CNN Assisted Colorization of Gray-scale Images

Ross Daly
Stanford University

ross.daly@stanford.edu

Abstract

We propose a colorization tool which utilizes both min-
imal user input and traditional convolutional neural net-
works to color gray-scale images. Deep learning can only
go so far in solving colorization. Our major contribution
is to show how we can condense color information into a
low dimensional color palette and be able to infer this color
palette from minimal user input. This allows an interactive
system in which a user can provide insightful color hints to
gray-scale images in order to generate better colored image
results.

1. Introduction

There has been a growing interest in recoloring gray-
scale images. A preliminary search reveals many interested
parties working on completing this task. The traditional ap-
proach for realistically colorizing gray-scale images is for
an artist to directly color it using digital photo editing tools.
Our approach is to semi-automate the process utilizing Con-
volutional Neural Networks. This problem is both techni-
cally challenging and the results are visually enticing. There
exists a large amount of black and white images and videos
in which there is personal interest in realistic and interactive
coloring.

1.1. Motivation

The first cameras were produced in the early 1800s and
could only produce images in black and white. Black and
white photograph persisted well into the 1900s and is sur-
prisingly making a comeback even in the modern day. Col-
ored photography and film did not really exist until the early
1900s and did not become economically feasible for people
until even later. Because of this, there are a large amount of
black and white images and videos that people would like
to see colored.

This problem has sparked dedicated subreddits

(/r/colorization, /r/ColorizedHistory, /r/ColorizationRequests)

for people who have interest in coloring black and white
images. The people who use these subreddits typically put

Tian Zhao
Stanford University

tianzhao@stanford.edu

in a lot of time and effort using expensive high-end photo
editing platforms in order to complete the colorization task.
In addition to these subreddits, numerous online tools and
guides exist for the purpose of assisting in the colorization
of black and white images. We ask to what extent can
this process be automated? What trade-off space exists
relating quality of output and human effort? With the rise
of machine learning and Convolutional Neural Networks,
it seems plausible to be able to automate or semi-automate
this task.

If there exists a system that can colorize gray-scale im-
ages well enough for certain applications, then it is pos-
sible to construct a scenario in which one could compress
data transfer to only a single gray-scale image instead of the
typical 3 channel RGB or YUV images. For example low-
quality always-on cameras are typically black and white. It
might be useful to be able to convert chunks of this video
feed into colored images without needing the entire stream
to be saved as colored images.

1.2. Inputs and Outputs

Our architecture, RTNet, takes a gray-scale image and a
hint image as inputs. The hint images are prepared by the
user. A hint image contains 4 channels, The first channel is
the gray-scale image, the next two represent the color chan-
nels and the final channel is a binary mask which implies
whether a pixel contains any user-provided color informa-
tion. RTNet then uses the color information from the hint
image in addition to the original gray-scale image to col-
orize produce a colored image.

2. Related Work

There have been many attempts on using machines to
assist coloring images. Most of these attempts do not use
deep learning methods, and would require users to provide
reference images that are very similar to the ground truth
for the architectures to work. For example, the color trans-
fer algorithm proposed by Welsh, Ashikhmin and Mueller
[1]] requires a fully-colored reference image to be passed in
along with the target gray-scale image. Similarly, Sousa,
Kabizadeh [2] proposed a colorization algorithm that as-

signs color to an individual pixel based on its intensity as
learned from a color image with similar content. These al-
gorithms have several downsides. First, in order to gener-
ate a good colorized image, the reference image provided
by users must be very similar to the desired ones. Second,
since features are extracted pixel-by-pixel, complexity of
these algorithms are usually pretty high. For example, the
latter group reported that the entire process of colorizing a
800-by-600 image takes about 30-45 minutes. This is very
slow especially if the user wants to iterate over possible out-
puts.

Some other approaches do not require users to provide
very good reference images, and can still generate good col-
ored images efficiently. Levin, Lischinski and Weiss [3]
provide a method that color objects in an image using color
scribes provided by users. The algorithm is designed based
on the assumption that pixels with similar gray-scale in-
tensity in space-time should also have similar color. This
premise is formulated using a quadratic cost function, and
the colorization problem is transformed into an optimiza-
tion problem that can be solved efficiently. This approach
works well in a lot of cases. However, this architecture does
not consider the problem of unsuitable color diffusion in
different blocks. To solve this problem, Nie, Ma and Xiao
[4] proposed a similar approach, which uses the standard
deviation of intensity values of sampling points as a thresh-
old to determine if a color diffusion is unwanted.

In addition, Chen, Wang, Schillings and Meinel [5]] de-
signed an approach to color gray-scale images by modelling
the foreground and background color distributions using
spatially varying sets of Gaussians. This approach gener-
ates good results, but is limited to the task of processing
images with confusing luminance distributions.

Kekre and Thepade [6] proposed a method that prepares
a color palette for coloring gray-scale images. The color
palette is prepared using pixel windows taken from refer-
ence color image provided by user. Then the target gray-
scale image is divided into pixel windows in the same man-
ner. For every window of gray-scale image the palette is
searched for equivalent color values to color the gray-scale
window. This approach is very efficient as it does not need
to optimize for the color palette for every single pixel. How-
ever, it may average the color within each window and re-
duce the color differences between different objects.

Horiuchi and Hirano [7]] proposed an algorithm to color a
gray-scale image by allowing users to plant ’color seeds’ in
the gray-scale sample. The color information of these pixels
are then propagated through the picture to create a colored
one. This approach requires minimal user input. However,
colors of different objects within the picture would look
very similar because they are generated by propagating the
color information of a small set of pixels. Konushin, Vezh-
nevets [8]] proposed a similar approach where users initial-

4322

ize some pixels with color. They were able to improve the
accuracy of the algorithm by allowing users to do further
tweaking after a rough color image is generated. The mod-
ification and refining of the image colors can be done very
efficiently by utilizing the coupled map lattices (CML). Al-
though we do not want users to spend too much effort on
tweaking the final results, we are still inspired by this idea
that we shall allow users to pass in more information than
just a few pixels.

Luan [9] proposed a colorization algorithm based on
color labeling and color mapping. At the first stage, pixels
that should roughly have similar colors are grouped into co-
herent regions in the color labeling stage.The color mapping
stage then fine-tunes colors in each region. Compared to the
one proposed by Konushin and Vezhnevets, this approach
may be more efficient in the sense that the fine-tuning stage
needs to process no more than the total number of all the
pixels.

Unfortunately, most of these aforementioned methods
need users to provide sufficient reference images. In addi-
tion, the coloring process can take very long to complete. To
overcome these problems, it is natural to use deep learning
methods to assist the colorization process. Forward pass-
ing through a CNN can be very efficient and the models can
have memory of various colorization techniques by training
over sufficient amounts of data. One such architecture is
designed by Cheng, Yang and Sheng [[10]]. They use a CNN
with three hidden layers to extract high-level color palette,
and use that to reconstruct color information for the targeted
gray-scale image. One problem with this design is that they
use mean square error to measure the difference between
UV channels of the prediction and ground truth images as
the loss function. Since there is no unique solution to col-
oring a gray-scale image, using mean square error as a loss
measure may increase false positives.

Recently, a blog post entitled ”Automatic Colorization”
[L1] by Ryan Dahl tries to solve this problem with a
unique Convolutional Neural Network architecture inspired
by ResNet ([12]]). The results from this work were very
promising and is what inspired us to take on this project.
First, the model does not depend on the user to give a very
good reference image. Second, although training takes a
long time, forward-passing through the model can be done
very efficiently. However, even though this approach can
yield very good results, it is also limited by various factors.
For example, the model is quite complex, and training it to
a degree where colorization can be done properly requires
significant amount of computation resources. In addition,
this model attempts to reduce the loss by averaging the color
assigned to various objects in the picture. This would cause
the averaging color problem, and will be further discussed
in the next section.

3. Methods
3.1. Problem Statement

The goal of this set of work is to find a universal function
that transforms a gray-scale image to a full colored image.
Specifically, given a single-channel gray-scale image, we
want to output two-channel color information of the same
size. A final colorized image can be constructed using the
initial image and the function output. More precisely, The
input will be assumed to be the Y channel of a YUV image
and output will be the U and V channels for the YUV im-
age. UV =F(Y). Note that the transformation between RGB
and YUV space is a simple affine matrix multiply per pixel
and therefore the two spaces can be considered equivalent.
The Y "Luma” channel represents how bright the pixel is
while the U and V ”Chroma” channels represent a two di-
mensional color space.

Figure 1. Averaging Problem

It is important to note that it is impossible to create a
function to exactly reconstruct color. Imagine two images
of identical cars, one being red, and one being blue. It is
possible to convert them both to gray-scale, and have the
gray-scale images be identical. Because unique inputs can
map to identical outputs, this implies that the function trans-
forming a colored image to a gray-scale image is not injec-
tive. Therefore, an exact inverse function mapping gray-
scale images to colored images cannot exist. Any function
created will necessarily be approximate. Naively creating
and training a large neural-net will cause what we term the
“averaging problem”. Objects that have a variety of col-
ors for the same texture like cars, or fields will be predicted
to have an average color. Ryan Dahl’s results have corrobo-
rated this averaging problem as shown in Figure[I] The cen-
ter image shows the car being an average color of cars in the
training dataset. Our key insight is that more information
might need to be given in addition to the gray-sale image
in order to reconstruct the colored image. In this project we
propose colorization to be supplemented with a user-created
hint image. The function now becomes UV = F(Y, hint).

An example hint image can be seen as the input in Figure
Bl The goal of this hint image is to provide minimal color
information to objects thus hinting to the system as to what
the color should be. A properly working function should be
able to infer that if a small portion of an object is colored
a certain color, the object itself should be colored similarly

4323

and realistically.

3.2. Architecture
3.2.1 RTNet

batchnorm,
141 conv

Reconsgyuction
Residual

Encoder o/ nz';z'sa

224224*3

Training
CPhe_
VGG

1124112%128

HNet

224%224%64

batchnorm

224*224%3 uv

Gray Input

224%224%64

Figure 2. Architecture of RTNet

Our architecture contains two parts. The first part is the
initial training that builds a model with the color informa-
tion. The architecture of this part is shown in 2], and is
referred to as RTNet. The layers contained in the gray box
can be recognized as a residual network similar to the one
propose by Dahl. We use the residual network to solve two
problems. First, using a residual network helps us prevent
gradient from vanishing at deep layer of the network. Sec-
ond, by using the residual network, we force the reconstruc-
tion layers to learn color information in addition to the en-
coded semantic information.

The VGG box represents a portion of the VGG16Net
([13]. We use this architecture based on the intuition that
the VGG16 part will be able to extract semantic structure
from the image. On top of the semantic information, we
can use the color information from the Color Palette to col-
orize the image. The output is constructed by concatenating
the (N — 4)!" layer with the i layer, where N is the num-
ber of all the layers in the residual encoder part. This way
we are able to combine the semantic information from the
VGG part with the color information at different granulari-
ties.

The gray input of the architecture is simply a 224x224x1
tensor representing the Y channel (gray-scale) portion of
the image. The RGB input is a 224x224x3 tensor represent-
ing the entire YUV image. Note that this architecture trains
a layer called the Color Palette which is a low dimensional
space that should represent the colors in the image. The out-
put of the entire model is a 224x224x2 tensor representing
the U and V color channels. Note, that a sigmoid layer is
used as the final layer causing all the pixels to be squashed
between 0 and 1. Combining the original input Y channel
with the predicted U and V channels and transforming to
RGB will produce the final output image.

Here is a detailed explanation of how the whole training
procedure for RTNet is done:

The Y channel is forwarded into Gray Input.
The YUV channels are forwarded into RGB Input.

At the output of VGG, the Y channel is condensed into
a 128 x 112x 112 tensor.

At CP, the YUV information is first condensed into
an R'96 vector representing the color palette. It is
then up-sampled with smoothing convolutions to a
32 x 112 x 112 tensor.

The two tensors obtained from the last two stages are
concatenated. Then the result is fed into a reconstruc-
tion pipeline.

At each new stage of reconstruction, we batch-
normalize ([14]) the output at corresponding stage of
VGG and concatenate this information with the recon-
struction result from the last stage.

At the last stage of reconstruction, we recover a 2 X
224 x 224 tensor representing the U and V channels

We then compute the loss of the UV channels and the
expected UV channels. We back-propagate through
the entire model using Adam optimizer.

Our loss function is defined as:

Loss £ (MSE(Ypregicr * N3x3(0,2.25) — Yine *
N343(0,2.25)) + MSE(Ypredgict * N5x5(0,6.25) — Ve *
N5><5(07 625)) + MSE(Y;)redict - Krue))-

We find that the differences between prediction and
ground-truth images is better described by averaging the
mean square errors of these two images and their blurred
versions. We choose to use this loss function based on the
observation that there is no unique way of coloring a gray-
scale image. However, we can take the assumption that a
pixel in the prediction image is colored correctly if it is close
to the color of neighboring pixels around the ground-truth
pixel. Using this loss function has several benefits. First,
compared to using the euclidean distances, this loss func-
tion is more tolerant to pixels that are not exactly the same
as their ground truth values but are very close. Second, us-
ing the blurred images for calculating errors increase the
fault-tolerance threshold. As a result, it allows the model
to converge faster. The second advantage is particularly im-
portant to us because our model contains very deep layers
which would normally require significant amount of train-
ing. By having the model converging faster, we can train
the model over larger data set and build better insights into
how to improve this architecture.

4324

3.2.2 HNet

The second part of our training is designed for images with
hints. In a separate smaller CNN referred to as HNet, we
have the input being a 224 x 224 X 4 tensor and the output
being the same Color Palette from the RTnet. The input’s
first three dimensions are the YUV channels and the last
dimension will store the binary hint mask. If a pixel in the
hint mask is marked as 1, then our architecture should use
the color information at this location as a hint. Otherwise
this pixel is considered as gray-scale. We use this part of the
training to find the best hyperparameters that lead to good
Color Palette. The loss of this architecture can be calculated
by comparing the outputs from HNet and from RTnet.

The training data set for this part is obtained by augment-
ing the data set of color images from the first training step.
For each (RGB Input, R'%%) pair, we generate M hint im-
ages where each hint image is a 224 x 224 x 4 tensor.

User RGB
Hint

Figure 3. Architecture of HNet

For forward passing, we first replace the CNN1 network
in RTNet with HNet. During prediction, we feed the hint
image to the input of HNet and the gray scale image to the
other input of the RTNet. The color palette produced by
HNet will be forwarded into the corresponding spot in RT-
net. Ideally, if HNet is sufficiently trained, it should be able
to convert the User RGB Hint image into a Color Palette
that is a close approximation to the one generated by the
ideal RGB reconstruction of this hint image. By combin-
ing this information and forward-passing it into RTNet, we
shall be able to obtain a colored image that is very close to
its ground truth image without causing the averaging color
problem.

4. Data Set and Features

As difficult of a problem colorization is, it is fortunately
easy to obtain large quantities of training data for the task.
Almost any RGB photograph will suffice. We used a large
subset of the imagenet ILSVRC2012 datatset [[15]. Images
were preprocessed as follows.

e Any non-RGB image was thrown out

e The image was converted to YUV using an affine ma-
trix multiplication.

e The YUV was scaled such that each channel’s range
was 0-256

e The scaled YUV was normalized by mean subtraction

First, we loaded the VGG portion of RTNet with pre-
trained VGG weights. The final normalized Y channel was
used as the gray-scale input. The normalized YUV was used
as the training-time RGB input. Since the last layer of RT-
Net is a sigmoid which squashes values to the 0-1 range, our
correct UV output also needed to be rescaled to be between
0 and 1 in order to correctly backpropagate.

For HNet, we automatically generated M Hint images.
The assumption is that the blotches provided by the user
will look roughly like a juxtaposition of colored circles on
top of the gray-scale image. Because of this, the hint im-
ages consist of a random number of randomly sized circles.
Specifically we used a uniform distribution of between 1
and 25 circles each having a circle radius sampled from a
uniform distribution between 25 and 35 pixels. The circles
can be overlapping. This was derived empirically based on
the resulting distribution of image coverage was relatively
uniform between 1% and 80%. Once this combined circle
mask is generated, the hint image is generated by just mul-
tiplying the circle mask by the UV channels to extract color
from only the circle regions.

RTNet was trained on roughly 65,000 unique images.
Hnet was trained on roughly 65,000 hint images where the
number of unique base images was roughly 2,000. For both
RTNet and HNet, the inputs and outputs were preprocessed
beforehand and written in a contiguous manner for ease of
loading.

5. Experiments and Results

To actually train our architecture, we implemented both
RTnet and HNet in Keras [16]]. We chose this platform
mostly for the modularity, readability, and ease of utilizing
GPU resources. All of our training and testing procedures
are run on an Amazon AWS instance with 1 GPU.

We started experimenting the full residual encoder ar-
chitecture listed in Ryan Dahl’s blog post. However we
later realized that due to the complexity of the full model,
it would take about a week to finish training 1 epoch of
imagenet’s training data. In order to reduce the training
time, we redesigned the residual encoder such that it con-
tains fewer layers. This likely decreased the quality of our
results and it would be future work to use a larger architec-
ture.

5.1. Choice of Hyperparameters

For RTNet, we set the learning rate at 102 using Adam
optimizer. We did grid search to find the best combination
that can drive down the loss function in the first few epochs.

4325

Also during our training process, it is shown that Adam is
the most efficient optimizer.

We observed that larger batch size would lead to quicker
convergence. However, the GPU memory limitation on our
training machines only allows for no more than 16 samples
per batch during training. Therefore, we limit batch size of
16.

We chose a validation split of 95:5. The curve of train-
ing loss and validation loss of RTNet is included in Figure
@ The curve does seem to imply convergence but is also
noisy both in training and validation. The reason is that the
validation loss was calculated after every 973 samples. We
choose 973 samples because it is the maximum number of
samples that we are allowed to load into our architecture
without triggering memory error on the training machine.

0.007 _RTNet Loss Curve

validation loss
— training loss

0.006

0.005

0.004 H

error

0.003 -

0.002 -

0.001

3000 4000 5000 6000 7000 8000

batch, batch_size=16

[¢] 1000 2000 92000

Figure 4. Training Loss and Validation Loss Curve of RTNet

After obtaining the best weights for RTNet, we collect
the Color Palette corresponding to each training image. An
example of a Color Palette is shown in[5] We observe that
a lot of entries within the Color Palette are empty. This in-
dicates that we should be able to further condense the color
information from our training images. Specifically we used
a ReLU layer for this Color Palette, while a sigmoid or tanh
probably would have been more appropriate. Also, having a
condensed Color Palette indicates that the VGG part of RT-
Net may be able to provide extra color information. Ideally
we would want VGG to provide purely semantic informa-
tion. We will discuss in the next section on how we can
improve this.

We then train the HNet using hint images and Color
Palettes. Our learning rate is set to 10~%, and we are us-
ing Adam optimizer. Since HNet is a relatively light-weight
CNN, it converges very quickly without too much work on
tweaking the hyperparameters. The curve of training loss
and validation loss is shown in[6]

It is observed that the loss decreases quickly within the
first 100 batches. Most of the time the validation loss is

14

48
12t
a2
10} 3
30
24

18

12

ol

Figure 5. Visualization of Color Palette

250 HNet Loss Curve

validation loss
— training loss

200

150

error

100

50

! I | / I
300 400 500 600 700

batch, batch_size = 256

100 200

o

800

Figure 6. Training Loss and Validation Loss Curve of HNet

below the training loss, which indicates that the model is
not over-fitting on the training set. However, we also ob-
served that there exist spikes on the validation curve, which
indicates that some of the validation pictures may not work
well with the model we trained. To overcome this problem,
we will propose several possible improvements in the next
section.

Quality of hints are measured by the percentage of the
hint filled in by color. To be clear, the worst possible hint is
one that contains no (0%) color information while the best
possible hint (resulting in the best possible output) is one
which contains 100% of the color information. An experi-
ment to show that increasing the amount of color in the hint
corresponds to lower loss can be seen in The quantitative
results are shown in Figure[7} A few examples of hints and
their resulting outputs and diffs are shown in Figure[8] Hints
are on the top row, resulting outputs in the middle row, and
image diff from the best possible output is shown on the bot-
tom row. As you can see, color information can somewhat
be implied by small amount of hint color information.

4326

Another thing to note is that our results show that the
hint colors the sky to a similar color as the hint, not as an
average result of the training set. Although coloring the sky
can be considered an easier example, our model seemed to
do well with both blue, red and yellow colors. As seen in the
sky it was able to somewhat infer that a majority of the sky
should be colored based off of a smaller amount of color
information. Unfortunately the model had a tougher time
with objects that are green and magenta. This is discussed
in the next section and is likely a result of our architecture
and image processing.

® ° MSE:123

Fraction of Colored

® ° R196:123

.
0.7

o . LI °° ¢
03 0.4 05
Fraction of Colored

A
0.6

co o

.0 0.1 0.2 0.8

Figure 7.

6. Future Improvements

During the processing of implementing and validating
our designs, we noticed several issues and would like to
improve on them in the future.

First, we noticed that the green and magenta colors are
not expressed enough in our final UV images. Ideally, all
the colors should be expressed equally as we do not differ-
entiate between them in our training and testing data set. On
lead of the issue is that an empty V channel produces red
while an empty U channel produces blue. Green and ma-
genta require more complex combinations of the two chan-
nels and perhaps this is not captured by our model.

Second of all, the validation loss curve of our RTNet
training is not very smooth. Though it may be a result of
the fact that we only calculate validation loss at every 973
samples, it might as well be caused by our setting of the L2
regularizer. We are not able to retrain the model by using
a more aggressive L2 weights since it takes very long for
the model to complete back propagation; however we are
interested to see if the training can be improved by more
aggressive regularization.

Third, from the visualization of the Color Palette, it
seems that a lot of the space is not used. This implies that
the color information may be further compressed. Using a
small Color Palette has the advantage of reducing storage
space and training time. If we want to train a more fine-
grained model, we would want to move to a smaller Color

11.94%

bas i)
2

-
L

—

e

29.45%

47.40%

o W
o e §

Figure 8. Colored results from hint images with different percentages of cover

Palette.

References

(1]

(2]

(3]

(4]

(53]

(6]

(7]

(8]

(9]

(10]

Tomihisa Welsh, Michael Ashikhmin, and Klaus Mueller.
Transferring color to greyscale images. ACM Transactions
on Graphics (TOG), 21(3):277-280, 2002.

Austin Sousa, Rasoul Kabirzadeh, and Patrick Blaes. Auto-
matic colorization of grayscale images.

Anat Levin, Dani Lischinski, and Yair Weiss. Coloriza-
tion using optimization. In ACM Transactions on Graphics
(TOG), volume 23, pages 689-694. ACM, 2004.

Dongdong Nie, Qinyong Ma, Lizhuang Ma, and Shuangjiu
Xiao. Optimization based grayscale image colorization. Pat-
tern recognition letters, 28(12):1445-1451, 2007.

Tongbo Chen, Yan Wang, Volker Schillings, and Christoph
Meinel. Grayscale image matting and colorization. In Pro-
ceedings of Asian Conference on Computer Vision, pages
1164-1169. Citeseer, 2004.

Hemant B Kekre and Sudeep D Thepade. Color traits trans-
fer to grayscale images. In Emerging Trends in Engineering
and Technology, 2008. ICETET’08. First International Con-
ference on, pages 82-85. IEEE, 2008.

Takahiko Horiuchi and Sayaka Hirano. Colorization algo-
rithm for grayscale image by propagating seed pixels. In
Image Processing, 2003. ICIP 2003. Proceedings. 2003 In-
ternational Conference on, volume 1, pages 1-457. IEEE,
2003.

Vadim Konushin and Vladimir Vezhnevets. Interactive im-
age colorization and recoloring based on coupled map lat-
tices. In Graphicon2006 conference proceedings, Novosi-
birsk Akademgorodok, Russia, pages 231-234, 2006.

Qing Luan, Fang Wen, Daniel Cohen-Or, Lin Liang, Ying-
Qing Xu, and Heung-Yeung Shum. Natural image coloriza-
tion. In Proceedings of the 18th Eurographics conference on
Rendering Techniques, pages 309-320. Eurographics Asso-
ciation, 2007.

Zezhou Cheng, Qingxiong Yang, and Bin Sheng. Deep col-
orization. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 415423, 2015.

4327

(11]
[12]

(13]

[14]

[15]

[16]

Ryan Dahl. Automatic colorization.

Kaiming He, Xiangy Zhang, Shaoqging Ren, and Jian
Sun. Deep residual learning for image recognition. In
arXiv:1512.03385.

Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition. In
arXiv:1409.1556.

Sergey loffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In arXiv:1502.03167.

Dong Wei Socher Richard Li Li-Jia Li Kai Deng, Jia and
Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recog- nition,
2009. CVPR 2009. IEEE Conference on, pp. 248 255. IEEE.

Franois Chollet. keras.
fchollet/keras) 2015.

https://github.com/

https://github.com/fchollet/keras
https://github.com/fchollet/keras

