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Abstract

In this project report, we propose a method to modify the
ReLU layers in neural networks. The modification involves
two stages: we first convert the bias parameters into thresh-
old parameters, and then increase the number of threshold
parameters to balance the “linear side” and the “nonlinear
side” of the model, which could potentially make the model
more flexible and powerful. Image classification tests are
performed on the Tiny ImageNet dataset.

1. Introduction
Neural networks are powerful models for visual recog-

nization and image classification. In this project, we will fo-
cus on image classification problems with neural networks.

For the image classification problem, neural networks
use a score function to rank the classes. The score func-
tion maps the input, which is the image data, to the output,
which is a list of scores of the corresponding classes. In
principle, we could assume that there exists some form of
a score function in reality, which is rather complicated and
highly nonlinear, that we human use to really classify and
recognize objects. However, it is far from being understood
how such processes are done by human brains. Nonethe-
less, our task is only to find an “approximation” of the true
underlying score function with neural networks.

From a high level point of view, the score functions in
neural networks are composed of simple functions in form
of hierarchical layers. These simple functions include affine
functions, which we refer to as the “linear side” of the
model, and nonlinear functions such as the tanh function
tanh(x), the sigmoid function σ(x) = 1/(1+ e−x) and the
ReLU function max(x, 0), which we refer to as the ”non-
linear side” of the model.

Among the nonlinear functions, the ReLU function re-
ceives the most attention for several reasons, one of which
is that the gradient is not close to zero on most part of the
domain as the tanh function and the sigmoid function do,
which alleviates the dead neuron problem caused by stag-
nant gradient flows as would most likely to appear if the

tanh function or the sigmoid function are used. However,
the ReLU function still has zero gradient on the negative
real axis. To address this issue, several approach are pro-
posed, such as the PReLU [2], where the slope of the ReLU
function on the negative real axis is treated as a parameter
instead of fixed to be zero.

In this report we use a different approach to deal with the
zero gradient issue of the ReLU function, which we refer
to as the “bias to threshold conversion”. The main idea is
that, we replace the zero-threshold in the ReLU function
with the bias-threshold, which convert the the bias terms
into the threshold terms. This is our first modification of
the existing neural network model, which reassembles the
[affine - ReLU] layer into the [linear - threshold] layer.

Our second modification, which we call the “input spec-
ified thresholds”, increases the number of threshold param-
eters so that the number of threshold parameters are compa-
rable to the number of weight parameters, which indicates
a more balanced choice between the “linear side” and the
“nonlinear side” of the model.

The rest of the report are organized as follows. In Section
2 we describe our modified models in details. In Section 3
we present the test results for the Tiny ImageNet Challenge.
Conclusions are given in Section 4.

2. Description of the Modified Models
In this section, we present the modified models in details.

We will give a complete description for the case of fully
connected neural networks, and then briefly talk about the
case for the convolutional neural networks.

2.1. Modifying the ReLU Layers in Fully Connected
Neural Networks

We start with modifying the ReLU layers in fully con-
nected neural networks. There are two modifications:

1. Bias to Threshold Conversion
Converting the bias terms into threshold terms.

2. Input Specified Thresholds
Increasing the number of threshold parameters to be
comparable to the number of weight parameters.
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The details are discussed as follows.

2.1.1 Bias to Threshold Conversion

In this section we describe the bias to threshold conversion
technique.

Suppose x ∈ R1×D is the input,w ∈ RD×1 is the weight
and b ∈ R1×1 is the bias. An “affine - ReLU” forward pass
will do the following

1. Compute y = xw + b.

2. Compute z = max(y, 0).

All together, we have

z = max(xw + b, 0). (1)

The potential problem is that, if xw+ b < 0, then during
the backward pass, the gradient will be cut off locally, which
could potentially cause the dead neuron problem. To fix it,
we move the bias b to replace the zero-threshold and we
consider

znew = max(xw, b). (2)

We see that, in (2), b serves as a threshold instead of a bias
as in (1). The advantage is that, no matter what values of
w, x, b are, at least part of the variables will carry on the
gradient flow during the back propagation, which could po-
tentially diminish the “dead neuron” phenomena.

Figures 1 and 2 show a visualization of the bias to thresh-
old conversion, where

x =
[
x1 x2

]
∈ R1×2,

w =

[
w1

w2

]
∈ R2×1, b ∈ R1×1.

At first sight, one may think that, if we use (2), then the bias
term is dropped during the forward pass since b now serves
only as a threshold, which could possibly cause the network
to be less powerful. It turns out that this is not the case. We
will show that, it is no harm to convert the bias term into the
threshold term for the intermediate layers.

For simplicity, let us consider a two-layer neural net-
work, or a one-hidden-layer neural network. For an input
x ∈ R1×D, the final class score is given by

s(x) = max(xWh + bh, 0)Wc + bc, (3)

where Wh ∈ RD×Dh ,Wc ∈ RDh×Dc are the weight matri-
ces and bh ∈ R1×Dh , bc ∈ R1×Dc are the bias vectors. Dh

is the number of neurons in the hidden layer and Dc is the
number of classes. Now note that

s(x) = max(xWh + bh, 0)Wc + bc

= (max(xWh,−bh) + bh)Wc + bc

= max(xWh,−bh)Wc + bhWc + bc

= max(xWh,−bh)Wc + (bhWc + bc).

∗ ∗

+

+

max(·, 0)

x1 w1 x2 w2

x1w1 x2w2

xw b

y

z

Figure 1. Computational graph of z = max(xw + b, 0). The part
inside the red rectangle is to be modified.

∗ ∗

+

max

x1 w1 x2 w2

x1w1 x2w2

xw b

znew

Figure 2. Computational graph of znew = max(xw, b). The part
inside the red rectangle is what has been modified.
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We define

W ′h :=Wh,

b′h := −bh,
W ′c :=Wc,

b′c := bhWc + bc,

then we have the equality

s(x) = max(xWh + bh, 0)Wc + bc

= max(xW ′h, b
′
h)W

′
c + b′c,

which means that we have found a new set of parameters
W ′h, b

′
h,W

′
c, b
′
c combined with the new form (2), which re-

sults a modified model that gives the same scores as the
original one does. Intuitively, what we did is that, we trans-
form the bias term bh into a threshold term, and “shift” the
bias effect to the next layer. This “shift” can be reflected
mathematically in the expression of b′c. One can see that
this technique can be used recursively in the network, i.e.,
we can “shift” the bias effect all the way down to the last
affine layer. Thus it is enough for the intermediate bi’s to
serve as thresholds only, and it will not hurt the power of
the model.

Note that, after the bias to threshold conversion, a tra-
ditional [affine(W, b) - ReLU] layer is reassembled into a
[linear(W ) - threshold(b)] layer, where the parameter W
and b are detached from each other and can be taken care
of in different layers. (The notation “affine(W, b)” stands
for an affine layer with parameters W and b, similar for the
other layer notations.) This detachment motivates us the
second modification which will be specified below.

2.1.2 Input Specified Thresholds

In this section we present the idea of input specified thresh-
olds.

Let us take a closer view of the current model after bias
to threshold conversion. Suppose we are given a combined
layer

affine(Wprev, b) - ReLU - affine(W, bnext) - ReLU,

then with the modification in Section 2.1.1, we can reassem-
ble it as

linear(Wprev) - threshold(b) - linear(W ) - threshold(bnext).

Now, we focus on the two-layer-combo [threshold(b) -
linear(W )]. Suppose x is the output vector from the
linear(Wprev) layer. (Notice that in our setting, x is a sin-
gle output, which is a row vector. It is not a matrix con-
taining lots of rows as multiple data outputs.) The forward
propagation of the two-layer-combo gives

1. Compute y = max(x, b).

2. Compute z = yW .

The max(·, ·) operator above is the elementwise maximum
operator, which is python-style rather than standard mathe-
matical notation. To be clear, we list the python code below
for clarification

# ...

# threshold layer
y = np.maximum(x, b)

# linear mapping layer
z = y.dot(W)

# ...

For the layer threshold(b), we see that, x, the output of
the layer linear(Wprev), is compared elementwisely with the
threshold vector b. We call this process as an “output spec-
ified” process since the threshold b has a one-to-one corre-
spondence with x.

Examining the model more carefully, we see that, each
output of a single neuron (after threshold) is accepted by
lots of neurons in the next linear layer, which means, each
entry of y is multiplied by lots of entries (a whole row en-
tries) of W2, instead of a single number. This motivates the
idea of “input specified” process – we should assign dif-
ferent threshold values if the receiving neurons in the next
layer are different, which could potentially strengthen the
power of our model. Specifically, we introduce a threshold
matrix B which has the same size with W and we consider
the following forward pass procedure

1. Compute Y = max(xT , B).

2. Compute znew = (Y ∗W ).sum(axis=0).

The operators above are a mixture of standard mathemati-
cal operators and python-style operators. We list the corre-
sponding python code below to avoid ambiguity

# ...

# new threshold layer, input specified
Y = np.maximum(x.reshape((-1, 1)), B)

# modified linear mapping layer
z_new = (Y * W).sum(axis=0)

# ...

In words, this means that the threshold is now paired
with the input side (the weight matrix W ) instead of the
output side (the vector x).
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Now we visualize the modification process by computa-
tional graphs. We consider the following instances

x =
[
x1 x2

]
∈ R1×2, W =

[
W1,1 W1,2

W2,1 W2,2

]
∈ R2×2,

y =
[
y1 y2

]
∈ R1×2, Y =

[
Y1,1 Y1,2
Y2,1 Y2,2

]
∈ R2×2,

b =
[
b1 b2

]
∈ R1×2, B =

[
B1,1 B1,2

B2,1 B2,2

]
∈ R2×2,

z =
[
z1 z2

]
, znew =

[
znew
1 znew

2

]
.

Figures 3 and 4 provide the computational graphs for the
instances above.

max max

∗ ∗ ∗ ∗

+ +

x1 x2b1 b2

y1 y2

W1,1 W1,2 W2,1 W2,2

z1 z2

Figure 3. Computational graph of z. The part inside the red rect-
angle is to be modified.

Figures 5 and 6 provided the condensed versions of the
computational graphs, where the parameters are merged
into nodes. We can see from Figures 5 and 6 clearly the
correspondence of b to x (the output from previous linear
layer), and the correspondence of B to W (the weight ma-
trix on the input side).

We see that, after adding these new thresholds, the total
number of parameters is still of the same order with the un-
modified one, specifically, no larger than twice the number

max max max max

∗ ∗ ∗ ∗

+ +

x1 x2

B1,1 B1,2 B2,1 B2,2

Y1,1 Y1,2 Y2,1 Y2,2W1,1 W1,2 W2,1 W2,2

znew
1 znew

2

W2,2

Figure 4. Computational graph of znew. The part inside the red
rectangle is what has been modified.

of parameters of the unmodified model, since the thresh-
old matrices Bi’s have the same size as the weight matrices
Wi’s. Moreover, the number of parameters controlling the
thresholds is now roughly the same as the number of pa-
rameters controlling the weights, which indicates a more
“balanced” choice. We know that the thresholds contribute
to the nonlinear side of the model while the weights con-
tribute to the linear side. It is reasonable to believe that,
a more balanced contribution from the linear side and the
nonlinear side could result a “wiser” model.

2.1.3 Back Propagation

We give the back propagation formula of our modified two-
layer-combo for a single input as follows

1. Compute dW = dznew ∗ Y .

2. Compute dY = dznew ∗W .

3. Compute dB = dY ∗ (Y == B).

4. Compute dx = (dY ∗ (Y ! = B)).sum(axis=1).

The python code is
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max(·, b1) max(·, b2)

∗W1,1 ∗W1,2 ∗W2,1 ∗W2,2

+ +

x1 x2

y1 y2

z1 z2

Figure 5. Computational graph of z (condensed version). The part
inside the red rectangle is to be modified.

max(·, B1,1) max(·, B1,2) max(·, B2,1) max(·, B2,2)

∗W1,1 ∗W1,2 ∗W2,1 ∗W2,2

+ +

x1 x2

Y1,1 Y1,2 Y2,1 Y2,2

znew
1 znew

2

Figure 6. Computational graph of znew (condensed version). The
part inside the red rectangle is what has been modified.

# ...

dW = dz_new * Y
dY = dz_new * W

dB = dY * (Y == B)
dx = (dY * (Y != B)).sum(axis=1)

# ...

For the gradient with multiple inputs, we need to average
the gradients for single input and then plus the regulariza-
tion term if needed.

2.2. Modified Models for the Convolutional Neural
Networks

The modification presented in Section 2.1 can be gen-
eralized to convolutional neural networks easily. We first
use the similar technique to convert the bias term into the
threshold term, and then we pair the threshold with the in-
put side. To be specific, suppose we are propagating from
a layer with D1 filters to a layer with D2 filters with ReLU
layer in the middle. For the unmodified model, we have
D1 bias values for the first layer. After the modification,
we will have D1 ×D2 threshold values, each of which cor-
responds to a pair (Filter1,Filter2) where Filter1 is a filter
in the propagating-from layer and Filter2 is a filter in the
propagating-to layer. This relationship is similar to what
we covered in Section 2.1, since the role of the depth (or
number of the filters) of the convolutional layer is the same
as the role of the number of neurons in the fully connected
layer.

3. Experiments
To take advantage of recent advances in image recogni-

tion and get a better comparison of the traditional ReLU
and the modified layer, we adopt transfer learning method
in the experiments. The image features are extracted from
a pre-trained model and used as input to train some addi-
tional layers. We compare the accuracies / error rates by
two methods.

3.1. Dataset: Tiny ImageNet

We use the Tiny ImageNet dataset. Compared with the
original ILSVRC15 dataset [4] (1,000 classes and more than
a million of images), this Tiny ImageNet has 200 classes,
each with 500 images in the training set and 50 images in
the validation set. That amounts to 100,000 images in the
training set and 10,000 images in the validation set. In ad-
dition, a test set of 10,000 unlabeled images is also pro-
vided to evaluate the final performance. Each image is ei-
ther 64× 64× 3 (color) or 64× 64× 1 (gray-scale).

3.2. Data Preprocessing and Augmentation

Considering the contribution of background in CNNs,
we conduct random cropping and flipping on the data to ex-
pose the model to more variations without additional data
collection and annotation. In particular, for each image, we
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create 5 instances of 56× 56× 3 by cropping and for each
instance, we create another one by left-right flipping. In this
sense, we expand the data size by 10 times and this will help
reduce overfitting and improve test performance.

The pre-trained Inception-v3 model that will be men-
tioned later expects an input of a 299 × 299 RGB image.
Recall that the images in our dataset are either 64× 64× 3
or 64×64×1. For the former, we do a bilinear interpolation
of the pixel values for each channel to expand the image to
the desired size. For the latter, we first do bilinear interpola-
tion for the single channel and then replicate that two times
as the other two channels.

3.3. Model Configuration

We adopt transfer learning using the pre-trained
Inception-v3 model [6] - a deep convolutional network built
on top of GoogLeNet [5] utilizing Inception architectures.
The outline of this network is shown in Table 1. This model
is shipped with Tensorflow so that we can easily plug in and
extract features from any layer in the network.

type patch size / stride input size
conv 3× 3/2 299× 299× 3
conv 3× 3/1 149× 149× 32
conv padded 3× 3/1 147× 147× 32
pool 3× 3/2 147× 147× 64
conv 3× 3/1 73× 73× 64
conv 3× 3/2 71× 71× 80
conv 3× 3/1 35× 35× 192
3 × Inception Type 1 35× 35× 288
5 × Inception Type 2 17× 17× 768
2 × Inception Type 3 8× 8× 1280
pool 8× 8 8× 8× 2048
linear logits 1× 1× 2048
softmax classifier 1× 1× 1000

Table 1. Outline of Inception [6] network architecture.

Although we are faced with a very similar task as the
Inception model, the number of classes (200 here) and class
labels are different. We need to fine-tune and retrain the
network to some level. To do this, we replace the last two
layers (linear and softmax) of the original network with one
of the two architectures listed in the following table, use the
features extracted from the input to the original linear layer
and only train this part to get our classifier.

Original Architecture Modified Architecture
INPUT Features from Pre-trained Model
0 Affine Threshold
1 ReLU *Constrained Linear
2 Affine Affine
3 Softmax Softmax

*Constrained Linear: After thresholding, a single D-dimensional
data vector is expanded to a D×H matrix. Constrained linear here
means this is not a free linear mapping L : RD×H → RH , but a
constrained linear mapping taking the form L(X) = 1T (W ∗X).

3.4. Training Methodology and Results

We train the two architectures separately with the same
input features extracted from the pre-trained model. A 500-
dimensional hidden layer was used for both of the architec-
tures. We used mini-batches of size 50, ran 60 epochs for
both experiments with Adam algorithm [3]. The best learn-
ing rate found was 5e-4 with an exponential decay of 0.95
per epoch. To alleviate overfitting, we use L2 regulariza-
tion on the weight matrices with regularization parameter
λ = 2e-3. The training details for the modified architecture
are shown in Figure 7 and 8.

We compare the test error for both architectures and ob-
serve 1% ∼ 2% improvement of the threshold-based archi-
tecture over the original ReLU one in the validation error
across different experiments.

The computation was done using the Tensorflow dis-
tributed machine learning system [1] on Amazon Web Ser-
vices (AWS) that has one NVIDIA GPU with 1,536 CUDA
cores and 4GB of video memory.

We achieved 33.8% test error rate, or 66.2% test accu-
racy.
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Figure 7. Prediction Error Rates vs Epochs under Modified Archi-
tecture.

3.5. Error Analysis

We can see the distribution of within-class misclassifi-
cations from Figure 9. For most classes, the number of
misclassified images is between 5 and 15. That means the
performance of this algorithm is stable across classes.
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Figure 8. Training Loss vs Epochs under Modified Architecture.
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Figure 9. Histogram of number of misclassified images within
each true class in the validation set.

If we look at the extreme cases, we find the class with
most misclassified instances is (walking stick, stick insect),
(plunger, plumber’s helper) and (wooden spoon), which
misses 29, 26, 26 out of 50 predictions respectively. We
take some sample images from the training set.

• walking stick, stick insect

The top-3 confused ones are

dragonfly (5) mantis (4) slug (2)

• plunger, plumber’s helper

The top-3 confused ones are

bathtub (6) koala (1) ladybug (1)

• wooden spoon

The top-3 confused ones are

frying pan (4) broom (2) drumstick(2)

The results are in accordance with our intuition. For the
stick insect class, we see that the number of pixels relevant
to this object class is far less than the ones related to the
background. They are easily confused with other objects
that have similar activity environments. It is very hard even
for the neural networks to capture the characteristics in the
face of rich background pixels. For the plunger and wooden
spoon, they are often misclassified due to similar shape, ma-
terials or colors.

4. Conclusion

In this project, we propose a new model with two modi-
fications over the ReLU layer. The first is the bias to thresh-
old conversion. The second is the input specified thresholds.

Tests are performed for the Tiny Imagenet dataset. Sat-
isfying results are achieved.
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The current tests only involve the modification for the
ReLU layer before fully connected affine layers. It is inter-
esting to implement the modification for the case of convo-
lutional layers.
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