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Abstract

This work introduces a novel approach for solving re-
inforcement learning problems in multi-agent settings. We
propose a state reformulation of multi-agent problems in
R? that allows the system state to be represented in an
image-like fashion. We then apply deep reinforcement
learning techniques with a convolution neural network as
the Q-value function approximator to learn distributed
multi-agent policies. Our approach extends the tradi-
tional deep reinforcement learning algorithm by making use
of stochastic policies during execution time and station-
ary policies for homogenous agents during training. We
also use a residual neural network as the Q-value func-
tion approximator. The approach is shown to generalize
multi-agent policies to new environments, and across vary-
ing numbers of agents. We also demonstrate how trans-
fer learning can be applied to learning policies for large
groups of agents in order to decrease convergence time. We
conclude with other potential applications and extensions
for future work.

1. Introduction

Multi-agent systems arise in a variety of domains from
robotics to economics. In general, decision-making in
multi-agent settings is intractable due to the exponential
growth of the problem size with increasing number of
agents. The goal of this work is to study multi-agent sys-
tems using deep reinforcement learning (DRL). In partic-
ular, we explore if effective multi-agent policies can be
learned using DRL in a stochastic environment. In deep re-
inforcement learning, a neural network is used to estimate
the Q-value function in a stochastic decision process (e.g.
Markov decision process or MDP). Recent work has shown
that deep Q-Networks can be used to achieve human-level
performance in the Atari video game domain [13]. How-
ever, little work has been done in the area of multi-agent
DRL. The most closely related work examines two agents
in the Atari environment playing Pong [[15]]. That work only
considers two agents in a domain with deterministic dynam-

ics. This work will examine more general systems with an
arbitrary number of agents who may be self-interested. The
DRL approach to computing multi-agent policies is promis-
ing because many of the traditional approaches for solv-
ing multi-agent MDPs fail due to their enormous size and
complexity. For example, Dec-MDPs [1]] are not scalable
past a few number of agents and small state spaces. If the
agents are self-interested (e.g. they do not share a single
reward function), the problem becomes more difficult and
approaches such as [-POMDPs [5] must be used to allow
agents to reason about other self-interested agents in the en-
vironment. This work explores if DRL can alleviate some of
the scalability issues encountered in the literature for multi-
agent systems.

In this work, we introduce a novel reformulation of the
multi-agent control problem. Specifically, we consider dis-
crete state systems in R? with self-interested agents (see
Figure [I] for an example). The reformulation involves de-
composing the global system state into an image like rep-
resentation with information encoded in separate channels.
This reformulation allows us to use convolutional neural
networks to efficiently extract important features from the
image-like state. We extend the state-of-the-art approach
for solving DRL problems [13]] to multi-agent systems with
this state representation. In particular, our algorithm uses
the image-like state representation of the multi-agent sys-
tem as an input, and outputs the estimated Q-values for the
agent in question. We describe a number of implementation
contributions that make training efficient and allow agents
to learn directly from the behavior of other agents in the sys-
tem. Finally, we evaluate this approach on the problem of
pursuit-evasion. In this context, we show that the DRL poli-
cies can generalize to new environments and to previously
unseen numbers of agents.

2. Prior Work

The sub-field of deep reinforcement learning has been
quickly growing over the last few years. However, attempts
to use non-linear function approximators in the context of
reinforcement learning have been unsuccessful for a long
time, primarily due to possibility of divergence when up-



Figure 1. Example instance of a pursuit-evasion game, where the
two pursuers (red agents) are attempting to catch the two evaders
(blue agents). The agents are self interested, i.e. the pursuers and
the evaders have different objectives. The filled in grid points in-
dicate obstacles through which the agents cannot pass.

date schemes are not based on bound trajectories [[16]. Re-
cent work has demonstrated that using neural networks for
approximating Q-value functions can lead to good results
in complex domains by using techniques like experience re-
play, and target networks during updates [13]], giving birth
to deep reinforcement learning. Deep reinforcement learn-
ing has been successfully applied to continuous action con-
trol [9]], strategic dialogue management [4]and even com-
plex domains such as the game of Go [14]. Also, a num-
ber of techniques have been developed to improve the per-
formance of deep reinforcement learning including double
Q-Learning [17], asynchronous learning [12]], and dueling
networks [19] among others. However, work on extend-
ing deep reinforcement learning to multi-agent settings has
been limited. The only prior work known to the author in-
volves investigating multi-agent cooperation and competi-
tion in Pong using two deep Q-Network controllers [15].
This work aims to fill a part of that gap in literature.

3. Methods

This section describes the approaches taken in this work.
We first online how deep reinforcement learning works in
single agent systems. We then propose our approach to
extending deep reinforcement learning to multi-agent sys-
tems.

3.1. Deep Reinforcement Learning

In reinforcement learning, an agent interacting with its
environment is attempting to learn an optimal control pol-
icy. At each time step, the agent observes a state s, chooses
an action a, receives a reward 7, and transitions to a new
state s’. Q-Learning is an approach to incrementally esti-
mate the utility values of executing an action from a given
state by continuously updating the Q-values using the fol-

lowing rule:

Qs a) = Qs,0)+alr+y max Q(s', ')~ Q(s,a). (1)

Where (s, a) denotes the utility of taking action a from
state s. Q-learning can be directly extended to DRL frame-
works by using a neural network function approximator
Q(s,al@) for the Q-values, where 6 are the weights of the
neural network that parametrize the Q-values. We update
the neural network weights by minimizing the loss function:

L(s,al0;) = (r + ymax Q(s',alfi) — Q(s,al:))*. (2)

The backpropogation algorithm is used to update the net-
work weights at iteration ¢ + 1 by performing the compu-
tation: 0,11 = 0; + aVyL(#;). In this work the ADAM
update rule [7] was used. The use of neural networks a Q-
value function approximators was an open research chal-
lenge for a long time. The two insights that significantly
improve convergence and training rates are the use of expe-
rience real dataset and the use of a target Q-network for
computing the loss. The experience replay dataset con-
tains a fixed number of transition tuples in it that contain
(s,a,r,s") where r is the reward obtained by performing
action a from state s, and s’ is the state the agent transi-
tions to after performing that action. The experience tuples
are sampled uniformly from the experience replay dataset
in mini batches, and are used to update the network. The
addition of experience replay helps prevent correlation be-
tween training samples, which improves convergence. The
use of a target network in the loss function calculation helps
convergence as well. The target network in the loss function
Q(s', al;) is kept fixed for a certain number of iterations,
and is updated periodically.

3.2. Multi-Agent Deep Reinforcement Learning

This section outlines an approach for multi-agent deep
reinforcement learning (MADRL). We identify three pri-
mary challenges associated with MADRL, and propose
three solutions that make MADRL feasible. The first chal-
lenge is problem representation. Specifically, the challenge
is in defining the problem in such a way that an arbitrary
number of agents can be represented without changing the
architecture of the deep Q-Network. To solve this problem,
we make a number of simplifying assumptions: (i) two di-
mensional representation of the environment, (ii) discrete
time and space, and (iii) two types of agents. Because, we
limit ourselves to two agent types, we will refer to the two
agent types as allies and opponents (assuming competing
agents). These assumptions allow us to represent the global
system state as an image-like tensor, with each channel of



the image containing agent and environment specific infor-
mation (see Figure[2). This representation allows us to take
advantage of Convolutional Neural Networks which have
been shown to work well for image classification tasks [8]].
The image tensor is of size 4 x W x H, where W and H are
the height and width of our two dimensional domain and
four is the number of channels in the image. Each channel
encodes a different set of information from the global state
in its pixel values (shown in Figure[2). The channels can be
broken down in the following way:

e Background Channel: contains information about
any obstacles in the environment

e Opponent Channel: contains information about all
the opponents

e Ally Channel: contains information about all the al-
lies

e Self Channel: contains information about the agent
making the decision

Note that channels in the image-like representation are
sparse. In both the opponent and ally channels, each non-
zero pixel value encodes the number of opponents or allies
in that specific position.

The second challenge is multi-agent training. When mul-
tiple agents are interacting in an environment, their actions
may directly impact the actions of other agents. To that end,
agents must be able to reason about one another in order to
act intelligently. In order to incorporate multi-agent train-
ing, we train one agent at a time, and keep the policies of all
the other agents fixed during this period. After a set num-
ber of iterations the policy learned by the training agent gets
distributed to all the other agents of its type. Specifically, an
agent distributes its policy to all of its allies (see Figure [3).
This process, allows one set of agents to incrementally im-
prove their policy over time. The learning process itself is
not distributed, since one agent must share its policy with
all of its allies. However, the policy execution is distributed,
because each agent has their own neural network controller.
Each agent must be able to sense the locations of all the
other agents, but does not need to explicitly communicate
with the other agents about its intent.

The last challenge is dealing with agent ambiguity. Con-
sider a scenario where two ally agents are occupying the
same position in the environment. The image-like state rep-
resentation for each agent will be identical, so their policies
will be exactly the same. To break this symmetry, we en-
force a stochastic policy for our agents. The actions taken
by the agent are drawn from a distribution derived by taking
a softmax over the Q-values of the neural network. This al-
lows allies to take different actions if they occupy the same
state and break the ambiguity. In previous work, the pol-
icy used in evaluation was e-greedy [13]]. However, a more
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Figure 3. Schematic of the multi-agent centralized training process
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principled approach would be to use a stochastic policy gen-
erated by taking a softmax over the Q-values as proposed
here.
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Figure 2. Four channel image-like representation of the multi-agent state used as input to the deep Q-Network. The background channel
encodes the locations of the obstacles in its pixel values, while the ally and opponent channels encode the locations of the allies and
opponents. The self channel encodes the location of the agent that is making the decision.
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Figure 4. An example schematic showing the multi-agent image-like state being used as an input to the convolutional neural network.

4. Problem Formulation and Network Archi-
tecture

The primary goal of this work is to evaluate the approach
outlined in the previous section on a simple problem and
quantitively identify interesting multi-agent behavior such
as cooperation. To accomplish this, we pick the pursuit-
evasion problem [3] as our evaluation domain. In pursuit-
evasion, a set of agents (the pursuers) are attempting to
chase another set of agents (the evaders). The agents in
the problem are self-interested (or heterogeneous), i.e. they
have different objectives. In particular, we focus on comput-
ing pursuit policies using the MADRL approach. Specif-
ically, the evaders follow a simple heuristic policy, where
they move in the direction that takes them furthest from the
closest pursuer. The pursuers are attempting to learn a dis-
tributed neural network controller as outlined in the previ-
ous section. Since we limit the problem to a discrete state
space, the pursuers receive a reward anytime they occupy

the same grid cell as an evader. In this work, we modify
the pursuit-evasion task such that the terminal state of the
system is reached only when all the evaders are tagged by a
pursuer. The pursuers receive a large reward in the terminal
state. Thus, in order to reach the high rewarding terminal
state, the pursuers must be able to make decisions in a co-
operative manner.

To train the neural network controller, the data set con-
taining the image-like state representations was generated
through simulation. Specifically, each data sample con-
tained an experience tuple of the form (s, a,r, s’), where s
is the starting image-like state, a is the action taken, r is the
reward received, and s’ is the new state of the system. As
with other deep reinforcement learning approaches, the ex-
perience replay dataset from which the network was trained,
was continuously updated during training.

The neural network architecture used in this work fol-
lows many of the same principles as in previous work [[13],
with some modifications. Since our state representation is



image-like, we can use a convolutional neural network ar-
chitecture. A schematic of the multi-agent image-like state
being used as an input to a convolutional neural network
is shown in Figure @ In the figure, the image-like repre-
sentation captures all the state information, while the out-
put layer of the network represents the Q-values for all the
actions the agent can take from that state. The network
architecture used in this work is shown in Figure [5] The
differences between this architecture and the architectures
used in previous works is that we adopt the Residual Net-
work [6] architecture or skip connections to improve gradi-
ent flow throughout the network, and we use batch normal-
ization. The name of this architecture is multi-agent deep
Q-Network or MADQN.

5. Results

For the majority of the evaluation, we focused on a
10x 10 instance of the pursuit-evasion problem with a single
rectangular obstacle in the middle of the environment. The
image-like states were generated by simulating the motion
of the agents, and converting the state into a three dimen-
sional tensor. In this section we provide three experimental
results that test the capabilities of the MADQN controller.
We first demonstrate the ability of the MADQN to gener-
alize to previously unseen environments. Next, we show
that the MADQN can generalize across different numbers
of agents. Specifically, we show that MADQN controllers
that have been trained on 2 agent instances can perform well
in 3 agent settings. Lastly, we demonstrate a transfer learn-
ing approach for MADQN that speeds up training conver-
gence. During all the evaluations, the initial conditions for
each simulation were set by using rejection sampling. The
state space was uniformly sampled, and states were rejected
if either agent was inside of an obstacle or if a pursuers was
too close to an evader (start at least one grid cell away).

Figure [6] shows the experimental set-up for MADQN
generalization over new environments. The figure depicts
the training and evaluation scenarios we used for this ex-
periment. We trained the MADQN on two instances of the
pursuit-evasion problem and evaluated on a new instance to
see how well the controller can generalize. Namely, we con-
sidered a scenario with a single evader and a single pursuer,
on three configurations (Figure[6). The difference between
each instance is the obstacle configuration. The MADQN
was trained on the two scenarios shown on the left of Fig-
ure [6] and evaluated on the scenario shown on the right of
the figure. The results are outlined in Table [I] The table
shows evaluation results of both the split policy (policy ob-
tained form training on the two problem instances at once)
and the combined policy (policy obtained from training on
the problem instance where the obstacles are combined).
We see that the split policy performs just as well as the com-
bined policy on the scenario where the obstacles are com-

bined. We also see that the combined policy can generalize
to scenario where the obstacles are split. While this result is
preliminary, and could be studied with more rigor, it demon-
strates that MADQN controllers can generalize well to new
environments.

Next, we evaluated MADQN policies on varying num-
bers of agents. The results are shown in Figure [§] The fig-
ure shows the average reward for a given policy evaluated
on different scenarios. In this evaluation, we consider three
types policies:

e N vs N: MADQN policies obtained through training
on a problem instance with N evaders and N pursuers
(e.g. 1 vs 1,2 vs 2, etc).

e Heuristic: A heuristic policy in which the pursuer
moves towards the evader closest to it.

e Value iteration: The optimal policy obtained by solv-
ing the multi-agent MDP (tractable only for a scenario
with 1 evader and 1 pursuer)

For the N vs N policies, we considered the following
training scenarios: 1 vs 1, 2 vs 2 and 3 vs 3. Both the N
vs N and the heuristic policies were evaluated on the fol-
lowing scenarios: 1 vs 1, 2 vs 2, 3 vs 3. We also evaluated
the value iteration policy on the 1 vs 1 scenario. There are
three main things to take away form the figure. First, all of
the policies perform near optimally on the 1 vs 1 scenario.
Since the value iteration policy servers as an upper bound
on performance, we can directly infer that all policies eval-
uated on the 1 vs 1 scenario have ned-optimal performance.
This indicates that the MADQN network can learn near op-
timal policies for the simple 1 vs 1 scenario. Second, the
performance of the 1 vs 1 and the heuristic policies on the
2 vs 2 and the 3 vs 3 scenarios is nearly identical. Since
the heuristic is just a greedy strategy, this implies that the
policy learned by the MADQN when trained on the 1 vs 1
scenario is similar to the greedy heuristic. This is an im-
portant point to consider when evaluating policies that were
trained for more than one agent. In particular, the 1 vs 1
policy has no knowledge of cooperation. This can be seen
in the evaluation results for the 2 vs 2 and the 3 vs 3 sce-
narios. Lastly, we compare the performance of the policies
trained on the 2 vs 2 and the 3 vs 3 scenarios against each
other. While the two policies perform best on the scenarios
that they were trained on, both outperform the 1 vs 1 policy
on scenario that they were not trained on. For example, the
2 vs 2 policy does nearly as well as the 3 vs 3 policy on the 3
vs 3 scenario. This implies that the MADQN controllers are
able to generalize the notion of cooperation between agents
to different numbers of agents fairly well.

In practice training these networks on large problems is
time consuming. We explored a transfer learning approach
to alleviate some of the computational burden. Figure [§]



Table 1. Average rewards per time-step for the pursuit policies
evaluated over 50000 time-steps
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Figure 7. Average reward per time step for various policies across
three different pursuit-evasion scenarios.

shows convergence plots for two to MADQNSs training on
the 2 vs 2 scenario. The plot shows the average reward
obtained by evaluating each MADQN after a given num-
ber of training iterations. The blue curve was generated by
training a network with random weight initialization (from
scratch). The green curve used the network trained until
convergence on the 1 vs 1 scenario (transfer network). The
transfer learning approach of using a network trained on a
different but related environment allows us to speed up con-
vergence in multi-agent systems. This indicates that we can
train a single network on a specific problem domain, and
if we want to fine tune it for a specific number of agents,
we can use transfer learning to quickly improve its perfor-
mance.

6. Conclusion

Despite many of the recent advances in optimal con-
trol and automated planning, multi-agent systems remain
an open research challenge. The difficulties arise from the
curse of dimensionality that makes systems with large num-
bers of agents intractable. In this work, we demonstrated
that a deep reinforcement learning approach can be used
to solve decision making problems that are intractable for
classical algorithms such as value iteration. The three pri-
mary contributions of this work are: (i) demonstrated gen-
eralization across environments in multi-agent systems with
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Figure 8. Evaluation reward for the MADQN during training time

for a 2 vs 2 pursuit-evasion scenario. The green line shows a

MADAQN initialized with the same weights as a converged 1 vs 1

MADQN, while the blue line shows the MADQN initialized with

random weights.

MADRL, (ii) demonstrated generalization across a vary-
ing number of agents using MADRL, and (iii) showed that
transfer learning can be used in multi-agent systems to
speed up convergence.

There are a number of potential directions for future
work. While this work considered self-interested agents
implicitly, their policies were kept stationary. The next step
would be to train networks that control heterogenous agents.
This could be done by having a network for each type of
agent, and alternating training between the networks. This
would allow the networks to learn better policies as the
behavior of other types of agents changes in the environ-
ment. Another area of future work would involve extending
this approach to more complicated domains. One poten-
tial application is robotic soccer. Specifically, selective co-
ordination approaches have been shown to work well for
robot soccer [11]]. Future work will explore ift MADRL
can be used to learn policies that perform as well as the
selective coordination approaches and if it can outperform
them. Another part of future work is to do a more through
comparison of the MADRL approach to other multi-agent
reinforcement learning techniques such as the minimax Q-
algorithm [2]]. It may be of value to compare this approach
to game theoretic [18] and other reinforcement learning [[10]
techniques.

7. Appendix: Multi-Agent Deep Q-Network
Hyperparameters

The hyperparameters used for training the MADQN can
be found in[2
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Figure 6. Generalization across environments: the multi-agent deep Q-Network was trained on the two pursuit-evasion scenarios on the
right, and was evaluated on the scenario on the left

Table 2. Deep Q-Network hyperparameters

Hyperparameter Value Decription
Max train iterations 250000  The maximum number of training samples generated
Minimbatch size 32 Number of training samples per update
Replay size 100000 Size of the experience replay dataset
Learning rate 0.0001 Rate used by the optimizer
Update rule ~ ADAM The parameter update rule used by the optimizer
Initial exploration 1.0 Initial € value in € greedy exploration policy
€ decay 5e-5 Rate at which e decreases
Target network update 5000 Frequency of updating the target network
Agent network update 50000 Frequency of updating the networks of other agents
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