
Deeper Direct Perception in Autonomous Driving

Zuozhen Liu
Stanford University

450 Serra Mall, Stanford, CA 94305
zliu2@stanford.edu

Yixin Wang
Stanford University

450 Serra Mall, Stanford, CA 94305
wyixin@stanford.edu

Abstract

Deep neural network architectures[14][4] have
achieved amazing results on classification tasks in the
ImageNet challenge (ILSVRC)[13] over recent years.
While these networks are optimized for object classification
problem with a given set of target classes, they also demon-
strate strong capability in generalizing to other vision tasks
such as object detection[12], pose estimation[17], etc. In
this paper, we propose to apply transfer learning to the
domain of autonomous driving based on a direct perception
approach[2]. We present and evaluate our methods in
fine-tuning pre-trained convolutional neural netowrk(CNN)
models[14] for a regression task. Finally, we visualize and
analyse the results of our model on test set as well as in
game.

1. Introduction
Autonomous driving has been an active area of AI re-

search for over decades. Recent successes in Computer
Vision over the past decade have significantly contributed
to the development of modern autonomous driving systems
such as Google self-driving cars. While state-of-the-art sys-
tems are already capable of navigation in different road con-
ditions and also exhibit robustness to different traffic scenar-
ios, these systems are still very complex and require costly
devices such as laser sensors and radars. These devices help
constantly scan the surroundings with fine-grained details
but often times these details contribute very little to driv-
ing command decisions and would simply add noise to the
system.

In an attempt to resolve this problem, a different ap-
proach called direct perception is proposed in [2]. The idea
is to make the system extract a few key relevant indicators
instead of a holistic 3D model of the environment. The goal
is to come up with a condensed representation such that it
encodes enough information for a logic controller to infer
the orientation of the host car as well as relevant cars in the
traffic and then make corresponding decisions.

In this project, we focus on applying transfer learning
to the direct perception approach[2]. Specifically, given
an input image of first-person front view during driving,
the system relies on a feature mapping to output a num-
ber of key perception indicators. These real value indica-
tors are directly related to the affordance of a road/traffic
state for driving and can be fed into a logic controller to
output the final driving commands. The mapping process in
the pipeline can be learned via many methods. Since Con-
volutional Neural Network (CNN) hav proven its power in
learning effective feature representations of complex scenes
from raw images, a natural idea is to transfer the learning of
CNN to this regression task in order to map an input image
to real-value key perception indicators.

2. Related Work
The majority of autonomous driving systems can be cat-

egorized into three major paradigms shown in Figure 1: me-
diated perception approaches, behavior reflex approaches
and direct perception approaches.

Figure 1. Illustration of three paradigms[2]

Mediated perception approaches essentially rely on in-
dependent modules[3] that are optimized for different spe-
cialized recognition tasks including lane detection[1], car
detection[5][9], etc. The outputs of these modules are then
integrated into a unified world representation from which
the final driving decisions are made. Even though most
state-of-the-art systems[10] fall into this category, the com-
plexity and cost concerns still remain a major challenge.

Behavior reflex approaches[11] are drastically different

1

Figure 2. Illustration of the meaning of affordance indicators [2]

from the approaches mentioned above in that the sensor in-
puts are directly applied to learning driving actions. While
this idea is very simple and has been proven to handle lane
navigation quite well, it lacks high dimensional representa-
tions to deal with complicated traffic scenarios.

Direct Perception approach is a new paradigm intro-
duced in [2]. The paper also adopts CNN to learn a mapping
from input image to key perception indicators and shows the
host car is able to navigate itself in simulated highway sce-
nario in TORCS[18]. While this idea is innovative, the pa-
per follows an AlexNet architecture[8] which is superseded
by deeper CNN architectures in ILSVRC. In this project,
we will instead use pre-trained VGGnet[14] from Caffe[6]
to learn a better estimation of perception indicators from
raw image inputs.

3. Problem Statement

3.1. Direct Perception

The input into our CNN is a sequence of 280 x 210
RGB image frames representing first-person driving view
in TORCS. We map the input images to 13 key perception
indicators shown in Figure 2, namely angle, toMarking LL,
toMarking ML, toMarking MR, toMarking RR, dist LL,
dist MM, dist RR, toMarking L, toMarking M, toMark-
ing R, dist L, dist R. The semantic meaning of these indi-
cators are listed in Table 1.

3.2. Controller Logic

Next step is to implement a logic controller that takes
these 13 key perception indicators as well as the speed of
the car to output driving actions. In testing phase, these
actions are sent back to TORCS at a frequency of 10 Hz to
control the host car on the fly. We will be using the same
controller as described in [2]. At a high-level, the controller
navigates the host car in lane and avoids potential collision
by either switching to open lanes or slowing down. The
details of the controller is illustrated in Figure 3.

1) angle: angle between the cars heading and the tangent of the road
in lane system, when driving in the lane:
2) toMarking LL: distance to the left lane marking of the left lane
3) toMarking ML: distance to the left lane marking of the current lane
4) toMarking MR: distance to the right lane marking of the current lane
5) toMarking RR: distance to the right lane marking of the right lane
6) dist LL: distance to the preceding car in the left lane
7) dist MM: distance to the preceding car in the current lane
8) dist RR: distance to the preceding car in the right lane
on marking system, when driving on the lane marking:
9) toMarking L: distance to the left lane marking
10) toMarking M: distance to the central lane marking
11) toMarking R: distance to the right lane marking
12) dist L: distance to the preceding car in the left lane
13) dist R: distance to the preceding car in the right lane

Table 1. Key indicator names and meanings

Figure 3. Controller Logic [2]

4. Technical Approach

4.1. VGG Network

VGGNet has achieving amazing performance in
ILSVRC 2014 by exploring a much deeper network
architecture. Even though VGGNet has a slightly
weaker classification accuracy in ILSVRC than the winner,
GoogleNet[15], it actually outperforms GoogleNet in mul-
tiple transfer learning tasks. Therefore, we decide to fine-

2

tune VGGnet for the regression task on autonomous driving.
The key difference between VGGnet and other network

architectures is the use of small size convolution filters. The
author argued that using a stack of three 3x3 filters has the
same receptive field as a 7x7 filter. However, the total num-
ber of weight parameters, given C channels from the input,
amounts to 27C2 instead of 49C2, resulting in 45% less
parameters. As a result, VGGnet architecture applies ho-
mogeneous 3x3 convolution filters with a stride of 2 and
2x2 pooling filters with a stride of 2 that reduces the data
dimension by half. The number of filters are [64, 128, 256,
512, 512] which correspond to all convolution filters before
each pooling layer.

Specifically, we choose VGG-16 pre-trained model on
ImageNet from Caffe. The input image dimension is now
280 x 210 and the pre-trained VGGnet would break during
forward pass when the input propagates to the fully con-
nected layers. Additionally, the original network uses Soft-
max loss for object classification which does not work for
regression tasks. Our proposal is to reinitialize the entire
fully connected layers as [4096 - 256 - 13] and attach a re-
gression head with Euclidean loss. The detailed architecture
is displayed in Figure 4.

Figure 4. Modified VGG-16 architecture

4.2. Euclidean Loss

Given prediction and groud truth labels for m examples,
ŷi, yi ∈ Rn, i ∈ [1,m], the Euclidean loss or L2 loss is
defined as:

L =
1

2m

m∑
i=1

||ŷi − yi||22

As the real-value indicators have rather different value
ranges, we normalize the outputs to [0.1, 0.9] before we
calculate the Euclidean loss. Given that Euclidean loss is
much harder to optimize than a more stable loss such as
Softmax, as is stated in CS231n class notes, we experience
some difficulty with tuning the hyper-parameters in the net-
works. Detailed analysis on hyper-parameters can be found
in 6.1.

4.3. Optimization

Our VGG model is optimized using Stochastic Gradient
Descent(SGD) with momentum update. Given momentum
µ, learning rate α, the update rule is the following:

v = µ× v − α× dw
w = w + v

(1)

v represents the momentum which accumulates a history
of previous weight updates. This method has a faster con-
vergence than vanilla SGD but is slower than Adam[7] or
RMSProp[16]. Unfortunately, we are constrained to work
with an older version of Caffe developed in [2] to enable
interface support with TORCS. Therefore, more advanced
update methods are not supported which to some degree
limites the performance of our models.

5. Dataset and Framework

5.1. Dataset

We use the TORCS dataset collected by [2], which are
extracted from a 12-hour video recording of a human player
driving a host car in TORCS. The original dataset includes
a training set and a test set stored in levelDB format. How-
ever, we find that the images in the test set are corrupted
(purely noise and nothing else). Since both the training and
test set are collected in exactly the same way, we decide
to split the training set into three subsets, namely training,
validation and test. We have 150,000 images for training,
10,000 images for validation, and 10,000 images for test-
ing.

Each sample in the dataset consists of an image and cor-
responding ground truth label. Figure 5 shows two exam-
ple images from our dataset. Each image is the first-person
view of the current traffic condition. The ground truth label
consists of 13 float number fields, corresponding to the 13
indicators that we try to predict. The ground truth for in-
dicators are directly collected from the game engine (note
that the TORCS game itself needs these values to render
scenes). Thus part of the source code for TORCS is modi-
fied to take out these ground truth, and a modified version
of TORCS is compiled.

Also, note that apart from the host car, there are also 12
AI cars to create some traffic scenes in the dataset.

Data pre-processing We perform mean subtraction on
both training and test images. Each channel is subtracted
with its mean value to make data zero-centered, thus allow-
ing for better training. The mean value file is provided by
TORCS dataset.

There are two test modes. One is to evaluate the CNN
models on the test set, the other is to evaluate the networks
in real-time against TORCS. In the first case, test images are
fixed so that we can compare the performance of different
methods using the same test set. In the second case, test im-
ages are generated on-the-fly, namely, by taking screenshots
of the TORCS game and feeding these screenshots into the
neural network via shared memory. This mode will be dis-
cussed in detail in 6.6. We will report the results based on
test set, and we will include the link to a video demo for
real-time driving control in the TORCS game.

3

Figure 5. the TORCS Dataset image samples

5.2. Framework

Our development is based on the Caffe deep learning
framework [6]. However, the Euclidean loss layer is mod-
ified to enable normalization of the loss of 13 output indi-
cators within range 0.1 to 0.9. The normalization process
requires prior knowledge, e.g. the width of the lane in the
TORCS game, etc., and therefore such a layer modification
is necessary.

6. Experiments and Results

We use the CNN in [2], which is is a standard AlexNet
architecture[8], as our baseline. In this project, we pro-
pose to use VGG-16[14], which is a deeper network than
baseline, and we fine-tune the final 3 fully connected layers
[4096 - 256 - 13] to adapt to our problem. The final loss
layer is Euclidean loss.

We train and test both the baseline model and our model
(we will refer to CNN model in [2] as ”baseline”, and our
model as ”VGG” later in this report). In this section, we
report the training loss, training time, test performance and
detailed analysis. The detailed description of our modified
VGG network is already elaborated in 4.1. Therefore, here
we only briefly describe the baseline AlexNet model. The
first 5 layers are standard [conv - relu - pool] layers, fol-
lowed by 4 fully connected layers [4096 - 4096 - 256 -
13]. The loss layer is Euclidean loss. We trained the base-
line model using exactly the same hyper-parameters as de-
scribed in [2], from scratch instead of fine-tuned.

In the experiment, we re-train the baseline AlexNet
model because
(1) Chen’s experiment results as reported in [2] is based on
a different test set which is found to be corrupted. To ensure
that both two models run on the same test set, we cannot use
the performance reported in [2].
(2) Nor can we use Chen’s pre-trained model because we
partitioned the training set into train/val/test, as described in
5.1. Chen’s pre-trained model is trained on the entire train-
ing set, and therefore must have seen our ”test” images.

For our VGG model, we fine-tune the network by fixing
the pre-trained weights for all convolutional layers and only
updating the weights for fully connected layers. We per-
form training and testing on a single NVIDIA GTX TITAN

X GPU. Training time is measured and reported based on
this platform.

6.1. Hyper-parameters in Training

Learning Rate We first start by tuning the learning rate
for our network on validation set. Since we initialize the
network with pre-trained weights, the learning rate should
be much smaller than 1e-2 which is a common practice
as recommended in Caffe. Therefore, we experiment with
base learning rate in the range of [1e-3, 1e-4, 1e-5] for
the fully connected layers for a small number of iterations.
From Figure 6, we observe an effective learning rate of 1e-
4, corresponding to the middle figure, yields the best result.

When training baseline from scratch, we use lr = 1e−2,
and learning rate decay gamma = 0.9, step = 1000, i.e.,
learning rate is multiplied by 0.9 every 1000 iterations. We
choose a large learning rate because the baseline model is
trained from scratch, and thus needs a relatively large ini-
tial learning rate to help it converge faster and escape local
minima.

When fine-tuning VGG model, we use lr = 1e − 4, and
learning rate decay gamma = 0.9, step = 1000. Smaller
learning rates are usually preferred by fine-tuning tasks, be-
cause the situation is equivalent to the close-to-converge
state of the network.

Dropout We decided not to use dropout in training. We
experimented with dropout parameters, but it turned out that
dropout is making loss decrease very unstable. Moreover,
because our batch size is small due to memory limitations,
which leads to instability by nature, applying dropout is not
good for convergence. This verifies the statement on lecture
notes that dropout might not be a good idea for regression
problem.

Momentum We use momentum parameter µ = 0.9.
This parameter is usually set to 0.9 as a common practice. In
our experiment, we tried turning off the momentum which
led to a much slower convergence as explained in 4.3.

6.2. Error Metric

The error metric we use for test is mean abstract error
(MAE) between ground truth and estimated values for indi-
cators.

MAE =
1

N

N∑
i=1

(
1

13

12∑
i=0

|ŷi − yi|

)
,

where N is batch size, yi(i ∈ [0..12]) is the ground truth
of 13 indicators and ŷi(i ∈ [0..12]) are their corresponding
estimated value.

6.3. Training

Both systems are trained on 15,0000 samples, 1 epoch
and tested on 10,000 samples. Baseline system is trained for

4

Figure 6. Loss curve for learning rate of 1e-3, 1e-4, 1e-5 (left to right)

10,000 iterations with batch size of 15. VGG is trained for
15,000 iterations with batch size of 10. Batch size is limited
because of memory limitation on GPU. Limited batch size
also leads to larger fluctuation in training loss.

Figure 7 and Figure 8 illustrates regression loss decrease
against number of iterations for baseline and VGG network,
respectively. The baseline model loss encounters a plateau
around iteration 100 to 500, and then begin to linearly de-
crease, and nearly converges at around 0.13. VGG model
loss decreases very quickly at first, and later linearly as
learning rate decays, though the slope is very small. It
nearly converges at around 0.17. The loss of both models
are still linearly decreasing when we cut off the training pro-
cess. However, we were not able to train for larger epochs
due to time limitation.

Figure 7. Training loss of baseline network

Sigmoid layer before output The model proposed in [2]
attached a sigmoid layer between the final fully-connected
layer and Euclidean loss layer to normalize loss to range
[0.1,0.9]. However, when we were training, we found that
adding sigmoid layer leads to slower convergence. This
might be because removing the sigmoid layer allows for
outputs with larger discrepancy to true value to learn faster.
On the other hand, if a sigmoid layer is attached, outputs
that are wildly off might actually learn more slowly because
of the saturation of sigmoid layer. After 10,000 iterations,

Figure 8. Training loss of VGG

the loss decreases to 0.24 if we use a sigmoid layer, while it
decreases to 0.20 if we remove this layer.

Training time Fine tuning the VGG network is much
faster than training VGG from scratch, mainly because
VGG architecture is very deep. Training AlexNet from
scratch, however, is an acceptable approach for us because
the shallower structure of AlexNet means each iteration in
training will take shorter time. The time for 1 iteration in
training is reported in Table 2.

Target Elapsed Time (s)
Train AlexNet from scratch 0.52
Train VGG from scratch 0.81
Fine-Tune 3 fc layers in VGG 0.44

Table 2. Time for 1 iteration in training

6.4. Results

We test the baseline model and VGG model on the
10,000 test images. The MAE of both models are shown
in Table 3. We also included the performance of directed
perception model with GIST descriptors instead of CNN
features[2] for comparison.

Our VGG network is performing much better than the
GIST based system. However, it is not performing so well

5

Params angle to LL to ML to MR to RR dist LL dist MM dist RR to L to M to R dist L dist R
GIST 0.051 1.033 0.596 0.598 1.140 18.561 13.081 20.542 1.201 1.310 1.462 30.164 30.138

AlexNet 0.048 0.221 0.203 0.199 0.223 11.574 9.842 12.319 0.174 0.195 0.178 10.920 8.927
VGG 0.062 0.569 0.466 0.431 0.568 13.526 10.901 13.627 0.577 0.575 0.555 14.572 12.266

Table 3. Performance of GIST, baseline AlexNet, VGG based system

as the re-trained baseline AlexNet system in [2]. Because
we are freezing the convolution layers and only fine-tuning
the final 3 fully-connected layers of VGG, the performance
might be constrained. If we had had time and computa-
tional resources to run more iterations, we would not have to
freeze the convolution layers, and allow gradients to prop-
agate back to previous layers to fine-tune convolution pa-
rameters. This might lead to better performance. Anyhow,
our VGG network is achieving competitive results that are
comparable to the results in [2].

6.5. Error Analysis

When we evaluate our VGG model on the test set, we
also visualize the estimation outputs together with ground
truth to generate qualitative results. We present three test
samples below to discuss about the performance of our net-
works.

In each sample, the visualization is displayed on the left
while the test image is shown on the right. In the visualiza-
tion, solid boxes represent ground truth car locations. The
host car is marked in red and the AI cars are marked in yel-
low. Green bounding box is the estimate of host car based
on a number of toMarking indicators. The purple bounding
boxes are estimates of AI cars using distance indicators.

In Figure 9, the host car is driving in lane as shown in
(c) from Figure 2. In this case, the host car estimates its
distance from cars, if present, in all three lanes. We can ob-
serve that the bounding box for the host car is very accurate
and this stays true for a vast majority of in-lane situations.
Thus, the VGG model is able to navigate itself along the
racing tracks quite well (without disturbance from traffics).

Figure 9. Test sample, in lane

In Figure 10, the car is in an on-marking configuration
as shown in (e) from Figure 2. In this case, only the on-
Marking indicators are active for the host car. Therefore, it

only effectively ”observes” the two lanes it’s currently driv-
ing in-between. We observe that the model is less robust to
this type of configuration which usually happens when the
car is switching lanes. In this example, the estimates are
relatively good.

Figure 10. Test sample, on marking

In Figure 11, we can clearly categorize this sample as
one of the failure scenarios where the estimates are com-
pletely off from ground truth. The cause is that the model
”thinks” the host car is in between first and second lanes
which is off by one lane from the ground truth. We believe
that this is a fundamental limitation of the perception indi-
cators for onMarking scenarios in that these indicators fail
to grasp a global understanding of the position of the host
car with respect to entire track, which usually has more than
just two lanes.

A simple improvement is to add in one more indicator
representing the number of lanes to the left of the host car.
The indicator would help the model distinguish Figure 10
from Figure 11, e.g, values are 1, 2 respectively. However,
it still requires further investigation to validate the perfor-
mance impact.

Figure 11. Test sample, on marking error

6.6. Real time control in TORCS game

The network can also run in real-time in collaboration
with the TORCS game, and the pipeline is described as fol-

6

lows.
The system is composed of several components, namely

a TORCS simulator, a deep network (e.g. AlexNet or VGG)
and a Driving Controller. The relationship between these
three major components are shown in Figure 12. Specif-
ically, for the architecture of deep network, we use VGG
[14]. The TORCS simulator and VGG use shared memory
to enable the passing of images generated in real-time. The
pipeline is shown below.

(1) The TORCS game engine writes the rendered image
to shared memory in real-time.

(2) VGG reads image from shared memory, and does a
forward computation, mapping these images to a set of 13
key indicators.

(3) These 13 key indicators are then written to shared
memory.

(4) The Driving Controller consists of a set of hard-
coded control logic. It reads key indicators from shared
memory, and maps these 13 key indicators to a set of control
actions.

(5) The Driving Controller writes control actions to
shared memory.

(6) TORCS games engine reads these control actions
from shared memory, and manipulates the host car in
TORCS simulator.

Figure 12. System Architecture for real-time control in TORCS
game

Figure 13 is a demo screenshot of running CNN
in collaboration with the TORCS game in real-
time. A demo video can be found at this playlist
https://www.youtube.com/playlist?list=
PL7U9a_VtYNShS4I3ccxeTerufee0KDacE.

7. Conclusion and Future Work

In this project, we investigated applying transfer learning
to direct perception in autonomous driving. We modified
VGG architectures and performed thorough experiments on
hyper-parameters tuning. We then evaluated our models
and achieved comparable MAE result with baseline while
outperforming GIST. Finally, we visualized the test results
and recorded a video of our VGG model driving host car in
TORCS in real-time.

Figure 13. Demo screenshot of running CNN in collaboration with
the TORCS game in real-time. Left: visualization, Upper right:
game scene, Lower right: error bar and legends.

There are a number of directions we desire to investigate
more in the follow-up.

(1) Back-propagate into early convolutional layers of
VGG. Currently, we are freezing early layers to speed up
each iteration due to time constraints. We hope to investi-
gate the performance of our models when the models are
given enough time to train and back-propagate weight up-
dates across the entire network. This is likely to improve
performance as the pre-trained weights are optimized for
object classifications where some features are not necessar-
ily transferable to understanding driving scenes.

(2) Due to Caffe version limitation, we could not exper-
iment with adding BatchNorm layers or using Adam up-
date to further optimize our VGG model, but these improve-
ments are definitely worth investigation.

(3) Regarding the direct perception approach, we would
like to improve the indicators to encode in more holistic
perception of the host car to eliminate failure scenarios de-
scribed in 6.5. For example, we could add one more on-
Marking indicator that represents the number of lanes to the
left of the host car.

(4) A more ambitious direction is to adopt reinforce-
ment learning techniques in further training the network to
achieve better autonomous driving.

References
[1] M. Aly. Real time detection of lane markers in urban streets.

In Intelligent Vehicles Symposium, 2008 IEEE, pages 7–12,
June 2008.

[2] C. Chen, A. Seff, A. L. Kornhauser, and J. Xiao. Deep-
driving: Learning affordance for direct perception in au-
tonomous driving. CoRR, abs/1505.00256, 2015.

[3] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The KITTI dataset. I. J. Robotic Res., 32(11):1231–
1237, 2013.

7

https://www.youtube.com/playlist?list=PL7U9a_VtYNShS4I3ccxeTerufee0KDacE
https://www.youtube.com/playlist?list=PL7U9a_VtYNShS4I3ccxeTerufee0KDacE

[4] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[5] D. Held, J. Levinson, and S. Thrun. A probabilistic frame-
work for car detection in images using context and scale. In
Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 1628–1634. IEEE, 2012.

[6] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. B. Girshick, S. Guadarrama, and T. Darrell. Caffe: Con-
volutional architecture for fast feature embedding. CoRR,
abs/1408.5093, 2014.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. CoRR, abs/1412.6980, 2014.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[9] P. Lenz, J. Ziegler, A. Geiger, and M. Roser. Sparse scene
flow segmentation for moving object detection in urban en-
vironments. In Intelligent Vehicles Symposium (IV), 2011
IEEE, pages 926–932. IEEE, 2011.

[10] U. Ozguner, T. Acarman, and K. Redmill. Autonomous
ground vehicles. Artech House, 2011.

[11] D. Pomerleau. ALVINN: an autonomous land vehicle in a
neural network. In Advances in Neural Information Process-
ing Systems 1, [NIPS Conference, Denver, Colorado, USA,
1988], pages 305–313, 1988.

[12] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN:
towards real-time object detection with region proposal net-
works. CoRR, abs/1506.01497, 2015.

[13] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[14] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 1–9, 2015.

[16] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning, 4:2,
2012.

[17] A. Toshev and C. Szegedy. Deeppose: Human pose estima-
tion via deep neural networks. CoRR, abs/1312.4659, 2013.

[18] B. Wymann, E. Espi, C. Guionneau, C. Dimitrakakis,
R. Coulom, and A. Sumner. Torcs, the open racing car sim-
ulator, 2013.

8

	. Introduction
	. Related Work
	. Problem Statement
	. Direct Perception
	. Controller Logic

	. Technical Approach
	. VGG Network
	. Euclidean Loss
	. Optimization

	. Dataset and Framework
	. Dataset
	. Framework

	. Experiments and Results
	. Hyper-parameters in Training
	. Error Metric
	. Training
	. Results
	. Error Analysis
	. Real time control in TORCS game

	. Conclusion and Future Work

