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Abstract

In this paper, we describe an approach based on Con-
volutional Neural Networks (CNNs) to classify artworks by
artistic technique, time period, genre, and produce image
captions. We assemble a large dataset of high-resolution
images ( 40,000) and use it to train several neural network
models, achieving promising results. We also propose to use
the features we learn to illustrate various categories.

1. Introduction
The internet has made it incredibly easy to access digi-

tal photographs of artworks, from masterpieces in museum
collections to new productions uploaded to a blog. Fur-
ther, these images are often implicitly indexed by the textual
data present alongside them, which might include mentions
of genres or artists, making it possible to query artworks.
Nevertheless, a richer machine understanding of the images
themselves would broaden the scope of searches to images
that annotations, allow the classification of new artworks to
be automated, and enable other exciting applications such
as the automatic generation of illustrative examples of tech-
niques and genres.
Our class project will pursue this goal by applying the re-
cent advances in Convolutional Neural Networks (CNNs) to
the task of classifying and captioning artworks.

2. Problem Statement
2.1. Image Classification

It is of interest to identify the artist of a particular
painitng, the technique used by the artist, the period dur-
ing which the painting, and emotions conveyed by the art-
work. In the first part of our project, we want to investigate
the information that can be obtained from the painting it-
self. Sepcifically, we want to classify images of paintings
by several labels, including time period of the artwork, artis-
tic technique and genre. To achieve this task, we will use a
database of approximately 40,000 high-resolution images
of Western artworks for training a neural network architec-

ture. We will then analyze the relative accuracies obtained
on different classification tasks. This work provides very
good understanding of the difficulty of identifying various
characteristics of the artworks.

2.2. Image Captioning

In museums, we generally observe some text adjoining
the painting describing the artwork because it is of interest
to know the story behind the artwork and the story conveyed
by the artwork. In the second part of our project, we will
investigate if we can obtain some description of the paint-
ing given an image of the artwork. We will use the same
database of high-resolutions images, supplemented by sev-
eral sentences describing each image. After training, our
aim is to generate a description of a new image.

3. Related Work and Data Collection
Our data is drawn from the World Gallery of Art [1], a

virtual museum and search-able database of reproductions
of Western art. The database provides a catalog of col-
lection in the form of a csv file, with a link to a page for
each artwork. Each artwork is accompanied a description
of few sentences, and information about the artist, time pe-
riod, technique and school. We automatically scrape the
webpage to retrieve an image of the artwork, artwork infor-
mation, and a paragraph describing it. There are over 39000
images and the descriptions lengths varied from 0 sentences
to couple of tens of sentences.

Previous work in the area of artwork classification has
relied on small datasets and handcrafted features. For in-
stance, J. Zukjovic et. al.u̧se a dataset of only 353 paint-
ings belonging to 5 genres and implement features Steer-
able Pyramids and Canny edge detection. While the authors
argue that using images of varying provenance and dimen-
sions makes their method robust, we demonstrate robust-
ness by showing results on large validation and test sets (>
2000 images).

The task of classifying and captioning our dataset is
made particularly difficult by the variation in frequencies
between labels and in the number of sentences per image.
For instance, of the 2400 technique labels we analyzed,
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1630 labels were found in only a single image, while the
most common label, ’oil on canvas’, was found over 13,000
times. Similarly, the number of descriptions of an image
ranged from 0 to 50, in contrast to the more extensive MS-
COCO dataset [2], which supplies five sentences for every
image.

4. Generating Image descriptions
4.1. Preprocessing

The images were preprocessed by scaling them to a com-
mon size of 224 by 224, which was the input size of the pre-
trained models we worked with, and subtracting the mean
image.
The preprocessing for the image captioning task was some-
wha more involved. The goal was to produce a single sen-
tence description of an artwork given an image of the art-
work. During training, the input is images of artwork and
paragraph descriptions corresponding to the image. The
paragraph descriptions are split into multiple sentences.
We removed sentences that contain any numeral in them.
This occured mostly due to artworks containing informa-
tion about the year the artwork is made or corresponds to
some events of the artist of the arwork. We believe that this
information is hard to deduce from the image pixels. And
more importantly, adding all the years blows the state space
of the words. So, we decided to trim the number of training
captions by ignoring the captions which contain a numeral
in them. Further, the images are of different input sizes. So,
as described in the artwork classification task, we resized all
images to 224×224 size. We considered only color images.

4.2. Architecture

The description of the artworks is composed of words
which describe the objects visible in the artwork and also
hidden deeper meanings and emotions conveyed by the art-
work. Our insight is that these words correspond to different
spatial portions of the image. This places us in the frame-
work described in [3]. So, we adopted the framework in [3]
for generating descriptions for the image. At a high level,
the system in [3] maps the words and image regions into a
common multimodal embedding and learns the embedding
representations so that the words and image regions describ-
ing a similar object or feeling fall close to each other in the
embedding representation. For completeness, we summa-
rize the framework below. We refere to [3] for detailed de-
scription.

4.3. CNN Architecture

First, CNN is trained for a particular target class to
extract relevant features. For the artworks, we used weights
from 16-layer VGGNET trained on ImageNet Detection
challenge. The layers in our architecture are as follows:

1) Two convolutional layers with 64 filters of size 3 by 3,
followed by a pooling layer
2) Two convolutional layers with 128 filters of size 3 by 3,
followed by a pooling layer
3) Three convolutional layers with 256 filters of size 3 by
3, followed by a pooling layer
4) Two sets of three convolutional layers with 512 filters of
size 3 by 3, each time followed by a pooling layer
5) Two fully connected layers with 4096 units
6) A fully connected layer mapping the 4096 features to the
classes
The VGGNet architecture was chosen because it has been
demonstrated to have better performance than competing
architectures, such as GoogLeNet, on transfer learning
tasks.

4.4. RNN Architecture

A regional Convolution Neural Network built on top of
CNN is used to detect different regions of the image. The
system uses top 19 detected locations and computes repre-
sentations for each bounding box using equation 1

v = Wm[CNNθc(Ib)] + bm, (1)

where CNNθc(Ib) is the feature vector extracted from the
pre-trained CNN. Wm maps these features into embedding
space and bm are biases. Let h be the dimension of vec-
tors in embedding space. Similarly, words are converted
into h dimensional vectors using Bidirectional Recurrent
Neural Networks. Specifically, BRNN takes a sequence of
N words, and performs the following operations to include
context of the words.

xt = WwIt

et = f(Wext + be)

hft = f(et +Wfh
f
t−1 + bf )

hbt = f(et +Wbh
f
t+1 + bb)

st = f(Wd(h
f
t + hbt) + bd).

(2)

where It is indicator function for tth word, Ww is word
embedding matrix (we map each word to 512-dimensional
space in our experiments), hft and hbt are two processing
vectors in the forward and reverse directions repectively and
the vectors lie in h− dimensional embedding space. The fi-
nal embedding representation is obtainined by ReLU activa-
tions on a function of both forward and backward process-
ing vectors. Note f is standard ReLU activation function.

Then the similarity of words and images in the embed-
ding space is computed by using the dot product between
the corresponding vectors in the embedding space. The
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Figure 1. Description of RNN training process. RNN takes a word
and context as input and produces likelihood distribution for next
word.

words and the image regions are aligned using sum of the
similarities across all object-word pairs.

The network is trained by providing the image fea-
tures frim pre-trained CNN and first word (which is special
START token) and the secnd word is desried output. Then
the network proceeds forward in time with second word as
an additional input and the goal is to predict the third word
and so on till the special end of sentence token END is
reached. The equaitons describing the process are shown
below in Equation 3.

bv = Whi[CNNθc(I)]

ht = f(Whxxt +Whhht1 + bh + I(t = 1) ∗ bv)
yt = softmax(Wohht + bo).

(3)

The RNN training process is best illustrated in Figure 5
from [3].

4.5. Implementation

We used weights of 16-layer VGGNET pre-trained on
ImageNet detection challenge to extact the features from
the image. A 512-length word embedding is chosen to map
words to vectors. The CNN was trained using our own
framework in Lasange and the combined CNN-RNN was
trained in neuraltalk2. The experiments were conducted us-
ing NVIDIA GRID K520 GPU.

Design Choices: A major design choice was in con-
structing the vocabulary. Given the nature of the dataset,
there are lots of proper nouns describing persons and
places. Also, a huge portion (more than 30 precent) of the
words occur lonly once. Mapping all the words that occur
less than a threshold number of times, say 5, to a special
UNKNOWN word token, then we will run into case where
a sentence full of UNKNOWN tokens may achieve smaller
loss which is undesirable. Mapping all unique words to
different tokens blows up the state space and the network
cold train. Say, we attempted two approaches - one, using
a small dataset of 1000 images and mapping all unique

words to differnet tokens and two, take a large dataset of
10000 images but map all the words which occur less than
6 times to the UNKNOWN token.

Another major design choice was whether to train CNN
specific to artworks dataset and with a target class specific
to artworks like artist, or should we use CNN pre-trained
on some other standard dataset with a standard data class.
We decided to use pre-trained CNN.

Our training infrastructure also had to allow for the fact
that the entire training dataset could not fit in memory.
Instead, we loaded and preprocessed images on the fly
while sampling batches.

We also decided to use the Adam update rule throughout
as it has been empirically shown to produce the best results
and requires less hyperparameter tuning. The main feature
of the update rule is its use of first and second order mo-
mentum.

4.6. Experiments

4.6.1 CNN

Our training procedure for the CNN was as follows. Begin-
ning with the highest learning rate that did not cause the loss
to increase to infinity, we halved the learning rate whenever
the loss began to stagnate. When it became apparent that
the network was overtraining, we added batch normaliza-
tion to a single CNN layer (starting from the first layer) and
repeated the process.
The results are summarized in the table above. We see that
adding batch normalization helps considerably and greater
performance gains could perhaps be achieved by continuing
the process. We also note that our maximum validation ac-
curacies are competitive with those achieved by J. Zujovic
et al.
Our test accuracies were 0.42 on the school labeling prob-
lem and 0.49 on the technique labeling problem, indicating
that our model performs quite well on unseen data.
In order to analyze the mistakes made by our model, we list
the most commonly confused pairs of techniques:
True label: Oil on panel; Prediction: Oil on canvas
True label: Oil on wood; Prediction: Oil on canvas
True label: Fresco; Prediction: Oil on canvas
True label: Oil on oak panel; Prediction: Oil on canvas
True label: Oil on copper; Prediction: Oil on canvas
True label: Fresco; Prediction: Manuscript
We note that most of these pairs contain oil painting tech-
niques on various materials, which are naturally difficult to
distinguish. However, we might expect our model to per-
form better on some of these examples. For instance, fres-
cos should be clearly distinguishable from manuscripts.
The confusion matrices show a similar trend. The mistakes
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Figure 2. Confusion matrix for schools.

Layers Accuracies
0 (37, 38)
1 (38, 54)
2 (42, 56)
3 (48, 55)

Table 1. Number of layers with batch normalization and the maxi-
mum validation accuracy (on schools, on techniques) achieved.

made by both the school and technique models are clustered
around zero on the x-axis but spread evenly along the y-axis.
The clustering is due to our procedure for assigning numeric
values to labels, which was to iterate over the data and al-
locating the next integer to previously unseen labels. The
most common labels were likely to be seen early and hence
to be assigned numbers close to 0. The actual assignments
confirm this explanation The first and second technique la-
bels are ’Fresco’ and ’Oil and canvas’ respectively, while
the first and second school labels are ’Italian’ and ’Dutch.’
These are also the most common classes. Therefore, the
clustering is simply due to the fact that the most mistakes
were made in the most frequent labels.
We also present instances of artworks that were misclassi-

fied by school and technique.

4.7. Experiments for generating image descriptions

We initially conducted experiments with large dataset of
10000 images. We chose a training-validation split of 80-20
i.e., we randomly chose 8000 of the 10000 images for train-
ing purposes and the rest 2000 for validation. Multiple cap-
tions are generated for each image using the paragraph de-

Figure 3. Confusion matrix for schools.

Figure 4. Jean Hey’s Nativity. The painter (originally Flemish)
worked in France. Our model misclassified the work as Italian.

Figure 5. Jan Bruegel the Elder’s Animals Entering the Ark. The
image was incorrectly identified as an oil on canvas work. It is
actually oil on copper.

scriptions scraped from website. However, for training pur-
poses, we uniformly sampled five captions of those avail-
able for each image. Words occurring five times or less are
assigned a special token called UNK (or UNKNOWN) to
make sure the number of word vectors is reasonable. We
trained the network in batches of size 16. The validation
loss as the training progressed is illustrated in the Figure 6.
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Figure 6. Validation loss for RNN trained on large dataset of 10000
images.

We observed that the training loss flattened within few
thousands of iterations. We then finetuned the 16-layer VG-
Gnet in order to reduce the training loss. We started with
the network obtained from previous experiments for initial-
ization of weights and trained the CNN and RNN together
in this step. We trained in batches of size 6 for this experi-
ment. We plot the validation loss in Figure 7. However, we
observed that the validation loss essentially stagnated. We
believe that the primary reason for the stagnation is the pres-
ence of large number of UNKNOWN tokens in the captions
making it hard for the network to learn.

Figure 7. Validation loss for combined CNN-RNN training on
large dataset of 10000 images.

We will now look at qualitative performance of image
descriptions by examining the captions generated for few
images. The validation loss flattened within a couple of it-

erations and did not change even when the learning rate is
reduced or when the training ran for a longer time for half a
day. This strongly suggests network stopped learning. This
can be seen by same captions generated for all the images.
The three most popular captions are ‘the picture shows a
detail of the central panel of the triptych of the adoration
of’, ‘the painting is signed and dated lower right’, and ‘this
painting is one of the few surviving works by cigoli UNK’.
Few representative images for these captions are illustrated
in Figures 8, 9, and 10 respectively.

Figure 8. Description generated by the trained network is ‘the pic-
ture shows a detail of the central panel of the triptych of the ado-
ration of’

We hypothesized that the performance is poor because
the CNN has learned features from ImageNet images which
may be quite different from images of artwork. So, we
backpropagated into the CNN as described above. How-
ever, this did not improve the captions generated for a large
number of images. However, for few images, the generated
description is one among the sentences scraped from web-
site. An illustrative example is presented in Figure 11

We further investigated by playing with a relatively small
number compared to the above extensive experiment. We
considered a set of 1000 images. However, this time we in-
cluded all the words that occurred in the captions of these
images in the vocabulary. We used a training-validation
split of 75-25 i.e., 25 percent of images are randomly se-
lected for validation and rest 75 percent of the images are
considered for training. We trained using a batch size of 16.
We initially trained only the RNN leaving the weights of the
CNN network unchanged from the downloaded model [?].
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Figure 9. Description generated by the trained network is ‘the
painting is signed and dated lower right’

Figure 10. Description generated by the trained network is ‘this
painting is one of the few surviving works by cigoli UNK’

We plot the validation loss in Figure 12.
We observed that the validation loss increased slightly

while the training loss decreased. This strongly suggests
overfitting. We further finetuned the CNN weights on the
small dataset. We show the validation losses in Figure 13.

Figure 11. Description generated by the trained network is ‘this
painting is one of the most famous UNK of the UNK UNK’ which
is close to one of the ground truth captions

Figure 12. Validation loss for RNN training on small dataset of
1000 images.

This further justified our hypothesis that the model overfits
for datasets of size 1000.

Even with overfitting, we observed that the captions gen-
erated for different images are pretty similar. The most pop-
ular captions are ‘this painting is one of the series of the
virgin of the’, ‘the picture shows a detail of the predella’,
‘the picture shows the right side of the fresco’, and ‘the pic-
ture shows a detail of the predella’. However, working with
smaller dataset did generate meaningful captions for images
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Figure 13. Validation loss for combined CNN-RNN training on
small dataset of 1000 images.

of few of the artworks. An example is illustrated in Figure
14.

Figure 14. Description generated by the trained network is ‘this
painting depicts a stilllife with fruit basket fruits and shellfish’
which is close to one of the ground truth captions. The descrip-
tion is also relevant to the information conveyed by the painting
which was the ultimate goal of this project.
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