
Understanding Visual Art with CNNs

Michael Baumer
Stanford University

Department of Physics
mbaumer@stanford.edu

Derek Chen
Independent Researcher

https://feature.engineering
derekchen14@gmail.com

Abstract

Previous work in computational visual art classification
has relied on fixed, pre-computed features extracted from
raw images. In this work, we use convolutional neural net-
works (CNNs) to classify images from a collection of 40,000
digitized works of art according to artist, genre, and loca-
tion. After some simple pre-processing and downsampling,
we employ a modified VGGNet architecture to achieve bet-
ter than state-of-the-art results on artist and genre classifi-
cation (we could not find a literature benchmark for loca-
tion identification). We obtain a test set accuracy of 62.2%
on artist classification, 68.5% on genre classification, out-
performing the best algorithms in the literature by 3% and
10%, respectively.

Our results represent a step forward in the computa-
tional understanding of visual art. We present a confusion
matrix for our artist classifier that reveals interesting quan-
titative similarities between different artists. In addition, we
produce class optimization images for art of various genres
which elucidate the quantitative features that distinguish
various genres of art. We end by discussing possible ex-
tensions that have potential to improve these results even
further.

1. Introduction
Many art museums have amassed and digitized very

large collections of human artwork. This presents an
immense curatorial challenge to both understand famous
pieces and attribute pieces of unknown origin based on char-
acteristic features of individual artists and time periods. An
algorithm to identify the likely artist behind a work would
be useful to both museum curators and auction houses as
one way of validating an acquisition of unknown prove-
nance.

In addition, while expert art historians can recognize a
particular artist’s style or estimate the date of an unknown
piece, it is difficult for amateurs like ourselves to under-
stand the image features that distinguish works of art. The

Figure 1. Example artwork found in our input catalog. Artist,
genre and location truth labels for this image are ‘Michelangelo’,
‘Religious’, and ‘Italian’, respectively.

main motivation for this project is to apply quantitative
techniques to increase our understanding of visual art.

To do this, we take images found in a catalog of ∼
40, 000 works from the Web Gallery of Art (WGA) and use
CNNs based on a modified VGG-Net architecture to predict
the artist, genre, and location (see Table 1 for examples of
each) of a given work of art. An example input image, along
with relevant truth data, from the WGA catalog is shown in
Figure 1.

Our first goal is to achieve as high of accuracies as possi-
ble in classifying works of art by artist, genre, and location,
and compare to results from literature. Our second goal is
to use methods learned in this course to better understand
the features of input images that lead to the classifications
we make.

To tackle these goals, we review previous work in sec-
tion 2, 3 outline a modified VGGNet architecture in section
4, describe our cross-validation strategy in section 5, de-
scribe our classification results from our artist-, genre-, and
location-classifying networks in section 6, discuss the im-
plications of this work on artistic understanding in section
7, and propose future extensions and improvements to this
work in section 8.

1

http://www.wga.hu/


Artist Technique Medium Genre Location
Michelangelo Painting Oil on canvas Religious Italian

Giotto Sculpture Fresco Portrait French
Rembrandt Graphics Marble Landscape Dutch

Albrecht Dürer Illumination Photograph Mythological Flemish
van Gogh Architecture Oil on wood Still life German

Table 1. The top five occurrences of several categories of artworks in our dataset, illustrating the diversity of the artworks in our dataset.
The table includes our target categories of artist, genre, and location.

2. Previous Work

Within the field of art history, the primary method of
classifying art is qualitative (see, e.g. [9]). Recently, how-
ever, several computational groups have endeavored to use
tools from modern computer vision to advance the quantita-
tive understanding of visual art, comparing the difficulty of
identifying objects in art vs. photographs [5], and analyzing
networks of artistic influence [18]. These collective efforts
have made significant enough inroads that some have begun
to consider the impact of these new quantitative paradigms
on the field of art history [21].

Work on direct classification of artworks, however, has
focused on using fixed feature-extraction methods. We were
inspired to take on this challenge by work presented in [15],
which used Fischer vector formalism to classify works from
the collection of the famous Rijksmuseum. However, only
their pre-computed feature vectors, rather than the full set
of images, were available in a a convenient truth-matched
format. In addition, as a museum focused on Dutch art, the
catalog was not particularly diverse, so we decided to work
on a different dataset.

The previous work we can most directly compare our
results to are the classification analyses presented in [19].
They built a classifier to infer artist, genre, and artistic
movement (e.g. impressionism, abstract, baroque, etc.) us-
ing hand-engineered features as input to a support vector
machine (SVM) classifier. These pre-computed features
included scale-invariant feature transforms (SIFT) and his-
togram of oriented gradients (HOG), as well as features de-
rived from the outputs of a pre-trained four-layer CNN.

We benchmark our results against theirs, expecting some
improvement given that we use precomputed features from
a deeper CNN as well using a three-layer fully-connected
network to classify on these features rather than a simple
SVM.

The key question we will attempt to answer in this
project will be whether or not fully or partially training a
more complex CNN will enable us to outperform these re-
sults on similar tasks, the primary success metric being clas-
sification accuracies on a test set of withheld images.

3. Data

The WGA hosts a gallery of 39,302 rectangular RGB im-
ages in varying sizes (∼ 1000×1000 pixels) in JPG format.
It also provides a .csv catalog of accompanying metadata,
giving the artist, year, technique, medium, genre, and artis-
tic school of each work. The five most common entries for
each of these categories is given in Table 1, demonstrating
that this data set contains a diverse collection of well-known
artists and styles. The images in the WGA catalog are all li-
censed for educational use.1

Since the images are rather large and irregularly sized,
we convert the images to a standard 224 × 224 by down-
sampling along the shorter dimension as much as necessary
to reach 224 pixels, downsampling the same amount along
the longer dimension, and cropping the remainder. As an
example, Figure 2 shows the 224x224 downsampling of the
image shown in Figure 1. We restricted our attention to 20
well-known artists who were well-represented in the cata-
log, for a total of 5763 works.

For the genre and location tasks, we chose the 6 top gen-
res and the 13 top locations represented in the catalog. In
these categories, we had many more images (33,324 and
38,670, respectively) than in the artist classification task and
could not load the full dataset into CPU memory on our
EC2 instance. Keras lacks a memory-efficient data loader
(its train_on_batch method just samples from an in-
memory array) to load batches on-the-fly from disk. In-
stead of spending time implementing our own, we decided
to downsample the images further to 96x96, as illustrated in
Figure 3.

While not an optimal solution, it allowed us to explore
the robustness of art classification at varying input scales.
Some stylistic information is no doubt present in the small
scales we are smoothing over, so a future extension of this
work would be to implement ensembling of networks that
train on data at varying scales, or novel layers like spatial
pyramid pooling [10] or scale-invariant convolutional layers
[13].

1http://www.wga.hu/frames-e.html?/legal.html

2

http://www.wga.hu/frames-e.html?/legal.html


Figure 2. The 224x224 downsampling of Michelangelo’s Creation
of Adam used in the artists classifier.

Figure 3. The 96x96 downsampling of the same work, used in
genre and location classfication.

4. Methods

We implement our classifier using Keras, a recently-
developed framework for building and training deep learn-
ing models [7]. We chose Keras because of its simple API
to a Theano backend [2] [4], as well as the availability of
pre-trained weights for a VGGNet architecture [1]. Another
advantage of using Keras was that the code runs on both
CPUs and GPUs without any manual adaptation, which al-
lowed us to iterate quickly on our local machines before
running larger jobs on Amazon EC2 g2.2xlarge instances.
These instances use NVIDIA GRID K520 GPUs, with data
access provided by an external Elastic Block Store (EBS)
volume.

As a baseline model, we use a modified VGGNet ar-
chitecture (based on configuration “D” as recommended in
class) [20] initialized with fixed pre-trained weights from
[1] in all the convolutional layers. We modify the vanilla
VGG architecture by adding dropout and batch normaliza-
tion layers between the fully-connected (FC) layers. A dia-

Figure 4. A schematic diagram of our modified VGGNet architec-
ture. ReLU layers are omitted for brevity.

gram of our network architecture is shown in Figure 4.
The convolutional blocks of our model (shown in red in

Figure 4) are formed from sequential blocks zero-padding
layers, convolution layers, and activation layers. The bene-
fit of using convolution blocks over fully-connected hidden
layers is these blocks take into account the spatial layout of
the input data, as well as reducing the number of parameters
in the model.

Since VGGNet uses 3x3 filters with stride 1, we add one
row and column of zero-padding to the image before each
convolutional layer to maintain the size of each image as it
is passed through the network.

Finally, after each convolution layer, we use rectified lin-
ear units (ReLU) activation layers, which have been shown
to be superior to sigmoidal activations when training deep
networks [16]. ReLU units introduce non-linearity into the
network by clipping negative activations to zero and never
saturating positive activations:

ReLU(x) = max(0, x) (1)

In addition to providing non-linearity, ReLU units, in con-
trast to sigmoidal and tanh units which squash large values
to ≈ 1, where the resulting gradients are nearly zero, help
avoid this vanishing gradient problem during backpropaga-

3



tion by continually increasing the gradient in conjunction
with its final output.

The pooling blocks in our architecture (orange in Figure
4) implement 2x2 max-pooling to progressively reduce the
spatial size of the images by retaining only the maximum
value in a 2x2 activation block that slides across the input
volume with stride 2. Pooling reduces the number of pa-
rameters needed for all downstream layers, which has the
benefit of lowering memory costs in addition to reducing
the potential for overfitting.

The second component of our network is blocks of dense
layers that consist of fully-connected (FC) units, a batch
normalization layer, a ReLU activation, and a dropout layer.
The FC layers compute a linear combination of input fea-
tures xout = WTxin, as in a traditional neural network.
The weight matrixW contains the learned parameters of the
layer, initialized according to the prescription given in [11].
What makes the FC layers so effective in this context is that
the inputs from the upstream convolutional filters contain
spatial structure from the input image that FC layers alone
would not be able to extract.

The batch normalization layer [12] serves to renormalize
the activations of a given layer to a unit Gaussian distribu-
tion. This helps the later non-linearity perform better by en-
suring that any weights that might have grown too large or
too small are brought back to a reasonable size. The batch
normalization formula for a single batch is given by:

x̂ =
xin − E [xin]√
V ar (xin)

(2)

xout = γx̂+ β (3)

where γ and β are learnable parameters of each batch that
allow the network to undo the normalization forced by the
first equation if training shows it preferable. This can be ac-
complished by setting γ =

√
V ar (xin) and β = E [xin].

It is important to note that since both of these formulas are
differentiable, we can backpropagate through them like any
other layer.

Lastly, these dense blocks also include two forms of reg-
ularization. The fully-connected layers contain L2 regular-
ization which penalizes weight vectors by adding a term to
the loss function (see Equation 5) of the form

λ
∑

FC layers k

√∑
i,j

(W
(k)
ij )2 (4)

where λ is a hyperparameter that sets the regularization
strength.

The second form of regularization is dropout, which
makes the network more robust by randomly (with some
probability pdrop) setting the activations of each node of the

upstream layer to zero. pdrop is a hyperparameter that we
include in our cross-validation. By removing nodes from
the model at each step, each remaining weight must now be
more robust in its contribution to the final prediction. There-
fore, as with L2 regularization, we prefer weights with more
evenly distributed values.

The final component of our network is the loss function.
We have chosen a softmax classifier which uses the cross-
entropy loss function:

L =
1

N

N∑
i=1

(
efyi∑
efj

)
(5)

This loss function will allow learning to continue even from
examples it has already classified correctly. This is in con-
trast to the SVM loss function, which returns zero loss once
the target class score is greater than all others by a fixed
margin.

To optimize this loss function, we initially started with
vanilla SGD with Nesterov momentum [17]. At the time,
we were performing classification on three artists, and
achieved a top validation accuracy of 77.6%. We decided to
switch over to using the Adam optimizer [14], which keeps
a decaying average of past gradients, as well as squares of
gradients. These values are used to calculate the first-order
and second-order moments of the past gradients. Using
Adam on the initial 3-class task, we ended up with a top
validation accuracy of 81.3% after 10 epochs, so we contin-
ued using Adam for all future optimizations to save cross-
validation time.

5. Training and Cross-Validation
Our cross-validation experiments consisted of sam-

pling three hyperparameters—learning rate, regularization
strength, and dropout probability—over a broad range of
scales. Learning rate and L2 regularization strength were
sampled uniformly in log-space, while dropout probability
was sampled directly from a uniform distribution to ensure
unbiased exploration of parameter space.

We started by using random search rather than grid
search to sample the parameter space more efficiently [3].
During this time, a coarse search was made by training at
least 20 models per classification task with parameters cho-
sen from a wide range of values, as described in Table 2.
Because the goal was to simply determine what options dis-
played favorable properties, such as a continuously decreas-
ing validation loss, these networks were only run for just
four epochs.

Once we identified subsets of these ranges where we ob-
tained reasonable results, we sampled more densely within
a smaller range of possible values, as shown in Table 2.
At this stage, we were more interested in seeing consistent

4



Hyperparameter Coarse Range Fine Range Artists Opt. Genres Opt. Locations Opt.

Learning Rate 10(−7,−2) 10(−6,−4) 1× 10−4 1.2× 10−5 8× 10−5

L2 Regularization Strength 10(−7,−2) 10(−5,−4) 8× 10−4 1× 10−3 5× 10−5

Dropout Probability (0.1,0.9) (0.3,0.5) 0.40 0.35 0.45
Table 2. Ranges of tested hyperparameters for both coarse-grain and fine-grain cross-validation, along with the optimal values found for
each classification task.

progress in the right direction, so we ran each model up to
ten epochs.

The final stage of optimization involved tuning by hand.
If the loss function appeared to be dropping to slowly, we
pushed up the learning rate. If the training and validation
results started diverging, we tried increasing the regular-
ization strength. We also performed several targeted grid
searches to assess changes in performance with respect to
changes in a single parameter, with the other two held fixed.

After these three optimization steps, we obtained the loss
functions illustrated in Figure 5.

For the artist-classifying network, the loss descends in
a nice exponential, but the training and validation accura-
cies diverge after a few epochs. Despite our best efforts, we
could not find a combination of hyperparameters that could
make this go away, making it possible that we should have
done more coarse sampling. The genres net has a nicely
descending loss, and the training and validation accuracies
increase together (albeit slowly). It is possible this network
could have benefitted from additional capacity, although as
described below, we were unable to find suitable hyperpa-
rameters to make this work.

The locations network might have benefitted from a
slightly higher learning rate, as its loss descends more lin-
early than exponentially, but we were unable to find a better
tradeoff with regularization strength that gave good gener-
alization results.

Overall, though imperfect, our loss functions show that
our three classifiers converged sufficiently to be useful. We
describe two unsuccessful efforts to improve these results
(which turned out to beat the best results in the literature
anyway, as described in Section 6) below.

5.1. Attempted extensions

In an effort to boost our results, we also implemented
a data augmentation pipeline that consisted of performing
horizontal flipping and random crops on the image inputs.
With 10 random crops per image, we effectively increased
the amount of input data by a factor of 20. Using a cus-
tomized implementation of a Keras ImageGenerator, the
images were augmented during a pre-processed step, and
then incrementally fed into the final training function. How-
ever, as before, we ran into CPU memory limitations when
we discovered that the Keras data augmentation framework
attempts to store the entire augmented array in memory, and
then produce random indices to sample from it during train-

ing. In the interest of focusing on our primary project goals,
we decided to proceed without data augmentation, but it
would be one of the first things we would implement given
additional time.

Secondly, motivated by the idea that CNNs should per-
form better if allowed to change the convolutional features,
we decided to test the effect of opening up more layers for
training. Our results up to this point yielded high train-
ing accuracy, but overfitting prevented us from seeing these
quality results on the validation or testing data. We had
only been training the fully connected layers as highlighted
by Train Level 2 in Figure 4, leaving the weights of all con-
volutional layers fixed to their pre-trained value.

By opening up an additional six convolutional layers for
training, we hoped we would be able to add more flexibil-
ity to the network without necessarily increasing overfitting
because no new parameters would be introduced (they were
already present in the model as pre-trained weights).

As Keras does not allow variable learning rates for each
layer (the optimizer, with fixed learning rate, is instantiated
separately from the model), we split up the training into two
parts.

First, we trained a network that had all the lay-
ers in Train Level 1 open for optimization using lower
learning rates (to not train too far away from the pre-
trained weights). We performed grid search of learning
rates in [2× 10−6, 5× 10−6], regularization strengths in
[8× 10−4, 2× 10−3] and dropout probabilities in [0.4, 0.5].
The best result we achieved was a validation accuarcy of
30.3% after 10 epochs. This represented a higher starting
point for training the second network, which would often
initialize around 20% after the first epoch.

The second half of this process kept all the convolution
layers fixed, and varied only the weights in fully-connected
layers with higher learning rates. We performed grid search
of learning rates in [5× 10−5, 8× 10−6, 2× 10−6], reg-
ularization strengths in [8× 10−4, 2× 10−3] and dropout
probabilities in [0.4, 0.5]. However, after this limited cross-
validation, the final results only went up to 35.2%, much
lower than the 60% threshold we reached training just the
bottom level layers. Lacking the resources to perform a full
cross-validation on these expanded networks, we returned
to our original results.

5



Figure 5. Loss functions from the training of our three classifiers.

6. Results
We express our classification results using confusion ma-

trices computed from a withheld test set of images. The
confusion matrices on a withheld test set for artist, genre,
and location classification are shown in Figures 6, 7, and 8,
respectively.

Figure 6. Confusion matrix for artists classification on a test set.
X-axis labels follow the Y-axis labels, and were omitted due to
space limitations.

Figure 6 shows that our artist classifier overall performs
well, as it is strongly diagonal. We obtain best performance
on the most popular artists in our dataset: Michelangelo,
Rembrandt, van Gogh, and Giotto. The lines in confusion
matrix for these artists show that, to some extent, the net-
work is misclassifying other artists as these four, probably
due to their frequent occurrence in the training set.

It is artistically interesting to note that Fra Angelico and
Giotto are frequently confused, as Fra Angelico was in-
spired by Giotto and followed in his tradition of placing
images of Jesus and Mary into scenes from everyday life
[8]. Additionally, Michelangelo and Leonardo da Vinci are
also frequently confused, which makes sense as they are
both Italian Renaissance artists.

For our genres classifier, the results are more mixed. The
overall test accuracy is high (see Table 3). However, mytho-
logical and genre paintings—that is, paintings of scenes
from everyday life—are both mainly classified as religious
art. These two categories had the fewest training exam-
ples, and so were frequently classified as religious art, most

Figure 7. Confusion matrix for genres classification on a test set.

likely because of the predominance of religious works in
our dataset.

Figure 8. Confusion matrix for genres and location classification
on a test set.

6



For our locations classifier, we perform well for the cat-
egories for which we have many training examples (lower
right corner), but performance drops off as we consider cat-
egories with fewer training examples, which are frequently
misclassified as more popular categories.

Task Best previous Our performance
Artist 59.3% 62.2%
Genre 58.3% 68.5 %
Location — 43.1%

Table 3. Test accuracies from literature compared to our perfor-
mance. We show a substantial improvement on state of the art
performance!

We summarize our performance relative to the results
from the literature in Table 3. Overall, we exceed the perfor-
mance of previous work on artists and genre classification.
We could not find a performance benchmark for location
classification to compare to in the literature, but based on
our confusion matrix in Figure 8, we believe our method is
promising for this task as well.

Relative to location classification, it is not too surprising
that we performed so well on artist classification because
this task was completed using 224x224 images whereas the
location task was completed using 96x96 images. However,
it is interesting that we did well classifying genres which
was also forced to employ down-sampled 96x96 images due
to memory constraints. Our hypothesis is that the character-
istic features that define genre classes are attributes such as
rivers, faces, etc. that lie at large spatial scales. In other
words, genre is more about the large-scale composition of
the painting rather than fine details.

On the other hand, our lesser performance on location
classification may signify that the identifying features of
one country’s art from another is in the details of the brush-
work rather than a work’s large-scale composition. This
makes sense, as portraits, still-lifes, and landscapes are all
painted in many countries, yet with distinctive style. Re-
garding artists, we’re clearly picking up distinctive fea-
tures at small-to-medium spatial scales, although more tests
would be needed to see where the majority of the constrain-
ing power lies.

7. Discussion
A goal of this project was to increase our understand-

ing of visual art—in essence, to understand the quantitative
features that are characteristic of various artists, genres, and
artistic schools. In addition to considering the impact of
varying spatial scales, as above, another way of investigat-
ing this is through class optimization.

To construct an image that optimizes for output as a
given class, we begin by forward-propagating an image of
random noise through our trained network [6]. We then

backpropagate through the network, starting with gradients
set to zero for every class score except the target class,
whose starting gradient we set to 1. We update the input im-
age via gradient ascent, which ensures that the class score
of the input image will increase at every iteration. Results
from applying this method to the genre-classifying network
are shown in Figure 10.

The artist and location class examples are difficult to in-
terpret. As an example, the class-optimized image for Vin-
cent van Gogh is shown in Figure 9.

Figure 9. Class-optimized image for Vincent van Gogh, compared
with his famous Starry Night.

Broad, swirling patterns are prominent in the class-
optimized image, with brushstroke periodicities in between
them, which correspond to the famous features of van
Gogh’s work as seen in Starry Night. However, it is difficult
to make more definitive claims about the captured features
without greater knowledge of specific artistic styles.

On the other hand, the genre class images are very in-
teresting and informative. Figure 10 shows the results for
four genre classes, which each have highly interpretable
features. The portrait image has a head-like structure in
the top-center of the image, with little characteristic struc-
ture elsewhere. In the landscape image, the horizon, a river,
trees, clouds, and a mountain are all quite distinctive. The
still life has grapes near the center surrounded by wicker
baskets and more round fruits–a common still-life motif.
Finally, the idealization of religious art is dominated by
bearded faces, with what might be angel-like wings in the
upper corners.

7



Figure 10. Clockwise from top-left, images from the portrait, land-
scape, religious, and still life class optimizations.

8. Conclusions and Future Work

After exploring our dataset and implementing three clas-
sifiers, we obtain results that improve significantly on the
state of the art for artist and genre classification. Our results
from analyzing images at varying spatial scales showed that
while artistic genre can be inferred from highly downsam-
pled images, the location of origin is likely best constrained
by small-scale (brushstroke) information. In addition, we
used class optimization to extract the quantitative features
that define various genres of art.

In this work, we were frequently limited by memory con-
straints; it is clear that our next step in improving these re-
sults is to circumvent this resource limitation. Loading the
training images on-the-fly will allow our server to handle
all the data we have available at maximum image resolu-
tion. Although this I/O would introduce more overhead,
the cost of the extra time needed for training should be off-
set by the ability to use the larger image sizes, extracting
information at all spatial scales, rather than the downsam-
pled 224x224 or 96x96 pixel images. Furthermore, with
this on-the-fly loading, we would also be able to perform
data augmentation to increase the number of effective train-
ing examples. We believe these changes have the highest
potential for yielding significant gains.

References
[1] L. Baraldi. https://gist.github.com/

baraldilorenzo/07d7802847aaad0a35d3.
[2] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Good-

fellow, A. Bergeron, N. Bouchard, and Y. Bengio. Theano:
new features and speed improvements. Deep Learning and
Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

[3] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. Journal of Machine Learning Re-
search, 13:281–305, Feb. 2012.

[4] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu,
G. Desjardins, J. Turian, D. Warde-Farley, and Y. Bengio.
Theano: a CPU and GPU math expression compiler. In Pro-
ceedings of the Python for Scientific Computing Conference
(SciPy), June 2010. Oral Presentation.

[5] H. Cai, Q. Wu, T. Corradi, and P. Hall. The Cross-Depiction
Problem: Computer Vision Algorithms for Recognising Ob-
jects in Artwork and in Photographs. ArXiv e-prints, May
2015.

[6] F. Chollet. http://blog.keras.io/
how-convolutional-neural-networks-see-the-world.
html.

[7] F. Chollet. Keras. https://github.com/fchollet/
keras, 2015.

[8] G. Didi-Huberman and A. F. Angelico. Fra Angelico: Dis-
semblance Figuration. University of Chicago Press, 1995.

[9] P. DiMaggio. Classification in art. American Sociological
Review, 52(4):440–455, 1987.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Spatial Pyramid Pool-
ing in Deep Convolutional Networks for Visual Recognition.
ArXiv e-prints, June 2014.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rec-
tifiers: Surpassing Human-Level Performance on ImageNet
Classification. ArXiv e-prints, Feb. 2015.

[12] S. Ioffe and C. Szegedy. Batch Normalization: Accelerat-
ing Deep Network Training by Reducing Internal Covariate
Shift. ArXiv e-prints, Feb. 2015.

[13] A. Kanazawa, A. Sharma, and D. Jacobs. Locally Scale-
Invariant Convolutional Neural Networks. ArXiv e-prints,
Dec. 2014.

[14] D. Kingma and J. Ba. Adam: A Method for Stochastic Opti-
mization. ArXiv e-prints, Dec. 2014.

[15] T. Mensink and J. van Gemert. The rijksmuseum challenge:
Museum-centered visual recognition. 2014.

[16] V. Nair and G. E. Hinton. Rectified linear units improve re-
stricted boltzmann machines. In ICML, 2010.

[17] B. T. Polyak. Some methods of speeding up the convergence
of iteration methods. USSR Computational Mathematics and
Mathematical Physics, 4(5):1–17, 1964.

[18] B. Saleh, K. Abe, R. Singh Arora, and A. Elgammal. Toward
Automated Discovery of Artistic Influence. ArXiv e-prints,
Aug. 2014.

[19] B. Saleh and A. Elgammal. Large-scale Classification of
Fine-Art Paintings: Learning The Right Metric on The Right
Feature. ArXiv e-prints, May 2015.

[20] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[21] E. L. Spratt and A. Elgammal. Computational Beauty: Aes-
thetic Judgment at the Intersection of Art and Science. ArXiv
e-prints, Sept. 2014.

8

https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3
https://gist.github.com/baraldilorenzo/07d7802847aaad0a35d3
http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
http://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
https://github.com/fchollet/keras
https://github.com/fchollet/keras

	. Introduction
	. Previous Work
	. Data
	. Methods
	. Training and Cross-Validation
	. Attempted extensions

	. Results
	. Discussion
	. Conclusions and Future Work

