
Pruning of Winograd and FFT Based Convolution Algorithm

Xingyu Liu
xyl@stanford.edu

Yatish Turakhia
yatisht@stanford.edu

Abstract

Winograd- and FFT-based convolution are two efficient
convolution algorithms targeting high-performance infer-
ence. Their efficiency comes from the reduction of the num-
ber of multiplication operations due to linear and Fourier
transforms. However, the two existing approaches cannot
handle efficient compression of the neural network, which
might contribute significant improvement in computation
and memory footprint.

We propose to investigate the potential of pruning
Winograd- and FFT-accelerated CONV layer computation.
We used the heuristics of pruning the model in the based
on the absolute value of the elements in the transformed
domain. Our results shows that using Winograd-based con-
volution on LeNet-5, the number of parameters of the first
and second layer can be both pruned to 10% of its origi-
nal number, and using FFT-based convolution, can be both
pruned to 25%, with only 0.18% loss of accuracy.

1. Introduction
Convolutional neural networks have become highly per-

vasive for various applications in visual recognition. In fact,
the most recent and most successful neural networks, such
as GoogleNet [7] and ResNet [3], only consist of convo-
lutional layers. However, the testing time performance of
several successful convolutional neural networks is still far
from real-time. Compared to fully-connected layers, it is
known that convolutional layer is far more intensive compu-
tationally. As a result, if we could accelerate CONV layer
inference by reducing the computation workload, we could
possibly achieve real-time neural network.

Recent work [5] has demonstrated a fast convolutional
algorithm to improve the performance of convolutional lay-
ers by up to 4X in terms of reduction of number of multipli-
cation operations. The key idea is to perform convolution
in transformed domains using Winograd algorithm that re-
duces the number of operations required to perform the con-
volution. Similarly, prior work has investigated the speedup
potential of using FFT for convolution, which converts the
convolution to simple element-wise multiplication of matri-

ces in the transformed domain.
To further pursue high efficiency in inference, a recent

research work [2] described a method of reducing the stor-
age and computation required by neural networks by prun-
ing and compressing the network based on certain heuris-
tics. Experiment results showed that the parameters of FC
and CONV layers in several successful neural networks
could be reduced by an order of magnitude and 2/3 with-
out affecting their accuracy [2], which is a huge improve-
ment in terms of memory footprint as well as computation
workload. However, the above two algorithms , Winograd-
and FFT-based convolution cannot exploit the potential of
pruning and compressing the network.

In this work, we propose to investigate the potential of
pruning Winograd- and FFT-based CONV layer computa-
tion. We used similar pruning heuristics as the previous
work, but in the two transformed domain. To the best of the
authors’ knowledge, this is the first research work on the
pruning of efficient convolution algorithm. The experiment
results showed that the two convolution layers of LeNet-
5 on MNIST dataset can be pruned to 10% of its original
size, and using FFT-based convolution, can be both pruned
to 25%, with only 0.18% loss of accuracy.

2. Related Work
Pruning has been shown to be very effective on convo-

lutional neural network. This could have two advantages:
(i) reducing the number of parameters required to be stored
for CNN; and (ii) reducing the computation workload of the
CNN. Both have huge impact on performance and energy.
A recent research work [2, 1] has shown that for reducing its
parameters by up to 13X. The pruning heuristics they used
for FC layers are as follows: first, the network is trained
give information on which connections are important based
on the value of the weights in the connection. Next, after
setting a threshold value, unimportant connections whose
weight values are below the threshold is pruned. Finally,
the network is re-train to fine-tune the weights of the re-
maining connections. Similar approaches can be applied to
CONV layer, where the parameters can be reduced by up to
13X.

A more recent paper [1] further proposed a method to



address a problem in the aforementioned pruning approach
that such pruning usually results in irregular network con-
nections which cannot fit well on parallel computation. The
proposed method uses structured sparsity at various scales
including channel wise, kernel wise and intra kernel strided
sparsity. The pruned network is then re-trained to prevent
lose of accuracy.

3. Pruning Method of Winograd- and FFT-
based 2D Convolution

In this section, we describe the theoretical fundamental
of the two efficient convolution algorithms and the mathe-
matical support for the implementation of pruning and re-
training. Figure 1 shows the overview of this procedure.

3.1. Pruning

It’s known that convolution can be implemented using
Fourier Transform. Letting F denote the Fourier transform
and F−1 denote its inverse transform, the convolutions be-
tween feature map f and kernel g can be computed as fol-
lows:

f ∗ g = F−1(F(f) · F(g))

The complexity of the FFT-based method requires
6Cn2 log n + 4n2 operations, with each FFT requires
O(n2 log n2) multiplications and elementwise product re-
quires 4n2 multiplications [6].

Pruning further reduces the number of multiplications.
Mathematically, the convolution operation after pruning is
only approximate and is given by equation (1):

f ∗ g ≈ F−1(F(f) · F(g) ·M) (1)

where M is a mask (with 0 and 1 as its elements) ap-
plied to FFT of kernel g, i.e. F(g). Since M is known
at test time, the multiplications which are masked can be
completely avoided. The ratio of 0’s in M to the 1’s is M
is known as pruning rate. One could also avoid computa-
tion of corresponding elements in the FFT of feature map
i.e. F(g).

Although FFT shows great speed-up for large kernels,
recent study has shown that for small kernels, Winograd-
based convolution algorithm outperforms [5]. Since the
most recent and most successful neural networks typically
adopt deep layers with small kernels (3 × 3 or 1 × 3), it’s
necessary to look at both algorithms.

A recent paper [5] proposed a fast algorithm for 2D con-
volution using Winograd’s minimal filtering algorithms[8].
To compute an m× n output feature map with r× s filters,
which we denote as F (m× n, r× s), naive convolution re-
quires m × n × r × s multiplications, while the proposed
algorithm requires (m+ r− 1)(n+ s− 1) multiplications.

Since floating-point multiplications are expensive on GPUs,
saving on multiplication operations means gaining in per-
formance.

For 1D convolution with data size of 4 and kernel size
of 3, we denote the input data to be d = (d0, d1, d2, d3)
and kernel to be g = (g0, g1, g2). We first transform the
input data linearly to be (d0 − d2, d1 + d2, d2 − d1, d1 −
d3) and kernel to be (g0,

g0 + g1 + g2
2

,
g0 − g1 + g2

2
, g2).

By doing elementwise multiplication, we have intermediate
results of

m1 = (d0 − d2)g0

m2 = (d1 + d2)
g0 + g1 + g2

2

m3 = (d2 − d1)
g0 − g1 + g2

2

m4 = (d1 − d3)g2

Then the the first and second element of the output
d0g0+d1g1+d2g2 and d1g0+d2g1+d3g2 can be written as
m1+m2+m3 and m2−m3−m4 respectively. The whole
algorithm only uses 4 multiplications while naive convolu-
tion requires 2× 3 = 6 multiplications.

When d and g are written as column vectors, the above
ideas could be generalized in matrix form:

S = AT [(Gg)� (CT d)]

For F (2, 3), the matrices are:

C =


1 0 −1 0
0 1 1 0
0 −1 1 0
0 1 0 −1



G =


1 0 0
1

2

1

2

1

2
1

2
−1

2

1

2
0 0 1


AT =

[
1 1 1 0
0 1 −1 −1

]
For F (2×2, 3×3), d and g are 4×4 and 3×3 matrices

and the convolution becomes

S = AT [(GgGT )� (CT dC)]A

F (2×2, 3×3) uses 16 multiplications, however the naive
algorithm uses 2 × 2 × 3 × 3 = 36. This is an arithmetic

complexity reduction of
36

16
= 2.25X .

Similar to FFT-based convolution, pruning can also be
applied to Winograd-based convolution. A mask could be



(a) Winograd convolution and pruning (b) FFT convolution and pruning

Figure 1: Overview of Winograd and FFT based convolution and pruning.

applied to the transformed kernel before element-wise mul-
tiplication, as illustrated in equation (2) so that the number
of multiplication could be further reduced.

S ≈ AT [((GgGT )�M)� (CT dC)]A (2)

Similar to the FFT case, one could also avoid compu-
tation of corresponding elements in the Winograd trans-
formed domain of feature map i.e. CT dC.

The heuristics of pruning we used in this work are based
on the absolute value of transformed kernel in the Wino-
grad domain and modulus of transformed kernel in the FFT
domain. The heuristics were also used by [2] and is intu-
itive, since the absolute value described the importance of
the each parameter element in the transformed domain.

3.2. Retraining

Aforementioned pruning improves computation effi-
ciency at the sacrifice of validation and testing accuracy.
We address this problem by doing re-training on the kernel
in Winograd- and FFT-domain after pruning, i.e. train the
network given the pruned element permanently set to zero.

Conventional training includes both forward pass of ac-
tivation and backward pass of gradient. Compared to con-
ventional training and conventional pruning-and-retraining
proposed in [2], the retraining in the Winograd- and FFT-
domain faces new challenges. Let’s take Winograd-based
convolution as an example. If only the parameters in the
transformed domain are cached, the gradient in the trans-
formed domain needs to be knew explicitly for the kernel
update. However, when the 2 × 2 gradient of the output
back-propagated from the next layer, it’s impossible to re-
construct the gradient of the 4 × 4 element-wise product
simply from the 2 × 2 gradient. Moreover, it’s also impos-
sible to re-construct the gradient of 4 × 4 data given the
the gradient of the 4 × 4 element-wise product, since mul-
tiple gradient entries are forced to zero so the inverse linear
transform will no longer stand.

Thus, we proposed an equivalent method of retraining
to avoid the above mathematical dilemma. Equivalent of
caching the transformed kernel, we cache the original ker-
nel and mask instead. During forward pass, it will cost addi-
tional computation of the transformed kernel and applying
mask. In the backward pass, however, the computation of

Figure 2: LeNet-5 architecture. Traditional Lenet-5 uses a
kernel size of 5 × 5 and a padding of 2. For the research
Winograd algorithm, however, we used 3 × 3 kernel and a
padding of 1.

gradient and update of original kernel are identical as the
conventional training. In this way, we convert the retraining
problem mathematically to its equivalent.

4. Experiment Methodology

In this section, we describe our experiment methodology
of investigating the pruning and retraining of the two effi-
cient convolution algorithms. We used LeNet-5 architecture
for our implementation, as shown in Figure 2 with training
on MNIST dataset. The network has two convolution layers
where our techniques have been applied.

4.1. Winograd-based Convolution

We used Caffe as the framework for Winograd-based
convolution pruning and retraining. The network we are
investigating is LeNet-5. The dataset we are working on is
MNIST. As describe in the previous section, we defined a
new custom layer class of ’WinogradConv’ where the for-
ward pass and backward pass is performed. The backward
pass is the same as normal convolution, so we reused the
code of ’Convolution’ layer class. However, we should de-
fine our own forward pass layer for the problem.

Due to complexity of the algorithm itself, only the CPU
version of the forward pass is implemented. The forward
pass consists of multiple F (2× 2, 3× 3) operations which
are finally combined to form the output feature map. Since
the kernel size is 3 × 3, consecutive F (2 × 2, 3 × 3) work
on 4× 4 patches of data with an overlap of two pixels verti-
cally/horizontally to each other so that no overlap of origi-
nal kernel exists. To generate the 4×4 patches correctly and
efficiently, we used the im2col method provided by Caffe



with the parameters of dimension of 4 and stride of 2. The
4×4 patches and 3×3 kernels are transformed using gemm
and static array storing the content of C and G in equation
(2). The element-wise multiplications are then performed in
a for loop before transformed back to the domain of output
feature map using gemm and static array storing the con-
tent of A in equation (2). The output 2 × 2 output is then
written to the corresponding position in the output feature
map. Despite the use of gemm, the whole algorithm was
implemented in a 6-layer for loop. Because of this, the for-
ward pass is extremely slow and training small network like
LeNet-5 for ten epochs on small dataset like MNIST takes
more than an hour. That’s why we chose small network of
LeNet-5 and small dataset of MNIST.

The new ’WinogradConv’ class has a member variable
of ’mask’, an dynamic array with the same size of trans-
formed kernel. It keeps the mask used in one pruning-and-
retraining iteration. The pruning is performed once by a
member function ’winograd prune()’ at the beginning of re-
training. The function receives the pruning rate as a pa-
rameter and sort the existing transformed kernel based on
the absolute value of each element, according to aforemen-
tioned heuristics. The pruning threshold is set according to
the pruning rate and the value of each element in the sorted
array. For those elements whose absolute values are less
than the threshold, the element in the corresponding posi-
tion of the mask array is set to zero permanently.

During retraining, the mask is used in the for loop of
the element-wise multiplication. This is equivalent to using
pruned transformed kernel directly.

4.2. FFT-based Convolution

We used Theano as the framework for implement-
ing FFT-based convolution pruning and retraining. First,
we implemented LeNet-5 architecture using Theano and
trained it on MNIST dataset. Then, similar to Winograd, we
defined new operator for performing convolution in Theano,
called ‘FFTConvOp’. Most of the methods of this opera-
tor were kept same as the original convolution operator in
Theano, called ‘ConvOp’. However, we changed the ‘per-
form’ method, which is used during the forward pass to
compute the function associated with the convolution op-
erator. The input to this function is (i) a mini-batch of input
images, (ii) kernel against which the input feature map is
convolved and (iii)a mask which defines which elements of
the kernel in the FFT-domain should be pruned (set to zero).

The dimensions of the input images is given by B ×
C × H × W , where B is the mini-batch size, C is the
number of input channels, H is image height and W is
image weight. The dimension of the kernel parameter is
given by O × C × h × w, where O is the number of out-
put channels, C is the number of input channels, h is filter
height and w is filter width. The ‘perform’ method per-

Output Classes 10
Training samples 50,000
Test samples 10,000
Learning rate 0.1
Training epochs 25
Training error 1.12%
Test error 1.25%

Table 1: Parameters and error rates obtained for training
LeNet-5.

forms a B × O × C 2-D convolutions between images in
the mini-batch and the input kernels. We replaced this 2-
D convolution using FFT and inverse FFT given by equa-
tion 1. This was implemented using rfftn and irfftn meth-
ods in numpy. For a H ×W feature map convolved with
hxw kernel, the FFT of the kernel has dimensions given by
(H+h−1)×((W+w)/2+1), and therefore, the mask has
dimensions given by O×C×(H+h−1)×((W+w)/2+1).
This corresponds to 20× 1× 32× 17 for convolution layer
1 and 50× 20× 16× 9 for convolution layer 2 as 20 and 50
channels were used by the two layers, respectively.

The ‘grad’ function remained unchanged and was used
to update the weights in the time domain during back-
propagation while retraining. The FFT corresponding to
the kernel was recomputed every time in the forward pass.
We confirmed that the output of the new convolution layer
matched the output of the original layer when no pruning
was performed. Since the weights of the kernel in the FFT
domain are complex numbers, we used the absolute values
of the weights for pruning, setting lowest p% of the weights
to 0 for pruning rate p.

We note that our current implementation of FFT-based
convolution with pruning on Theano framework is very
slow. It takes about 12 hours for 1 epoch retraining on the
entire MNIST dataset and an additional 30 minutes to per-
form testing. Therefore, for FFT, we show results for fewer
pruning rates.

5. Experiment Results and Discussion
Table 1 shows the parameters used during training

LeNet-5 architecture and the corresponding error rates.
LeNet-5 has two convolution layers.

Figure 3 show the distribution of absolute value of
weights of the FFT of kernel in fully trained LeNet-5. Fig-
ure 4 and 5 show the corresponding weight distribution at
50% and 75% pruning rate respectively. It is important to
note that the pruning is applied per channel for each layer
and therefore, the weight distribution after pruning in Fig-
ure 4 and 5 may not be equal to the distribution obtained
after simply removing weights corresponding to the lowest
values. However, it is clear that the pruning still retains a



(a) Convolution Layer 1 (b) Convolution Layer 2

Figure 3: Distribution of FFT weights of kernel for fully-
trained LeNet-5.

(a) Convolution Layer 1 (b) Convolution Layer 2

Figure 4: Distribution of FFT weights of kernel after prun-
ing 50% of the weights.

Pruning rate Accuracy loss Accuracy loss
(w/o retraining) (1 epoch retraining)

25% 0.00% 0.00%
50% 0.21% 0.00%
75% 1.19% 0.18%
100% 89.93% 89.93%

Table 2: Loss of accuracy with pruning and retraining of
FFT-based convolution.

large fraction of the weights which have high absolute val-
ues.

Table 2 shows the accuracy loss for different pruning
rates for FFT-based convolution, with and without retrain-
ing. At 25% pruning, there is no loss of accuracy, even with-
out retraining. This shows that in a fully-trained network,
25% of the weights are already 0 or have values so negli-
gible that they never affect the classifier outcome. Even at
50% pruning, only 0.21% accuracy is lost but the accuracy
is completely regained on retraining the network for only
1 epoch. At 75% pruning, 0.18% accuracy is lost after re-
training for 1 epoch. It might be possible to regain that lost
accuracy with more retraining. As a sanity check, we noted
the loss of accuracy with 100% pruning. This should corre-
spond to a random network that has no affect with retraining
- both of which could be confirmed by the table (a random
model would have about 90% error rate).

Figure 6 shows the distribution of absolute value of

(a) Convolution Layer 1 (b) Convolution Layer 2

Figure 5: Distribution of FFT weights of kernel after prun-
ing 75% of the weights.

(a) Convolution Layer 1 (b) Convolution Layer 2

Figure 6: Distribution of Winograd weights of kernel for
fully-trained LeNet-5.

(a) Convolution Layer 1 (b) Convolution Layer 2

Figure 7: Distribution of Winograd weights of kernel fully-
trained LeNet-5 after re-training with a pruning rate of 0.55

weights of the Winograd of kernel in fully trained LeNet-5.
It is interesting to see that the pruning still retains a large
fraction of the weights which have high absolute values.
The result coincide with our heuristics that only the weights
with large absolute values are kept.

Figure 7 shows the corresponding weight distribution
after retraining with a pruning rate of .0.55. Although the
total number of weights are inevitably reduced, it’s inter-
esting to see that after pruning the weights tends to have
similar overall distribution as the weights without pruning.
This may reveal some internal mechanism of how convo-
lutional layer works. The weight distribution after pruning
and retraining shed light on the possibility that we could do
pruning and retraining for multiple rounds to further reduce
the overall weight size.



T
es

ti
ng

 A
cc

u
ra

cy
 

0

0.2

0.4

0.6

0.8

1

1.2

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Without Retraining

With Retraining

Figure 8: Test accuracy of pruned Winograd algorithm be-
fore and after retraining with different pruning rate. The test
accuracy of original well-train LeNet-5 is 98.2%

Figure 8 shows the test accuracy of the LeNet-5 before
pruning and after pruning, which is what we care about
most. Regardless of inevitable noise, the overall trend of
the test accuracy before pruning is that it drops with the
increase of pruning rate. It is intuitive since the more we
prune, the more information we lose from the original well-
trained convolution layer. An interesting thing is that af-
ter retraining, the test accuracy can again be restored to the
nearly or even higher than the test accuracy of the original
network. The ’without loss’ pruning rate can be extended
to 90%, meaning we only need to keep 10% of the original
weights. Since the pruned weights has similar distribution,
we could possibly prune-and-retrain for several rounds to
keep the accuracy from dropping.

As we can see, the pruning and retraining work well with
both FFT- and Winograd-based convolution. With reason-
able pruning rate, FFT-based convolution only have very
small accuracy loss. With retraining, Winograd-based con-
volution can sustain its original test accuracy even with
pruning rate of up to 90%. It’s an exciting result that we
should pay attention to, since it not only showed the po-
tential of pruning of fast convolution algorithms, but also
showed some internal structure of neural network.

6. Conclusion and Future Work

In this paper, we proposed a pruning and retraining
mechanism for two efficient convolution algorithm. We de-
rived the equivalent approach to handle the mathematical
dilemma of back-propagation with the existance of prun-
ing. The heuristics of pruning in terms of absolute value of
weights are also proposed and tested. Our results showed
that it is possible to prune a large number of parameters in
the transformed domain of Winograd- and FFT-based con-
volution algorithms. In particular, using Winograd algo-
rithm, it is possible to prune the number of parameters to
10% of the original without any loss of accuracy and with

FFT algorithm, parameters could be pruned to 25% with
only 0.18% loss of accuracy on LeNet-5 network. The loss
of accuracy was measured with only 1 epoch of retraining
since the retraining was slow on our current implementa-
tion.

We suggest some direction future work. First, it might
be possible to prune even more with more rounds of re-
training. Second, it would also be interesting to prune pa-
rameters of fast convolution algorithms on state-of-the-art
networks much larger than LeNet-5, such as AlexNet [4],
ResNet [3] and GoogleNet [7], all of which having large
number of convolution layers. Third, besides compression,
a major benefit of pruning is better performance. Bench-
marking performance of fast convolution algorithms after
pruning has been left for future work. Fourth, combining
network pruning and quantization would yield further com-
pression rate, which means even less memory footprint and
potential higher throughput. Fifth, the current CPU imple-
mentation of pruning and re-training is way to slow for re-
search on large network and large datasets. Our next step
would be implementing the prune-and-training mechanism
efficiently on GPU. Finally, we would like to explore the po-
tential of customized accelerator (ASIC) designed for such
fast and pruned convolution algorithm. Since the pruning
method we introduced results in huge irregularity in terms
of the pruned location, using customized accelerator would
be able to exploit the potential that general purpose comput-
ing platform cannot handle.

References

[1] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung.
Structured pruning of deep convolutional neural net-
works. CoRR, abs/1512.08571, 2015.

[2] Song Han, Jeff Pool, John Tran, and William J. Dally.
Learning both weights and connections for efficient
neural networks. CoRR, abs/1506.02626, 2015.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
CoRR, abs/1512.03385, 2015.

[4] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hin-
ton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[5] Andrew Lavin. Fast algorithms for convolutional neural
networks. CoRR, abs/1509.09308, 2015.

[6] Michaël Mathieu, Mikael Henaff, and Yann LeCun.
Fast training of convolutional networks through ffts.
CoRR, abs/1312.5851, 2013.



[7] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Ser-
manet, Scott Reed, Dragomir Anguelov, Dumitru Er-
han, Vincent Vanhoucke, and Andrew Rabinovich. Go-
ing deeper with convolutions. CoRR, abs/1409.4842,
2014.

[8] Shmuel Winograd. Arithmetic complexity of computa-
tions, volume 33. SIAM, 1980.


