
Distilling Knowledge to Specialist Networks for Clustered Classification

Nathanael Romano
Stanford University

naromano@stanford.edu

Robin Schucker
Stanford University

schucker@stanford.edu

Abstract

Most realistic datasets for computer vision tasks tend to
have a large number of classes, which are unevenly dis-
tributed in the label space, and can even be clustered in
categories, like in popular benchmark datasets such as Im-
ageNet or CIFAR-100. Typical convolutional neural net-
works often fail to generalize well on these datasets, espe-
cially when the number or image per class is small. A nat-
ural idea, when one does not want to work with huge net-
works that are impossible to transfer to small devices (both
for memory and time constraints), would be to train an en-
semble of experts, each one specialized on a subset of the
dataset’s classes. However, those expert networks tend to
overfit a lot. To address this issue, we propose to leverage
the concept of knowledge distillation, recently proposed by
Hinton et al. [2], to train those networks. This technique
can act as a very strong regularizer, and can allow us to
achieve good results on this type of dataset, with a signifi-
cant speed-up (both for training and prediction) and mem-
ory gain.

After introducing the theoretical foundations of knowl-
edge distillation, we present the different components of
the necessary pipeline in the case of specialist networks,
and various ways of improving the results. We also show
and discuss our experiments and results on a particular
dataset, CIFAR-100, which classes presents a natural clus-
tered structure.

1. Introduction
Recent advances in computer vision have allowed

Convolutional Neural Networks to achieve extremely high
performances on object recognition tasks, almost beating
humans on popular benchmark datasets. However, in order
to keep high performance when the number of classes to
distinguish becomes larger, the networks have to become
extremely large and deep, making forward computation
slow and nearly impossible on portable embedded devices.
When computational power is limited, we are restrained
to smaller network architectures but training them from

scratch in a traditional way does not utilize the full po-
tential of recent computer vision techniques that enabled
those high performances. Indeed, by achieving such high
performances in classification, the big cumbersome models
(later on denoted as masters) have learned much about the
internal structure of image data. The purpose of this study
is to find the best way to extract that knowledge in order
to train smaller models (later on called specialists) that
specialize in classifying only subsets of the master’s classes.

While image classification challenges require a neural
network to be able to classify correctly a large number
of classes, the best performance is always achieved by a
very large network that recognises all the classes rather
than a multitude of smaller networks that specialize in
a subsets of of the classes. For example, a network that
classifies only animals and another that classifies only cars
performs always worse that a network that is twice the size
but classifies both cars and animals. Indeed, the bigger
networks gains on classifying car by seeing the animal
data. This pushed the current trend, that bigger with more
data is better.

However in the context of limited computation and a
goal that is not necessarily recognizing all of the classes
(for example only classifying cars), how can we take ad-
vantage of the large amount of labeled data available and the
knowledge learned of powerful master ensembles? The an-
swer is knowledge distillation. Before making a prediction
about the class of an image, the master network produces
a set of raw scores (later on called logits), which combined
with a Softmax, creates a probability distribution over all
the classes (cf. Figure 1). While we only care about the
maximum probability to produce a prediction, there is a lot
of meaningful information in this probability distribution as
it can, for example, quantify how much a cat image resem-
bles a dog image rather than a pickup truck image.

Using this approach, most of the work is actually in
training a powerful deep master over lots of data that clas-
sifies many classes to then transfer some of that knowledge
to a specialist net. Luckily, the hard work is already done

1



Figure 1: Probability distributions over labels on CIFAR-
100

for us, as one can easily download a powerful pretrained
master on many of the popular benchmark datasets.

Ideally we would work on the ImageNet dataset, as it
has become the most important challenge for image clas-
sification with many of highly performing models readily
available. But as our computational power available for this
project is limited, we chose to work on a smaller dataset that
still has a good number of classes: CIFAR-100 [1]. CIFAR-
100 is similar as CIFAR-10 (it has 60,000 32x32 images of
common objects), but it has 100 classes. This dataset also
has the advantage of having classes that have natural clus-
tered structure. The input image will be fed to 9 special-
ists, each specialists predicting a score for the subset of the
classes it is responsible for and a dusbin score, representing
if that image should not be classified by that specialist.

The performance of our algorithm will be measured by
how well that ensemble of 9 specialist is able to reconstruct
the final labels over the full 100 classes.

2. Related Work

2.1. Pure compression and knowledge transfer

The more general concept of knowledge transfer has
been around for a decade. While it is common practice to
average the output of an ensemble of networks that then
performs better than the individual nets, Caruana et al. [9]
showed that one can easily compress this ensemble to the
size of an individual component. The goal of the com-
pressed version is to learn the transfer function (or mapping
from the input space to the output space) that the ensem-
ble has learned. When unlabeled data is widely available,
which is the case for image classification, one can feed the

unlabeled data through the ensemble and make the output
(raw class score or logits) of the ensemble the label that
the compressed model wants to learn. With access to an
almost infinite amount of unlabeled data, the compressed
model performs almost as well as the ensemble, thus reduc-
ing memory and forward pass times by several folds.

That concept has been explored further by Ba et al. [13],
who’s goal was to mimic deep and well engineered neural
networks by shallow, but wide, fully connected nets. In or-
der to facilitate learning, they introduced the concepts of
learning on logits rather than the probability distribution.
This paper presents an interesting approach that questions
why deeper networks perform better when trained with tra-
ditional supervised back propagation methods, while shal-
lower network can have the same representation power.

2.2. A more general framework: Dark Knowledge

Finally, Hinton et al. [2] introduced a more general
framework to transfer knowledge efficiently by introducing
the concept of temperature. Indeed, knowledge distillation
can be enhanced by transforming the master’s output to a
softer probability distribution, by simply dividing the logits
by a temperature coefficient before feeding them to a Soft-
max function (cf. 3.4). The key idea is that by using a higher
temperature, the activations of wrong classes are increased,
providing more information flowing to the model parame-
ters during backpropagation.

Furthermore, the proposed general distillation frame-
work also emphasises the use of a hybrid loss function
which also includes information about the true label. Hinton
et al. also suggested that training an ensemble of specialists
may be an effective way to take advantage of natural paral-
lelism when working with very large datasets and this ap-
proach may be able to surpass traditional compression just
due to computational constraints when training large mod-
els. This suggests that it is possible to transfer class specific
knowledge from the master to a specialist only interested in
a subset of his classes while still benefiting from the perfor-
mance boost of training on the whole dataset.

2.3. Using local experts

The idea of using local experts trained on subsets of
classes also has been around for a while. Jordan et al.
present in [10] a framework for training such experts. They
are training those networks from scratch, and use a ”gating
network”, to indicate which expert to use on a given exam-
ple.

2.4. Using a dustbin class and unsupervised data

In [14], LeCun et al. introduce two concepts that are
quite related to our methods, however they have less
interaction in our case. First, they advocate for the use
of unsupervised learning for regularization. We strongly

2



believe as well, as presented in some sections of this
paper, that when possible, unsupervised learning can act
as a regularizer. The other shared concept with LeCun et
al.’s paper is the dustbin. At the scale of one specialist,
this dustbin class has the same purpose: regularizing its
learning process by showing it images that are outside his
domain of expertise. However, on a more global scale of
our approach, this dustbin class is used whether or not the
label is known for a given image.

2.5. State of the art on CIFAR-100

Because of its low number of training examples per class
(400), it is very hard for models to achieve high accuracy on
CIFAR-100 (cf 4.1). Current best models achieve 75.72%
using Exponential Linear Units [6], 75.7% using Spatially-
sparse convolutional layers [7] or 73.61% using Fractional
Max-Pooling [8]. All of these use a large amount of data
augmentation and unconventional layers.

3. Methods and pipeline
3.1. Global pipeline

We first provide a high-level description of the proposed
pipeline to train specialist networks.

1. Decide on a set of clusters in the labels. This can either
be done manually or automatically.

2. Get a well trained (ensemble of) network(s) if possible.
Otherwise, train one. This is the master network.

3. For each example in the training set, compute the raw
scores with the master network.

4. Train a small network for each cluster (this can be par-
allelized!), using a dark knowledge loss (cf. 3.4), and
the master’s scores as targets.

5. For each example in the training set, concatenate all
the specialists’s scores

6. Learn a simple linear layer on these scores, using the
hard labels (cf. 3.6).

All methods were implemented with Torch7 [3] and were
trained on a NVIDIA GRID K520 GPU, using an Elastic
Compute Cloud instance on Amazon Web Services.

3.2. Creating the soft labels

The first step is to feed the dataset through our master
network to create the soft labels. This step can be done only
once, by saving the raw scores to disk. After this, the master
network is never used (unless training examples are added),
and can be discarded, gaining computing time and memory.

3.3. Choosing specialist networks’s class subsets

We handpicked the subsets of classes for each specialist,
looking at classes that are similar to a human.

A more thorough approach would be using the covari-
ance of the confusion matrix of the master network to see
which classes are most confusable, which represent a sim-
ilarity metric between classes. Figure 2 shows such a co-
variance matrix, on a network we trained on CIFAR-100
(cf. 5.1). If this is used as a similarity matrix, it shows clus-
ters around its diagonal, as shown in Figure 2.

Figure 2: Covariance matrix of our VGGNet’s confusion
matrix over CIFAR-100

If we use this similarity metric to visualize the classes
in a lower dimensional space (using a t-SNE repre-
sentation, cf. [16] for more details), we can see that it
allows clear clusters to appear, although they don’t nec-
essarily correspond to the handpicked clusters (cf Figure 3).

Another possibility would be to use a clustering algo-
rithm such as K-means, on features extracted from the data.
Those features can for example be extracted from the mas-
ter network’s last fully-connected layer.

3.4. The Dark Knowledge loss function

A typical neural networks transforms the raw scores zi
from the final linear layer into a probability distribution qi
for each class i by using a Softmax layer: qi = ezi∑

j e
zj .

This can be seen as a particular version of a more general
transformation:

qi =
ezi/T∑
j e
zj/T

3



Figure 3: Lower-dimensional representation of CIFAR-
100’s labels, using t-SNE and our VGGNet’s confusion ma-
trix over a test set as a similarity measure (made with [17])

where T = 1 for the Softmax function. As explained
earlier, raising this temperature hyperparameter is allowing
us to soften the probability distribution. The cross entropy
loss function for an input xj and (hard) label yj is then:

Losshard = −log(qyj ,T=1)

Now that we also have soft labels that we want to match,
we have to account for a new loss function. We will com-
pare the probability distribution of the master pi with the
distribution of the student qi at a specific temperature T > 1
by using a Kullback-Leibler divergence between both dis-
tributions:

Losssoft,T = −
∑
i

pilog(qi)

where qi and pi depend on T according to the above
equation. The final loss will actually be a linear combi-
nation of both this soft loss and the typical cross entropy
Losshard, parametrized by 0 < α < 1:

Lossα,T = αLosssoft,T + (1− α)Losshard

If we are working with unlabeled data, we will only
use the soft loss, so α = 1. On the other hand, α = 0
corresponds to vanilla training on the true labels.

An alternative to using a KL divergence on the soft
loss, is to simply use an L2 loss over the the raw scores
but Hinton et al. [2] showed that the KL divergence on the
softened probability distribution approaches an L2 measure
when the temperature is much higher than the magnitude
of the logits zi.

As the soft loss’s gradient scales like 1
T 2 , we multiply it

by T 2, to ensure consistency when experiment with hyper-
parameters, as recommended in [2].

3.5. Specialist dustbin class and biased training set

As opposed to the gating technique proposed in [10],
we want each specialist to have the responsibility of
deciding whether or not an image is in its given domain of
expertise. Thus, each specialist also has a dustbin class,
corresponding to all the classes it does not specialize in.
To create the soft targets for each specialist, we simply
took the raw scores of each of the specialist’s class and the
maximum over all other classes as the dustbin score. This
is an arguable choice, as taking the sum of probabilities
would have been more mathematically rigorous, but this
would have biased all the specialist towards their dustbins,
given that the number of classes they specialize in is always
much smaller than the total number of classes.

When the number of classes is very large, it makes com-
putational sense to modify the training set to be specialist
specific, to have a more balanced training set. We chose to
bias it for each specialist such that the proportion of dustbin
examples is always around 50%.

3.6. Adjusting for the biased training set and using
the specialists for global prediction

However, this latter choice induces a source of error
for our ensemble of specialist networks. Each of them
is trained on a biased training set, whose balance is very
dissimilar to the real one’s. Thus their bias need to be cor-
rected accordingly. Moreover, we need a way to leverage
the different outputs as well as the dustbins to perform
inference on a test set, and find scores for all classes.
In conclusion, we want to weight the different outputs
according to the level of confidence in each specialist, as
well as correct the biases. We can learn this!

Thus we propose, after each specialist is trained, to train
a final linear classifier, that takes as input the concatenation
of the specialists’s scores (including the dustbins), and
outputs the correct class. This linear layer is trained at the
end of the process, in a really short time as both its input
and output are quite low-dimensional (this layer does not
back-propagate through the specialists).

4. Dataset
4.1. Data

To demonstrate this method, we propose to use the
CIFAR-100 dataset, collected by Krizhevsky et al. [1],
which is very similar to CIFAR-10. It consists of 60,000
images of size 32x32.

The main advantage of this dataset for our particular
problem is that it presents a natural hierarchical and clus-
tered labeling structure. It has 20 coarse labels, each of

4



Figure 4: Sample images from CIFAR-100, for classes ray,
racoon, girl, streetcar, elephant, and motorcycle

them having 5 fine labels. For example, there are ”orchids”,
”poppies”, ”roses”, ”sunflowers”, and ”tulips” in the ”flow-
ers” category, but ”baby”, ”boy”, ”girl”, ”man”, ”woman”
in the ”people” category.

This structure is making it a perfect candidate for this
task as we have clearly clustered classes. Moreover, it will
allow us to start by handpicking the specialists with respect
to their coarse labels.

We split data into 40,000 images in the training set,
10,000 images as a validation set that we used to cross-
validate all of our hyper-parameters and finally a test set
of 10,000 images to evaluate the final performance of our
specialists.

4.2. Pre-processing

Our dataset is pre-processed in the following way:

• the red-green-blue (RGB) channels are converted to
YUV channels, making information easier to extract

• the chrominance channels (U and V) are centered nor-
malized globally (using the training set mean and stan-
tard deviation) the luma channel (Y) is centered and
normalized locally (per example)

4.3. Data augmentation

The only form of data augmentation that we used
is random flipping: during training, each image that is
fed to the network is flipped horizontally with probability 1

2 .

5. Experiments, results and discussion
5.1. Training of the master network

One drawback however of choosing CIFAR-100 is that
we were not able to access a pretrained network with state
of the art performance. As a result, we decided to train

our own master from scratch. We created a VGGNet with
∼15M parameters using batch normalization and dropout
at some layers (cf. Appendix A for detailed architecture,
cf. [18] for more information about batch normalization).
In order to spend less time on hyper-parameter tuning,
we used some that worked for training a very similar
architecture on CIFAR-10 [4]. After a bit of tweaking, and
15h of training, we were able to achieve 67.52%. This
compares to a state-of-the-art of 75.72% with ∼375M
parameters, as explained in 2.5.

Even if this is not the focus of interest, the reader may
be interested to know that the key hyper-parameters were
a learning rate of 1 (divided by 2 every 25 epochs), a
weight regularization of 10−4, optimizing using mini-batch
stochastic gradient descent with a Nesterov update (using
momentum of 0.9) and batches of 128 images, over 250
epochs (cf. 5 for the master’s learning curve).

Figure 5: Learning curve for our master VGGNet (blue:
training accuracy, green: validation accuracy)

5.2. Pure compression

Our first approach was to experiment with our dark
knowledge loss, by performing a simple model compres-
sion. We compressed the master model using a VGG-like
architecture but decreasing the number of parameters by a
factor of 10 (the architecture is not detailed here, as this
is not the focus of this paper). Using only the soft la-
bels (α = 1), we were able to achieve 58.5%, with no
form of regularization (neither dropout or batch normaliza-
tion). This proves that knowledge distillation indeed acts as
a strong regularizer.

However, the same architecture with dropout and batch
normalization, trained only with the hard labels (α = 0)
achieved 63%. This proves that this approach can be limited
if the master network did not achieve a really high accuracy,

5



and if we use the same training set for both models: the stu-
dent learns a prior over the classes, which is built with an
over-fitting model, and thus errors are amplified. We believe
that compression using the same training set as the master
can only be successful if the master is close to 100% accu-
racy (and thus the function learned by the master is closer
to the true function), or by adding a contribution from the
vanilla cross-entropy loss (as explained earlier).

5.3. Choosing the specialist clusters and architec-
ture

As we explained earlier, the specialist clusters (later
on also called domains) can either be handpicked, or
automatically determined. For the scope of this paper, we
only used handpicked clusters.

We started by working using CIFAR-100’s coarse labels
as clusters (i.e. 20 clusters of 5 classes each), but this ended
up yielding poor results, as each specialist was given too
few training examples, and thus each specialist preferred
predicting each example as dustbin. Thus, we quickly
moved to choosing less clusters. We finally decided on 9
clusters, which are probably sub-optimal but were sufficient
for the scope of this paper, although this should be explored
(cf. Appendix B for the list of clusters).

We explored different architecture for the specialists,
keeping in mind the trade-off between achieving an effi-
cient compression (both for memory and time reasons), but
keeping a reasonable representation capacity. We finally
decided on the architecture presented in Appendix C, where
each specialist has about 170k parameters.

We can get a first baseline for our approach, which is
the representation capacity of this architecture. We trained
this architecture on all classes, using the vanilla hard loss,
to show that it is not sufficient all by itself to achieve a de-
cent accuracy on CIFAR-100. When training it with similar
hyper-parameters as the master network, we get a test accu-
racy of 46.53%, and need to use spatial batch normalization
for regularization, considerably slowing the process.

5.4. Training specialists with hard labels only

A first interesting thing to try is training the specialist in
a more conventional way, without only the master network.
They are first trained with binary labels as targets, before
training our linear classifier for ensemble predictions.

As expected, they over-fit a lot, and the final accuracy
over the 100 classes is quite low (about 44.5%), using regu-
larization methods such as dropout and batch normalization.

5.5. Training the specialists

The next step is to actually train the specialists, using our
dark knowledge loss and the soft targets produced by the
master saved on disk. Also they can be trained in parallel,
for simplicity we decided to train them one after another.
It’s interesting to see that for one specialist, the training time
is about 70 times faster than the master (this depends on the
domain size). This still holds for training the 9 specialists
as they can be trained in parallel.

Again, we used mini-batch stochastic gradient descent
with Nesterov update (using a momentum of 0.9), and
batches of 128 images. It seems that temperatures around
10 often work better.

5.5.1 Specialist-specific hyper-parameters

Since they all have very different images in their domains,
and have different output dimensions, we decided to have
different hyper-parameters for each specialist. The sig-
nificant speed-up presented above allowed us to conduct
this search in a reasonable time, whereas searching hyper-
parameters for the master network is much longer. The three
hyper-parameters on which this search was conducted were
learning rate, the temperature, and α (the relative influence
of soft and hard loss). There seemed to be no specific rela-
tionship between the best hyper-parameters, and the domain
size, except maybe for the learning rate, where greater rates
seemed to work better with larger domains. We believe that
the optimal hyper-parameters depend more on the data it-
self and on its distribution in the clusters than on domain
size. The hyper-parameters that worked best are available
in Appendix D.

Figure 6 shows a typical learning curve for a specialist
with a good choice of hyper-parameters.

After training the final linear classifier, we reached a
global test accuracy for the specialists of 54.42%. This is
still lower than the purely compressed model, but the archi-
tecture has way less parameters, and the ultimate goal of
specialists is also to be able to extract a subset of the master
knowledge (some of the specialists reached 85% test accu-
racy).

5.5.2 Speed-up and memory-gain

With 9 specialists and the previous architecture, the total
number of parameters falls down to about 2 millions
(counting all the specialists), gaining a factor of over 10
compared to our master, and to more than 100 compared to
the state-of-the art networks.

Training the specialists also allows us to observe to sig-
nificant speed-up allowed by this approach. Since they can

6



Figure 6: Learning curve for the Outdoor specialist (blue:
training accuracy, green: validation accuracy)

be trained in parallel, the whole ensemble was trained about
70 times faster than our master network (allowing for effi-
cient hyper-parameter tuning and architecture exploration).

Moreover, after training, the forward-pass for the ensem-
ble is 63 times faster than our master network, making those
networks much more easily embedded on portable devices.

5.6. Initializing the specialists weights

So far the problem of weight initialization for our small
specialists has not been addressed. In all of our training
processes, we have been using a MSR scheme [15], where
the weights for a given layer i are drawn from the following
normal law, where H and W are the filter’s dimensions, and
F is the number of filters on a given layer:

wi ∼ N
(
0,

√
1

Wi ×Hi × Fi

)
However, we can find smarter way of initializing the spe-

cialists. Since such a small architecture is so fast to train,
we can start by training a compressed model that has the
exact same architecture (but 100 outputs). We can then use
the weights of this model as an initialization for our special-
ists (except, obviously, the last fully-connected layer). This
did not yield an increase in global accuracy, but allowed us
to gain considerable training time for the specialists, which
started at an accuracy usually reached after about 40 epochs.

5.7. Adding an overview model

Since we trained this reduced model with 100 classes,
we can just add it to the ensemble! Therefore we have 10
”specialists”, 9 of which are actual specialists trained on
a subset of classes, and the last one being this ”overview”
model, which is just as small as the other ones, and helps

guiding the overall ensemble towards the correct class.

Adding this compressed model allowed a gain of al-
most 1%, the overall ensemble reaching a test accuracy of
55.32%.

5.8. Unsupervised learning

Since we are only using the master’s prediction for
training, we can actually use unlabeled data to train the
specialists. This can have a couple of issues, such as the
fact that we are using the same training set for the master
and the specialists, and the limited size of CIFAR-100.

Thus we tried to train the specialist networks through
unsupervised learning, using data from CIFAR-10 (in the-
ory, this increases the potential size of the training set to
all available images!). With weights initialization using
our pre-trained small network, unsupervised learning with
10,000 examples yielded an accuracy of 53.12%, whereas
this got an accuracy of 46.01% (with far less over-fitting)
without such initialization, with 50,000 examples. Note that
in the latter case, this accuracy is reached without the spe-
cialists ever seeing any image from CIFAR-100’s classes!
Even if the performance is lower, this is an impressive fact
and truly explains the name of dark knowledge.

For timing constraints, we weren’t able to explore un-
supervised learning further. Based on the learning curves
which did not reach a plateau when the experiments were
stopped, pure unsupervised learning could have yielded bet-
ter results with more training time, which is encouraging for
further research.

6. Conclusion and future work
In this paper we have developed a framework for build-

ing an ensemble of specialists, trained from a master net-
work through knowledge distillation, and performing pre-
diction with this ensemble with an additional linear clas-
sifier. We have also explored various ways of potentially
improving the results, through a better weight initialization,
and by adding an overview network. This approach can be
particularly efficient if only a subset of the master’s knowl-
edge needs to be extracted.

Our best model was using our specialists, where the
initialized with a small model that was pre-trained by
knowledge distillation on all classes, and combining them
with this particular model for prediction. The ensemble
performed best when choosing specialist-specific hyper-
parameters, and achieved a test accuracy of 55.32% on
CIFAR-100. This is still lower that our master network, but
with significant time and memory gain.

Some future work should be planned to improve this ap-
proach.

7



First, as we stated in the paper, the clusters were hand-
picked, and did not necessarily correspond to confusion
clusters. Thus they should be chosen with more automated
method, such as clustering on the confusion covariance ma-
trix.

This approach should also be done using a master that
is closer to state-of-the-art result, by getting a model from
the top-performing paper on CIFAR-100, or switching to a
different data set such as ImageNet.

Finally, the use of unlabeled data should be explored, by
using a lot more images (in this case, from the 80M Tiny
Images data set), and by trying training the models with
a mixture of labeled and unlabeled data. We believe the
ensemble’s behavior when only trained with unlabeled data
is encouraging for further research.

Appendix A: Master network architecture

Each convolutional layer is followed by a Spatial Batch
Normalization layer, and a ReLU activation.

64 3X3 CONV + 0.5 DROPOUT
64 3X3 CONV

2x2 MAX-POOL
128 3X3 CONV + 0.4 DROPOUT

128 3X3 CONV
2x2 MAX-POOL

256 3X3 CONV + 0.4 DROPOUT
256 3X3 CONV + 0.4 DROPOUT

256 3X3 CONV
2x2 MAX-POOL

512 3X3 CONV + 0.4 DROPOUT
512 3X3 CONV + 0.4 DROPOUT

512 3X3 CONV
2x2 MAX-POOL

512 3X3 CONV + 0.4 DROPOUT
512 3X3 CONV + 0.4 DROPOUT

512 3X3 CONV
2x2 MAX-POOL + 0.4 DROPOUT

512x512 FULLY-CONNECTED
BATCH NORMALIZATION - ReLU

0.5 DROPOUT
512x100 FULLY-CONNECTED

SOFTMAX

Appendix B: Handpicked specialist domains

specialist classes
Mammals hamster, mouse, rabbit, shrew,

squirrel, bear, leopard, lion,
tiger, wolf, camel, cattle, fox,

chimpanzee, elephant, kangaroo,
porcupine, possum, raccoon, skunk

Aquatic Animals fish, flatfish, ray, shark, seal
trout, beaver, dolphin, otter, whale

Other Animals crab, lobster, snail, spider, worm,
crocodile, dinosaur, lizard,

snake, turtle
Flora orchids, poppies, roses, sunflowers,

tulips, apples, mushrooms, oranges,
pears, peppers, maple, oak, palm,

pine, willow
Home bed, chair, table, wardrobe

clock, keyboard, lamp, couch,
telephone, television

Vehicles bicycle, bus, motorcycle,
pickup truck, train, lawn-mower,

rocket, streetcar, tank, tractor
People baby, boy, girl, man, woman

Outdoor cloud, forest, mountain, plain,
sean, bridge, castle, house,

road, skyscraper
Objects bottles, bowls, cans, cups, plates

Appendix C: Specialist networks architecture
Each convolutional layer is followed by a ReLU activa-

tion.

32 3X3 CONV
2x2 MAX-POOL
32 3X3 CONV

2x2 MAX-POOL
64 3X3 CONV + 0.4 DROPOUT

2x2 MAX-POOL
128 3X3 CONV + 0.4 DROPOUT

2x2 MAX-POOL
128 3X3 CONV + 0.4 DROPOUT

2x2 MAX-POOL
512x128 FULLY-CONNECTED

BATCH NORMALIZATION - ReLU
128x(#classes) FULLY-CONNECTED

SOFTMAX

Appendix D: Best hyper-parameters for the
various specialists

specialist T α learning rate
Mammals 4.8 0.998 6.6

Aquatic Animals 7.2 0.985 1.4
Flora 13 0.999 11.9

Objects 7 0.999 1.5
Home 27 0.985 4.6

Other Animals 6.6 0.991 8.3
Outdoor 8 0.982 5.57
People 28 0.998 1.47

Vehicles 14.3 0.999 4.18

8



References
[1] Krizhevsky, Alex, and Geoffrey Hinton. ”Learning multiple

layers of features from tiny images.” (2009).

[2] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. ”Distill-
ing the knowledge in a neural network.” arXiv preprint
arXiv:1503.02531 (2015).

[3] Collobert, Ronan, Koray Kavukcuoglu, and Clement Farabet.
”Torch7: A matlab-like environment for machine learning.”
BigLearn, NIPS Workshop. No. EPFL-CONF-192376. 2011.

[4] Zagoruyko S., 92.45% on CIFAR-10 in Torch, Torch Blog,
2015.

[5] Lin, Min, Qiang Chen, and Shuicheng Yan. ”Network in net-
work.” arXiv preprint arXiv:1312.4400 (2013).

[6] Clevert, Djork-Arn, Thomas Unterthiner, and Sepp Hochre-
iter. ”Fast and Accurate Deep Network Learning by Exponen-
tial Linear Units (ELUs).” arXiv preprint arXiv:1511.07289
(2015).

[7] Graham, Benjamin. ”Spatially-sparse convolutional neural
networks.” arXiv preprint arXiv:1409.6070 (2014).

[8] Graham, Benjamin. ”Fractional max-pooling.” arXiv preprint
arXiv:1412.6071 (2014).

[9] Bucilua, Cristian, Rich Caruana, and Alexandru Niculescu-
Mizil. ”Model compression.” Proceedings of the 12th ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2006.

[10] Jacobs, Robert A., et al. ”Adaptive mixtures of local ex-
perts.” Neural computation 3.1 (1991): 79-87.

[11] Romero, Adriana, et al. ”Fitnets: Hints for thin deep nets.”
arXiv preprint arXiv:1412.6550 (2014).

[12] Balan, Anoop Korattikara, et al. ”Bayesian dark knowledge.”
Advances in Neural Information Processing Systems. 2015.

[13] Ba, Jimmy, and Rich Caruana. ”Do deep nets really need
to be deep?.” Advances in neural information processing sys-
tems. 2014.

[14] Zhang, Xiang, and Yann LeCun. ”Universum Prescrip-
tion: Regularization using Unlabeled Data.” arXiv preprint
arXiv:1511.03719 (2015).

[15] He, Kaiming, et al. ”Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.” Pro-
ceedings of the IEEE International Conference on Computer
Vision. 2015.

[16] Van der Maaten, Laurens, and Geoffrey Hinton. ”Visualiz-
ing data using t-SNE.” Journal of Machine Learning Research
9.2579-2605 (2008): 85.

[17] Karpathy A., tSNEJS, https://github.com/karpathy/tsnejs,
2015.

[18] Ioffe, Sergey, and Christian Szegedy. ”Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift.” arXiv preprint arXiv:1502.03167 (2015).

9


