
Abstract

In this paper, I describe my approach of using 
convolutional neural networks (ConvNets) to play the 
game Super Hexagon by Terry Cavanagh. This game is 
visually minimalistic, only requires two inputs (left and 
right), and only contains six levels that each takes only 60
seconds to complete. However, it is known for being very 
difficult to play and even completing level 1 can be 
considered a challenge. My approach involves using a 
polar coordinate representation of a screenshot of the 
game as an input to a ConvNet that predicts the presence 
of players and walls for a 40 by 40 grid of subimages. 
This output is further processed by a human-coded 
decision making process that decides the current action of
the player (left, right, or neutral). My final system has 
completed levels 1 and 2 and has made significant 
progress on levels 3 and 4. 

1. Introduction

1.1. Super Hexagon

Super Hexagon is a video game released by independent
game developer Terry Cavanagh in 2012. The gameplay 
involves rotating a small triangle clockwise (right) or 
counterclockwise (left) around the center of the screen to 
dodge a series of incoming walls. A wall hitting the player 
triangle triggers a game over, which resets the timer. The 
player completes a level by surviving for 60 seconds. The 
game contains only six levels of differing speeds, color 
schemes, and wall patterns (except that levels 4, 5, and 6 
contain similar wall patterns to levels 1, 2, and 3 
respectively). 

To put into perspective how difficult the game is, the 
difficulty names of the six levels are, in order: Hard, 
Harder, Hardest, Hardester, Hardestest, and Hardestestest. 
One particular aspect of Super Hexagon that can make it 
difficult for humans is that the game screen constantly 
rotates independently of the player's movement and the 
speed and direction of this rotation changes frequently. 

However, this aspect of the game would not have an effect 
on a computer player that decides the game input based 
only on the current frame. 

Figure 1: Super Hexagon Level 1 Screenshot

1.2. System Overview

I am attempting to use a ConvNet as the central 
component of an automated system (HexaBot) that can 
play Super Hexagon. HexaBot works by taking a 
screenshot image of the game and constructing a polar 
coordinate representation of the image. The ConvNet 
(HexaNet) takes this input image and returns as output the 
scores of three classes for a series of small subimages 
within the input image. These three classes are: player, 
wall, and background. From these scores, the player uses 
some decision making process to determine the best game 
input, which can be left, right, or neutral (no input).

2. Previous Works

2.1. Previous Super Hexagon AI

There haven't been many well documented attempts to 
create programs to play Super Hexagon. The best 
documented attempt I found to play Super Hexagon is 
from the website Cracked Open Mind [8]. Their approach 
involves binarizing a screenshot to separate the 
player/walls from the background and using OpenCV 
methods to detect and categorize shapes. Without any 
supervised learning techniques (as far as I can tell), their 
program is capable of beating all six levels of Super 
Hexagon.

1

Playing Super Hexagon with Convolutional Neural Networks (Milestone)

Jason Lewis
Stanford University

JLewis8@stanford.edu



2.2. Playing Video Games with Neural Networks

While I have not been able to find any prior work of 
applying neural networks to Super Hexagon, I have found 
examples of applying neural networks to playing other 
video games. 

Mnih et al. trained a ConvNet with a variant of Q-
learning to come up with control policies for playing 
various Atari games [2]. Their ConvNet (which they call a 
Deep Q-Network, or DQN) takes in the raw pixel data 
from their selected game and extracts high-level features 
which are used to determine from the output layer the 
action input for the game. Irwan Bello and Yegor 
Tkachenko utilizes this Q-learning process to play the 
Atari game Breakout [1].

Youtube user SethBling demonstrates his program 
MarI/O, which uses neural networks and was trained using 
genetic algorithms, to play Super Mario World [5]. 
MarI/O is based on the method NeuroEvolution of 
Augmenting Topologies (NEAT) developed by Kenneth 
Stanley and Risto Miikkulainen [6]. The output of the 
network determines which game inputs to activate for the 
given frame.

2.3. Object Localization with ConvNets

Both of the previous examples use neural networks to 
give as output the action input for the game. My approach 
to playing Super Hexagon with ConvNets is more closely 
related to object localization 

The OverFeat model [4] is based on a framework of 
using ConvNets to predict classes at various locations and 
scales, and recombining these classifications to predict 
multiple bounding boxes and classes within an image. In 
their ConvNet, the images is passed through a series of 
convolutional and max pool layers to generate features. 
The final fully connected layers are applied in a sliding 
window over the output of the last convolutional layer to 
predict classes for different locations and scales.

The ConvNet that I use for playing Super Hexagon can 
be thought of as a very simplified version of this kind of 
network, which only contains no fully connected layers 
and outputs class predictions at multiple locations and just 
one scale.

3. Image Dataset

A significant issue with applying any kind of supervised
machine learning algorithm to playing Super Hexagon is 
that there is no readily available image dataset. It will be 
easier to explain the overall design of HexaBot if I first 

explain how I can obtain an image dataset for Super 
Hexagon.

An image dataset could potentially be generated by 
taking screenshots of the game screen while playing the 
game manually, but that alone would not be enough. For 
supervised learning methods, each image in the dataset 
needs to be labeled appropriately for the algorithm being 
used. Since my approach involves detecting the locations 
of players and walls, the labels for a single image are the 
bounding boxes for each wall and the player on the screen.
If the dataset is comprised of in-game screenshots, the 
labeling process would have to be done manually for each 
image. This process would be time-consuming and error-
prone.

3.1. Screenshot Generator

A much better alternative for generating the dataset is to
use a separate program that can randomly generate an 
image that looks like a Super Hexagon screenshot. Since 
such a program would have access to knowledge of every 
polygon on screen, it would be able to output a list of 
player and wall bounding boxes along with each image. As
it turns out, the visual style of the game is so simple and 
minimalistic that writing this program would potentially be
easier and more consistent than manually labeling real 
screenshots. A nice benefit of this approach is that the 
program can generate as many labeled images as desired to
create an image dataset of any size.

Figure 2: Real Screenshot (left) and Generated Screenshot (right)

I have written a program to generate imitation Super 
Hexagon screenshots in the Processing language [3]. 
Figure 2 contains a real in-game screenshot and an image 
generated by my program using parameters chosen to 
imitate the real screenshot as closely as possible. While 
this is not a perfect replication, it is close enough to show 
that images generated by my program are a close enough 
imitation to form a useful dataset. The parameters that 
determine the rotation and shear of the screen and 
placement of objects can be randomized to generate new 
imitation screenshots.

3.2. Polar Coordinate Representation

For the purpose of making screenshots easier for 
HexaBot to process, I decided to apply a transformation 

2



that converts screenshots into a polar coordinate 
representation. Figure 3 contains two annotated 
representations of the same image. The right image is the 
screenshot converted into its polar coordinate 
representation, using the center as the origin and half the 
image height as the max radius.

Figure 3: Annotated Representations of Screenshots in Cartesian 
(left) and Polar (right) Coordinates

I use a theta range of [0, 3.2π] radians instead of [0, 2π] 
radians, resulting in a portion of the bottom of the image 
being a copy of the top of the image. This change is to deal
with the case of the player being cut in half at the top or 
bottom of the image. With this change, it is guaranteed that
at least one whole player is in the image. This is important,
since in any given screenshot, the system needs to form an 
accurate prediction for the player location in order to 
dodge incoming walls.

The main reason for using this polar representation is 
that in Cartesian coordinates, the sides of a wall are 
usually not axis-aligned. Since bounding boxes are axis-
aligned, they will sometimes be an inaccurate 
representation of the set of pixels the wall occupies.

Figure 4: Axis-Aligned Boxes for Player and Walls

In Figure 4, some bounding boxes in the left image 
contain more background pixels than wall pixels. In the 
polar coordinate representation, the bounding boxes for 
walls become more consistent and reliable representations 
of the set of pixels the wall occupies. Specifically, the left 
edge of the box always represents the incoming side of the 
wall that the player needs to dodge.

Another reason for the polar coordinate representation is
that decision making process at the end becomes simpler. 
Let's say we are given perfect bounding boxes for the 

player and every wall. In polar space, the walls move right 
to left instead of outward to inward, so dodging walls is 
just a matter of maximizing the distance to the closest wall 
directly to the right of the player.

3.3. Augmenting the player class

As I mentioned before, it is vital for the system to be 
able to predict the location of a player. In this context, 
there is an interesting issue with the images generated by 
the program. A single player triangle only takes up about 
0.1% of the area within an image, whereas all walls take 
up around 15% of an image and the rest is the background.
My ConvNet approach involves dividing the image into a 
series of small subimages, and it is incredibly rare for a 
player to appear in a subimage compared to a wall or 
background. This makes it difficult to train a ConvNet to 
learn how to recognize a player. 

Figure 5: Generated Player-Dense Screenshot

To deal with this issue, I decided to generate some 
images for the dataset that do not look like they are from 
Super Hexagon, but contain a lot of player triangles. In 
Figure 5 we see an example of such an image in both 
Cartesian and polar representations. When my program 
generates an image dataset, half of the images will take 
this form. The end result is that over the entire image 
dataset, the probability of a subimage containing a player 
is about the same as a subimage containing a wall (about 
15%). 

4. HexaBot

4.1. Component Steps

The final system used to play Super Hexagon, called 
HexaBot, is made of a series of steps that takes a 
screenshot of the game window and processes it into a 
final game decision that will be continually executed until 
the next decision is made.

3



Figure 6: HexaBot Steps

The first step takes a screenshot of the game window. 
The default resolution of Super Hexagon in windowed 
mode is 768 by 480. The second step converts this 
screenshot into a 256 by 256 image that is the same polar 
coordinate representation used in the training image set. 
The third step is a convolutional neural network called 
HexaNet that processes the image. The fourth and final 
step processes the HexaNet output using a human-coded 
process that determines whether the player should move 
left, right, or neutral. This decision is executed in-game, 
overriding the decision made in the previous iteration.

4.2. HexaNet Architecture

The convolutional neural network HexaNet is the 
central and most important component of HexaBot. 
HexaNet takes as input a 256 by 256 image of the polar 
coordinate representation of a Super Hexagon screenshot 
(real or generated) and gives as outputs the probabilities of
a subimage being of a player, wall, or background for a 40 
by 40 grid of subimages. HexaNet was written in Python 
using a combination of Theano [7] and Lasagne [9]. 

Due to the specific architecture of HexaNet as seen in 
Figure 7, position (i, j) in the output (for 0 ≤ i < 40, 0 ≤ j <
40) contains class probabilities for a square subimage with 
opposite corners at pixels (6i, 6j) and (6i+21, 6j+21) in the
input image.

To form a training set, the bounding box labels for the 
images in the dataset have to be converted to be 
compatible with the HexaNet output. For each of the 1600 
subimages, if a subimage overlaps a bounding box of a 
player or wall, that subimage is assigned to the 
corresponding class.

Figure 7: HexaNet Architecture

In the architecture, the notation “CONV[X]-[Y]” 
denotes a convolutional layer with Y convolutional filters 
of size X by X by C, where C is from A x B x C, the 
dimension of the previous layer. The “Pad” is the amount 
of 0-padding used around the first two dimensions of the 
previous layer (padding is not used in this network). The 
“Stride” is how many spaces a filter moves in the A or B 
dimensions when applying the convolution. “MAX 
POOL2” denotes a max pooling layer with 2 by 2 filters of
stride 2. 

P(Y=k∣x ij)=
exp (xij

k
)

∑l
exp (x ij

l
)

Figure 8: Softmax Function

Most layers apply additional nonlinearities, such as Relu
(rectified linear unit), BatchNorm (batch normalization), 
Dropout, and Softmax. The softmax nonlinearity at the last
layer converts all the scores at each subimage for each of 
the three classes into a probability distribution (where the 
sum of the class scores sum to 1).

5. Experiment

I was able to run the following experiment multiple 
times, where each experiment trains HexaNet to play a 
specific level or subset of levels of Super Hexagon. Using 
my Super Hexagon screenshot generator program, I 
generated a dataset of 500 labeled images in the polar 
coordinate representation. The color palette used to 
generate these images matches the color palette of the 
level or levels chosen for the experiment. Each image is 
labeled with the bounding boxes of each player and wall 
object. Using these bounding box labels, I generate for 
each image a 40 by 40 grid of class labels for each 
subimage as described in section 3.1.

4



The training set used is 480 images from the dataset, 
along with their respective class label grids. This leaves 20
images as the validation set. Under a specific set of 
hyperparameters, I trained a randomized instance of 
HexaNet using the backpropagation algorithm until 
convergence.

After training, the final network weights are used in 
HexaBot to play Super Hexagon.

5.1. Hyperparameters

My main goals during training was to get a network that 
achieves high classification accuracy (especially for the 
player class) on the validation set, and to get a set of layer 
1 filters that visually look more like smooth patterns than 
random noise. For the latter goal, I created a visualizer for 
the layer 1 filters that normalizes the values of each filter 
to be viewable in RGB space. During hyperparameter 
selection, I took into account the layer 1 filters, the 
validation error, and training loss over time.

I used the Adam update rule for training network 
weights. For the learning rate, I settled on 5*10-4 and 
occasionally ran experiments as low as 1*10-5. At learning
rates higher than these, the layer 1 filters had difficulty 
converging, even after the training loss is minimized. 

In layers 1 and 2 where I was using dropout, I set the 
dropout parameter p to 0.25. If I set this value too high, I 
would often observe multiple filters converging to similar 
patterns visually. If I didn't use dropout at all, I would 
sometimes observe filters that don't converge to a useful 
pattern and are ignored by the rest of the network.

L2 regularization was the main tool for encouraging 
nice layer 1 filters. While higher regularization tended to 
produce nicer filters, too much regularization had a 
negative impact on validation error, which would peak 
quickly and then start decreasing. My solution was to use a
different regularization for layer 1 than for the rest of the 
network. The default regularization amount was 0.01 for 
the network and a regularization amount of 1.0 for layer 1. 
This combination resulted in nice filters and low validation
error. 

5.2. Training on Level 1

Here, I report the results of running the experiment on 
training HexaNet on images that use a similar color palette
to level 1 from Super Hexagon.

Figure 9: Error and Loss on Level 1 Dataset

The network achieves a very high validation accuracy 
very quickly. This is likely due to the fact that due to the 
minimalistic art style of the game, all the images in the 
dataset are fairly similar with regard to the shapes, 
textures, and colors present in any image. After just two 
epochs, the network achieves an overall 96% validation 
accuracy. The training loss (which includes softmax error 
and regularization loss) decreases smoothly over time and 
converges to a loss of around 0.35 by epoch 70. 

Figure 10: Four Images from Validation Set with True Labels 
(top) and Predicted Labels (bottom) for Bounding Boxes

In Figure 10, we see four labeled images from the 
validation set, with the true labels on the top row and the 
HexaNet predictions on the bottom row. In this 
visualization, a green box denotes a subimage that contains
a wall and a blue box denotes a subimage that contains a 
player. An area with no box is part of the background.

Visually, the predictions appear to be mostly accurate 
except for the issue of parts of a wall occasionally being 
classified as part of a player. Due to the way the polar 
coordinate conversion warps the shape of the wall, the 
right side of the wall appears to have a “tail” that looks 
vaguely triangular. A subimage that contains a tail, when 
passed through the network with no context of its 

5



surroundings, can understandably be mistaken for a player 
triangle. 

Predicted
Background Wall Player Recall

A
ct

u
al Background 23716 57 154 0.991

Wall 674 3165 57 0.812
Player 135 0 4042 0.968
Precision 0.967 0.982 0.950

Table 1: Confusion Matrix for HexaNet on Level 1

In the confusion matrix in Table 1, we see how the final 
HexaNet performs on classifying subimages of images 
from the validation set. For the most part, the network 
does a very good job of detecting every class. We might 
have expected to see a large amount of error for mistaking 
a wall for a player as we saw before, but this is not the 
case. The biggest source of error is actually mistaking a 
wall for the background.

If we look back at the first and third validation images 
in Figure 10, we can see this happening at subimages 
located on the perimeter of a wall. The true labels were 
defined by the bounding boxes of the walls, which can 
result in some subimages on a perimeter being labeled as 
walls when they actually only contain background. These 
errors in the ground truth contribute to error in the 
accuracy of the network, but there aren't too many of these 
errors to prevent the network from learning how to 
accurately recognize walls and players. 

Figure 11: Layer 1 Filters Trained on Level 1 (top) and Level 2 
(bottom)

The colors in the converged layer 1 filters change to 
match the color palette of the images in the training set. 
Level 1, which contains red and yellow colors, produced 
filters that are mostly red and magenta. Level 2, which 
contains a lot of green, produces filters that are dominantly
green. In both cases, the filters contain smooth patterns.

5.3. Playing Level 1

Using a HexaNet trained on level 1 images, HexaBot 
was able to successfully complete level 1.

Trial Time Won Trial Time Won Trial Time Won
1 35.77 9 64.15 X 17 63.17 X
2 61.15 X 10 26.95 18 60.85 X
3 61.67 X 11 46.62 19 62.83 X
4 60.78 X 12 63.58 X 20 61.20 X
5 61.03 X 13 35.57 21 49.70
6 21.98 14 16.23 22 59.95
7 42.63 15 62.20 X 23 44.18
8 62.28 X 16 60.72 X 24 62.45 X

25 61.23 X

Table 2: Results of 25 Trials of Level 1

If debugging visualizations are turned off, HexaBot was 
able to operate at about 20 frames per second. With 
debugging visualizations turned on, this drops to about 15 
frames per second. With debugging visualizations turned 
off, HexaBot played 25 trials of playing Super Hexagon at 
level 1, 15 of which it was able to complete the level by 
reaching a time of 60 seconds or more. This indicates that 
it is able to complete level 1 in about 60% of attempts. In 
Table 2, we see all the times achieved by HexaBot during 
its 25 trials.

When someone completes a level, the game keeps going
until the player hits a wall. After 60 seconds of level 1, the 
game starts speeding up and the color palette changes to 
that of level 4. Since this particular experiment only 
trained HexaNet using images from level 1, this change of 
color palette confuses the network and makes it unable to 
extract information from the screenshot. This is why the 
player almost immediately fails after achieving 60 
seconds.

On trials where HexaBot didn't complete the level, it 
achieved an average time of 37.96 seconds. Causes of a 
game over before 60 seconds can be attributed to 
shortcomings in the human-coded rules and errors in the 
HexaNet output, such as confusing the tail of a wall as the 
player. 

5.4. Progress on Levels 1-5

I reran the same experiment for every level except level 
6. The game actually doesn't let the player play levels 4, 5, 
and 6 until the player completes levels 1, 2, and 3 
respectively. HexaBot wasn't able to complete level 3 yet, 
so level 6 is still locked. Table 3 contains the best times 
achieved by HexaBot in the first five levels. It was able to 
beat levels 1 and 2 and got at least half way through levels 
3 and 4. The time of 69.86 in level 1 was achieved by a 
network that was trained on images from levels 1 and 4, so

6



that it would have some ability to keep playing after 
reacing 60 seconds.

Level Best Time Won
1 69.86 X
2 61.13 X
3 41.63
4 54.71
5 17.97
6 N/A

Table 3: HexaBot Best Times

6. Future Work

I plan to improve HexaBot to the point that it is able to 
complete all six levels. It has already shown promising 
progress in levels 3 and 4.

6.1. Reinforcement Learning

In my opinion, the most significant shortcoming of 
HexaBot is its reliance on human-coded rules to process 
the output from HexaNet. Once these rules are fixed, there 
is no room for improvement. If this component were to be 
replaced a decision making process based on 
reinforcement learning, the overall system would have the 
ability to improve itself. Potentially, this could result in a 
system that can play better than it could using the human-
coded process.

Super Hexagon could be modeled as a Markov decision 
process (MDP) with an unknown transition model that 
could be trained to make decisions that maximize the 
reward from playing the game. In this MDP, the set of 
states can be all of the possible 40 by 40 grids that 
HexaNet can output. Alternatively, this state space can be 
simplified as the x distance from the player to the nearest 
wall at each of the 40 y locations in the HexaNet output, 
along with the most likely player y location. The set of 
actions in the MDP would still be left, right, and neutral. 
The reward in the MDP for a given frame is the distance 
between the player and the closest wall in the HexaNet 
output. A game over would have an inherent reward of 0 
(or less if desired). This would encourage the 
reinforcement learning process to keep the game going as 
long as possible.

6.2. Input Classification Approach

When I started this project, my original plan was for the 
ConvNet to take a normal screenshot of Super Hexagon as 
an input and give as the output a single classification for 
the image as being left, right, or neutral. This approach 

would not include a separate decision making process 
since the ConvNet output would serve as the current 
decision for the game input.

One of the main reasons I did not try this approach in 
full scale is that it would have made the image dataset 
trickier to generate. If I were to use live screenshots for the
dataset, I would have to label the actions manually. If I 
were to generate the screenshots with a program, I would 
have to write rules to determine the best action.

Another reason for avoid this approach is that I was 
unsure of whether a ConvNet would be able to extract 
enough information from the screenshot to reliably 
determine the best action. The network would have be able
to notice the importance of the player triangle, detect its 
location, and determine its proximity to walls. However, it 
would be interesting to see how effective or ineffective this
approach would be compared to the approach I actually 
used.

7. Conclusion

In this paper, I presented a system called HexaBot that 
utilizes a convolutional neural network called HexaNet to 
play the video game Super Hexagon. To train HexaNet, I 
used a labeled image dataset that was created using a 
program I wrote that generates images that look like in-
game screenshots. These images were transformed into a 
polar coordinate representation that was easier to process. 
HexaNet predicts the presence of players and walls for a 
40 by 40 grid of subimages in the original input image. 
This output is processed by a human-coded process that 
decides the action of the player. This system was 
eventually able to complete levels 1 and 2 of Super 
Hexagon. It is possible that by replacing the human-coded 
process with a process that uses reinforcement learning, 
the system can improve beyond its current capabilities and 
eventually complete all six levels.

This is a video of HexaBot completing level 1: 
https://vimeo.com/158433051.

This is a video of HexaBot completing level 2:
https://vimeo.com/158855274.

If I make the source code for this project available at 
some point in the future, I will make it available at the 
GitHub page:
https://github.com/Mathsvlog/HexaBot.

7

https://vimeo.com/158433051
https://github.com/Mathsvlog/HexaBot
https://vimeo.com/158855274


8. References

[1] Bello, Irwan, and Yegor Tkachenko. "Learning 
Control Policies from High-Dimensional Visual 
Inputs." Stanford CS231N (2015).

[2] Mnih, Volodymyr, et al. "Playing atari with deep 
reinforcement learning." arXiv preprint 
arXiv:1312.5602 (2013). 

[3] "Processing." Processing. Web. 13 Mar. 2016. 
<https://processing.org/>.

[4] Sermanet, Pierre, et al. "Overfeat: Integrated 
recognition, localization and detection using 
convolutional networks." arXiv preprint 
arXiv:1312.6229 (2013). 

[5] SethBling. "MarI/O - Machine Learning for Video 
Games." Online video clip. YouTube. 
<https://www.youtube.com/watch?
v=qv6UVOQ0F44>.

[6] Stanley, Kenneth O., and Risto Miikkulainen. 
"Evolving neural networks through augmenting 
topologies." Evolutionary computation 10.2 (2002): 
99-127. 

[7] "Theano." Welcome — Theano 0.7 Documentation. 
Web. 13 Mar. 2016. 
<http://deeplearning.net/software/theano/>.

[8] Trimaille, Valentin. "Super Hexagon Bot." Cracked 
Open Mind. 2015. Web. 13 Mar. 2016. 
<http://crackedopenmind.com/portfolio/super-
hexagon-bot/>.

[9] "Welcome to Lasagne." Welcome to Lasagne — 
Lasagne 0.2.dev1 Documentation. Web. 13 Mar. 
2016. <http://lasagne.readthedocs.org>.

8

http://lasagne.readthedocs.org/
http://crackedopenmind.com/portfolio/super-hexagon-bot/
http://crackedopenmind.com/portfolio/super-hexagon-bot/
http://deeplearning.net/software/theano/
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://www.youtube.com/watch?v=qv6UVOQ0F44
https://processing.org/

	1. Introduction
	1.1. Super Hexagon
	1.2. System Overview

	2. Previous Works
	2.1. Previous Super Hexagon AI
	2.2. Playing Video Games with Neural Networks
	2.3. Object Localization with ConvNets

	3. Image Dataset
	3.1. Screenshot Generator
	3.2. Polar Coordinate Representation
	3.3. Augmenting the player class

	4. HexaBot
	4.1. Component Steps
	4.2. HexaNet Architecture

	5. Experiment
	5.1. Hyperparameters
	5.2. Training on Level 1
	5.3. Playing Level 1
	5.4. Progress on Levels 1-5

	6. Future Work
	6.1. Reinforcement Learning
	6.2. Input Classification Approach

	7. Conclusion
	8. References

