN-controlled Pikachu against the pre-packaged
Mario game AI. We run 10 games against a level 9 (high-
est level) Mario AI and 10 games against each a level 3 and
level 6 Mario AI and record damage dealt in each game.
The results are summarized in Table 2. Margins of error are
95% confidence intervals assuming Gaussian data distribu-
tions. We note that the CNN Pikachu handily defeats a level
3 CPU, is just barely outside the margin of error for being
better than a level 6 CPU, and is quite competitive with the
level 9 CPU (they are statistically tied). One important point

Average Damage Dealt Average Damage Dealt
Mario CPU Level by Pikachu per Game by Mario per Game

3 116.6%± 29.3% 66.4%± 12.6%
6 96.4%± 13.8% 80.5%± 18.7%
9 77.2%± 18.3% 71.6%± 24.7%

Table 2: CNN Pikachu Performance Against Mario AI

to note is that our training data is generated through matches
against a level 9 CPU opponent. Thus, all other factors held
constant, we expect our CNN Pikachu to be able to adapt to
the style of a Level 9 CPU opponent most readily, which is
why our performance against lower-level CPU AI may be

6

deflated.
We further find in live simulations that our CNN Pikachu

successfully learned relative character orientation and track-
ing. That is, the behavior of our CNN is sensitive to what
direction the Mario character model is relative to Pikachu,
and Pikachu is inclined to move towards Mario. This is il-
lustrated in Figure 10. We see that Mario’s relative position
to Pikachu causes strong class predictions when Mario is
(a) to Pikachu’s left, (b) to Pikachu’s right, and (c) above
Pikachu, respectively. In case (a), we see a strong class
score for left movement and left jump. In case (b), we
see a strong class score for right movement. In case (c),
we see a strong class score for the down+B attack move,
which as described in section 5.2 is an attack that affects
the space above Pikachu. All three of these strong class
scores are consistent with conventional gameplaying wis-
dom, and demonstrate our CNN Pikachu can successfully
track his opponent’s position on the game screen.

This analysis is of course a bit disingenuous, as our algo-
rithm takes as input four frames in temporal sequence, not
just one (as we explored in section 5.2). However, even if it
is slight oversimplification of the real situation, it illustrates
nicely that our filters are very sensitive to relative spatial
positioning, drawing a contrast to pure image classification
tasks like those in ImageNet which should be relatively in-
sensitive to orientation shifts in its images.

Figure 10: Class Score Visualization Game footage (left)
is juxtaposed with class scores (right) at that moment in
time. These frames were chosen because they exhibit strong
class scores in one category, namely (a) move left, (b) move
right, (c) down+B attack.

5.4. Performance on Mario Tennis

We also trained the same model on a Mario Tennis
dataset generated in the same fashion. The model yielded
(as shown in table 1) top-1, top-3, and top-5 validation ac-
curacies of 75.2%, 96.0%, and 99.5%, respectively, num-
bers comparable to our accuracies for the Super Smash Bros
model. The training also proceeded for 2 epochs, but with
a dataset four times as small the training was completed
within a day. We find that the CNN controlled Yoshi (see
figure 11) can track the ball successfully and exhibits behav-
ior that was clearly learned from our gameplay dataset. The
live gameplay performance is admittedly not as competent
when compared to our CNN Pikachu, but this is also reason-
able given that the training data was generated by a novice
for this particular game. There are also potential improve-
ments to our model that can benefit the tracking abilities of
our CNN, discussed in Section 6.1.

Figure 11: Automatic Play of Mario Tennis. Yoshi tracks
and runs towards the ball in Mario Tennis live gameplay.

5.5. Model Strength and Weaknesses

We have already shown that our model can play in real
time and effectively against difficult CPU AI. It does so
without any knowledge of game-objectives, and can work
across titles with very different styles of gameplay. And it
does so in a supervised learning setting, which allows our
models to train faster on fewer data compared to deep-Q
learning. However, there are a few limitations to this model:
• Long-Term Memory Because we have hard-coded

the temporal separation between subsequent frames in-
put into our model (i.e. 1

6 s), the temporal information
our model has is limited to 1

2 s into the past. Tempo-
ral information beyond that might be important, es-
pecially in games like Mario Tennis where consistent
tracking of the ball over the entire game is necessary.

7

• Locality Because we only have view of a part of the
map at any instant in time, our algorithm has difficulty
extrapolating from the local view of the map to a global
understanding of character position. In Super Smash
Bros, this limitation manifests itself in Pikachu strug-
gling when near an edge of the map; he sometimes
prioritizes attacking Mario even if it means falling to
his death. This issue is easy to avoid with some basic
access to the game backend which provides the global
information we need, and so ultimately is not a major
limitation of our AI.
• Data Limitations Our training data consists of

only matches against level 9 CPU. Performance de-
grades when the CNN encounters situations not well-
represented in this training data set. One fix for this
issue is to crowd-source game data from a variety of
players with different play-styles. We expect such ad-
ditional data would greatly help the robustness of our
model’s play.
• Upper Learning Limit Because our model only trains

on a fixed set of training data, it cannot learn to be bet-
ter than the players who generated that data. This is,
of course, where deep Q learning is much more effec-
tive. To allow the algorithm to evolve, we must go to a
reinforcement learning framework, but this is not easy
to do with such a complex state/action space.

5.6. Video Demonstrations

You can view a full Youtube playlist of some videos
relating to this project at:
https://www.youtube.com/watch?v=c-6XcmM-
MSk&list=PLegUCwsQzmnUpPwVv8ygMa19zNnDgJ6OC

In total, there are 6 videos in the play list:
1. Super Smash Bros. AI Demo 1
2. Super Smash Bros. AI Demo 2
3. Super Smash Bros. AI Demo 3
4. Mario Tennis AI Demo
5. Super Smash Bros. Data Acquisition Time Lapse
6. Super Smash Bros. Single Frame AI Demo

6. Future Directions

6.1. Sequence Modeling with LSTMs

To solve the long-term memory issue discussed in Sec-
tion 5.5, we can force the algorithm to be sensitive to tem-
poral sequences by attaching an LSTM to the end of our
CNN architecture. This would mean removing the 4-input-
frame late-integration architecture in favor of a single CNN
branch attached in series with an LSTM. We expect this to
improve gameplay on Mario Tennis significantly, where we
need constant tracking of an object (the tennis ball) and thus
a longer memory that is always active.

6.2. Bias Learning with Statistical Methods

Our test-time tweaking (see Section 4.5) gives us 30
more hyperparameters to manually tweak during live sim-
ulations, but there are ways to set these automatically. For
example, we can record statistics on test-time class scores
and adjust the biases bc so that the expression of each class
is equalized. This will adjust class expression automatically
to compensate for our lopsided training data set.

7. Conclusions

We have shown that when re-framing an AI reinforce-
ment learning problem in terms of a simpler supervised
learning framework, we can achieve good results on com-
plex games with much less training time and training data.
For Super Smash Bros in particular, we achieve AI behav-
ior that can defeat the most advanced CPU AI in the game
within only two epochs of model training. The low-bias,
end-to-end nature of this framework also makes it attractive
from a portability perspective. The disadvantage to this ap-
proach is that we rely wholly on our training data and our
algorithm cannot learn for itself.

There are also many modifications that can improve per-
formance of our model beyond our current model - LSTMs
for temporal sequencing and statistical analysis to reduce
our hyperparameter search space, for example - so the cur-
rent model is just a baseline that already is fairly convincing
of the fact that supervised learning models can offer a quick
and easy alternative to deep-Q learning, especially when the
complexity of the games in question continue to skyrocket.

8. References

[1] Mnih, V., et. al. (2014). “Playing Atari with Deep Re-
inforcement Learning.” DeepMind Technologies

[2] Karpathy, A., et. al. (2014) “Large-scale Video Clas-
sification with Convolutional Neural Networks.” The
IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[3] Project 64: Nintendo 64 Emulator. “http://pj64-
emu.com/”

[4] Fraps: Real-time Video Capture and Benchmarking.
“http://www.fraps.com/download.php”

[5] Simonyan, K., et. al. (2014). “Deep Inside Convo-
lutional Networks: Visualizing Image Classification
Models and Saliency Maps.” Computer Vision.

[6] Krizhevsky, A., et. al. (2012) “ImageNet Classifi-
cation with Deep Convolutional Neural Networks.”
NIPS.

8

[7] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I.
Goodfellow, A. Bergeron, N. Bouchard, D. Warde-
Farley and Y. Bengio. “Theano: new features and
speed improvements”. NIPS 2012 deep learning work-
shop.

[8] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R.
Pascanu, G. Desjardins, J. Turian, D. Warde-Farley
and Y. Bengio. “Theano: A CPU and GPU Math Ex-
pression Compiler”. Proceedings of the Python for
Scientific Computing Conference (SciPy) 2010. June
30 - July 3, Austin, TX

[9] Python Lasagne Wrapper for Theano
Deep Learning Package. Lasagne v.0.2.
https://github.com/Lasagne/Lasagne

[10] Ji, S., et. al. (2010) “3D Convolutional Neural Net-
works for Human Action Recognition.”

[11] Ng, J., et. al. (2015) “Beyond Short Snippets: Deep
Networks for Video Classification.” The IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR).

9

