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Abstract 

 

This project implements “Enhancing and Experiencing 

Spacetime Resolution with Videos and Stills” by Gupta et 

al. [4] with convolutional neural networks. The input is a 

series of video frames. The first and last frame are high 

resolution while the middle frames are low resolution. 

Optical flow is computed between both high resolution 

frames to each low resolution frame by FlowNet [5]. The 

high resolution images are warped with this optical flow. A 

superresolution image is created by a Graphcut 

composition from the two warped high resolution images 

and the upsampled low resolution image. Multiple units of 

this computation are concatenated to form video. 

 

1. Introduction 

This project implements “Enhancing and Experiencing 

Spacetime Resolution with Videos and Stills” [6] with a 

convolutional neural network (CNN) framework. The goal 

of the original paper is to produce superresolution video 

frames by inferring high resolution information from 

periodically acquired high resolution still frames. The 

authors originally envisioned this technology implemented 

in hybrid camcorders which would have two image 

sensors—one for acquiring low resolution video and one for 

acquiring high resolution stills.  

While such technologies did not gain traction in the 

consumer market, the mobile computing platform has 

developed to be quite capable. With the continuing advance 

of consumer video resolutions from 2K to 4K, demand for 

computational power, bandwidth, and storage requirements 

will continue to increase as well. This could allow for 

power-efficient real-time processing of high resolution 

video. 

From an even more constrained embedded system 

perspective, this allows for relaxed hardware requirements. 

Rather than having a hardware pipeline to process full 

resolution video in real-time, fewer pixels have to be 

processed in real-time and less data has to be stored. There 

is then a tradeoff that more software processing will have 

to be performed later to playback the video. This processing 

could be performed on an accompanying mobile device or 

offloaded to the cloud.  

This project aims to implement [6] by using a CNN 

framework. The goal is to create believable superresolution 

video from low resolution frames while striving for real-

time computation. 

2. Background 

There are two primary technical areas in this project: 

optical flow and image composition. 

2.1. Optical Flow 

Optical flow takes in two images and assigns a flow 

vector for each pixel from one image to the other. With the 

flow image, we can warp one image to the other to 

approximate the other image. 

There are several methods to compute optical flow. One 

of the simplest methods is to search the neighborhood 

around the current pixel and find the most similar pixel for 

a given distance metric. There exist heuristics to determine 

neighborhood size and traversal method. 

Expanding on this idea are block-based methods since 

pixels usually move similarly to their neighbors and are 

likely to be part of the same object. The Lucas-Kanade 

method is based upon this idea and solves for motion in a 

least squares sense [9]. Extending this idea even further, 

there are optical flow methods that first segment the two 

images and then calculate the geometric distortion to arrive 

at the final optical flow vector [14]. 

There are also models based upon other heuristics which 

can be generalized as assuming some property of the image 

is slowly varying while the flow field is smooth. A seminal 

paper in this trend is the Horn-Schunck method [7].  

With these methods, there have also been techniques that 

enhance these methods [12]. Multi-scale coarse-to-fine 

image pyramids are applicable to optical flow. High-order 

filter constancy provides robustness to lighting changes. 

Median filters remove outliers and smooths the flow field. 

Traditionally, these objectives were formulated as a 

matrix problem and solved by least-squares. With the rise 

in popularity of non-convex objectives and increasingly 

powerful convex solvers, many modern methods now solve 

an objective to simultaneously determine the flow field. 
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Figure 1. FlowNet network architecture 

 

Convolutional neural networks are resurging in the image 

processing field and this course is based upon it. FlowNet 

(Figure 1) is currently the only CNN method for optical 

flow [5]. Rather than make assumptions and develop 

quantifiable metrics for these assumptions, CNNs are data-

driven models. With enough training data, we can allow our 

CNN to learn how to compute optical flow.  

Briefly, FlowNet first processes each image individually 

in parallel feature extraction networks and then combines 

the results in a correlation network before computing 

insertion into a series of convolutional layers. Coarser 

layers from earlier in the neural network are input and the 

convolutional layer output is the input to a series of 

fractionally strided convolution layers to generate larger 

images. 

2.2. Image Compositing 

Image composition is the blending of several images 

with each other. The simplest method is alpha-blending. 

Alpha blending is a linear transition between two images 

with slope alpha [11]. The blending regions can vary in 

geometry, including planes, rectangles, and ellipses. 

Extending this idea, we can perform multi-scale 

Laplacian pyramid blending [13]. We compute Laplacian 

and Gaussian pyramids of each image and then linearly 

combine them at each scale. We collapse the pyramid and 

arrive at our final image. Again, the blending region can be 

adjusted. 

Another method is two-band blending [2]. Low 

frequencies are smoothly blended with alpha blending 

while high frequencies are concatenated. Extending this 

idea is gradient blending where we adjust the image we 

want to blend until the gradient is smooth enough [10]. 

In this project, we are using Graphcut [8]. Graphcut 

segments out a piece of the intended image by minimizing 

a cost metric. The cost metric is composed of a smoothness 

cost so that the seams are not noticeable and a data cost so 

that the pixels being replaced are similar to the rest of the 

image. 

3. Methods 

The input for this project is a set of low resolution video 

frames and two high resolution images which bookend the 

video frames. For initial development, the Middlebury 

dataset is used. After tuning, the system is validated on 

actual video footage. 

The Middlebury dataset is all full-resolution images and 

provides eight frames for each video. Thus, we define a unit 

of computation as a set of eight images. To synthesize an 

appropriate dataset, the middle six images are 

downsampled by a given factor with bilinear interpolation 

and then upsampled by the same factor with bilinear 

interpolation. The upsampling is necessary to create images 

of identical size for input to the optical flow CNN. Various 

downsampling factors are tested to explore the capabilities 

of the algorithm. 

4K and 2K video are also used. We also downsample and 

upsample the middle frames to simulate low resolution 

video acquisition. 

There are two primary steps for implementing this 

project. The first is computing optical flow from both high 

resolution images to each low resolution frame and 

synthesizing the warped images. The second step is 

compositing the warped images to form the final high 

resolution image. 

3.1. Optical Flow 

We use a pretrained FlowNet to compute optical flow 

[5]. Optical flow is a pairwise operation and we can exploit 

the temporal of the relations to improve optical flow results. 

Consider a sequence of images A-B-C-…-H where A and 

H are high resolution and B-I are low resolution. Denote the 

upsampled low resolution images as Bu-Iu. Let us initially 

consider optical flow for only one direction. We first 

compute optical flow for A→Bu. Let the warped image of 

A be denoted as Bt. We then compute optical flow for 

Bt→Cu. Let the warped imaged of Bt be denoted as Ct. We 

continue this until we have completed all of the pairwise 

optical flows. By using the warped image to compute 

optical flow, we are effectively accumulating the flow 

vectors from A to each image. 

We now use the intermediate results as a seed to refine 

the long range optical flow from A to each target image. We 

compute Bt→Bu, Ct→Cu, and so forth and arrive at final 

forward warped images of Bf, Cf, and so forth. 

We repeat this process for warped images of H to each 

low resolution image. Let us call these backward warped 

images Bb, Cb, and so forth. This results in a set of three 

images: the upsampled image, the forward warped image, 

and the backward warped image. 
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Figure 2. The left is composition by traditional Graphcut. 

The right is using the data cost only. 

3.2. Image Compositing 

With the three candidate images, we now use Graphcut 

[8] to composite the images. By optimizing the smoothness 

cost and data cost, we can create a composite image. 

Traditional Graphcut methods use an iterative approach, 

minimizing data cost and smoothness cost alternately to 

minimize the ultimate cost function. The upsampled image 

and two warped images are all trying to approximate the 

same image. Thus, we can assume smoothness a priori. For 

verification, Figure 2 displays the results of using Graphcut 

and only the data cost. The output compositions are nearly 

indistinguishable. We can thus optimize the cost on a pixel-

by-pixel basis in a single pass. The data cost at a particular 

3-channel RGB pixel follows.  

 

𝑐𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑘𝑢 

𝑐𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = ‖𝐼𝑓(𝑥, 𝑦) − 𝐼𝑢(𝑥, 𝑦)‖2
 

𝑐𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = ‖𝐼𝑏(𝑥, 𝑦) − 𝐼𝑢(𝑥, 𝑦)‖2 

 

In this implementation, the upsampled image is viewed 

as the base image and has self-cost ku. The self-cost is a 

tunable parameter. A small ku results in a lower resolution 

image but with fewer artifacts. A larger ku results in higher 

detail but can introduce greater artifacts. For this project, 

we choose ku=0.15. 

4. Results and Discussion 

For developing and tuning the system, the Middlebury 

and Sintel test datasets are used [1,3]. The low resolution 

images are downsampled by a factor of 2 and 4 in each 

dimension. The results are displayed in Figure 3. 

Figure 3a) is from the image set “Backyard” in the 

Middlebury dataset and downsampled by a factor of 2. We 

can see slight blurring in the image on the left. After 

superresolution, we see significant resolution improvement 

in the background plants, the facial features, and on the 

piece of furniture that the girl with the red skirt is standing 

on. 

Figure 3b) is downsampled by a factor of 4. In this case, 

the blurring is significant. The superresolution image 

recovers many of the details but much of the information 

has been lost as well. 

Comparing the result in b) with the result in a), we notice 

much more detail in a). Even comparing the result in b) with 

the downsampled image in a), we notice that the result in b) 

is worse. 

This shows that downsampling by a factor of 4 

negatively affects the image more significantly than 

downsampling by a factor of 2. Analysis from a Fourier 

approach suggests that the filter when downsampling by a 

factor of 2 does not remove much information since energy 

is sparse in high frequencies. When downsampling by a 

factor of 4, denser energy frequencies are lost. 

Figure 3c) is from the image set “temple_1” in the Sintel 

dataset and downsampled by a factor of 2. We can see the 

improvements most obviously at the textures around the 

joints in the bamboo.  

Figure 3d) is downsampled by a factor of 4. Similarly, 

the blurring is very noticeable but we do recover lots of 

sharpness in the image, again noticeable on the bamboo 

joints. 

While the Sintel dataset is a popular dataset for optical 

flow development, it is not useful in this application based 

upon its results. The Sintel dataset is entirely computer 

generated and thus does not have the same level of detail 

that a natural image would have. During downsampling, 

little information is actually being discarded and thus there 

is little information to recover. This is apparent even in the 

images below. This is disappointing because the Sintel 

dataset is commonly used in other papers and has video 

sequences. 

Figure 4 contains the L1 and L2 errors of each channel 

of the superresolution frames compared to the original full 

resolution frame. Frames 1 and 8 have zero error because 

they are drawn directly from the source. The error for the 

frames in the middle plateaus. This plateau is interesting 

and unexpected. Intuitively, the error should have a peak in 

the middle. Frames 2 and 7 would be expected to have low 

error because they are very similar to the high resolution 

frames. Frames 4 and 5 are temporally distant from the high 

resolution frames and it is expected that the optical flow has 

accumulated error as well as lost information. 

Computing these errors on other image sets, using both 

L1 and L2 error do not give additional insight so only L1 

error is used for faster computation. 

Based upon these results, downsampling by a factor of 2 

still has an advantage of almost one fourth the necessary 

pixels while maintaining enough recoverable detail. This 

technique is now applied to 4K and 2K video. The results 

are shown in Figure 5. 

Viewing the video associated with Figure 5a), it is 

notable that the method can handle the fast action of the 

kick. Analyzing the error graph for the video does not 

reveal any correlations between the motion and the error. 

Qualitatively viewing the video associated with Figure 

5b), the video still looks high resolution. Paying closer 

attention to the video, there are some artifacts from this 
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method. Some out of focus areas of the video with fine 

details are temporally oscillating in their quality such as the 

trees in the background. This comes from the high detail in 

the high resolution frames and less detail in the 

superresolution frames. 

Analyzing the error graph for the video, there is again no 

correlation between error and the noticeable artifacts in the 

video. Furthermore, there is no correlation between objects 

entering and exiting the scene. 

It is difficult to create a metric for superresolution 

applications because almost all published image quality 

metrics are correlated with image energy. In this case, we 

have preserved most of the image’s energy as it is dense in 

low frequencies. We are trying to recover the high 

frequencies of each image where energy is sparse and small.  

This raises the idea of only comparing high frequencies 

with each other. However, this is also problematic because 

high frequencies are dominated by noise and signal-to-

noise ratio is small. Comparing high frequencies would 

ultimately be comparing noise floors between images 

which is not the desired result. 
The Middlebury dataset has RGB images with 640x480 

resolution. Calculating the superresolution for one unit of 

computation requires about 32 seconds. For eight frames, 

this is an average 4 seconds per frame which is not fast 

enough for real-time.  

The Sintel dataset has RGB images with 1024x436 

resolution. The superresolution for one unit of computation 

requires about 34 seconds.  

4K video has a resolution of 3840x2160 and requires 

about 90 seconds for computation. 2K video has a 

resolution of 1920x1080 and requires about 50 seconds of 

computation. 

We have not achieved even close to real-time 

computational speeds with this method. There is still hope 

though. The computational time does not scale linearly with 

pixels as would be expected if computation alone were the 

bottleneck. Almost the entirety of the computation is optical 

flow since we reduced the complexity of Graphcut. This 

suggests that most of the computation is spent transferring 

the data to and from the GPU. 

More efficient hardware stacks can be implemented to 

reduce this cost in mobile and embedded systems. For 

embedded systems especially, there exist dedicated 

convolution chips which could increase performance. 

All of the videos in the results are included in the 

supplemental material. For space considerations, only the 

2K version of the videos have been included. 

4.1. Super-resolution CNN 

As another point of comparison, there exists a super-

resolution CNN from Dong et al [4]. Unfortunately, the 

CNN was only created for black-and-white images. Trying 

to add back color is not quite successful but does help for 

comparison. Since the image is black-and-white, the above 

metrics cannot be used and it is for qualitative purposes 

only. The videos are also included in the supplementary 

materials. 

The superresolution images retain sharpness but are 

obviously lacking details that the above method recovers. 

When comparing computation time with the above method, 

the super-resolution CNN is significantly faster. The 

architecture is CONV-RELU-CONV-RELU-CONV. Both 

Middlebury and Sintel datasets takes 12 seconds. 2K video 

requires 20 seconds and 4K video requires 30 seconds of 

computation. This data again suggests that most of the time 

is spent on data transit. 

With better hardware optimization, this CNN could lead 

to a camera that captures a slightly smaller amount of pixels 

that then calculates a superresolution image at the promised 

quality. The benefits of this would be less initial processing 

while capturing in real-time and larger pixel sensors for 

better low-light performance. 

5. Future Work 

Almost the entirety of the computation is calculating 

optical flows. Optical flow is an expensive task and may 

limit the efficiency of this method. 

Future work could involve training a shallower network 

with results that are still acceptable. Graphcut adds some 

robustness to the method by filtering out significant 

artifacts. 

Another idea is to replace Graphcut with a CNN as well. 

The current implementation performs a single computation 

on each pixel so it is unlikely that it can be faster. However, 

there may be higher quality image composition methods 

that could compensate for lower quality optical flow 

warped images. 

A better metric to evaluate high frequency details also 

needs to be developed for better quantitative comparison of 

high frequency and detailed differences images. 
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(a) 
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Figure 3. The left image is the downsampled and upsampled image. The right image is the synthesized superresolution 

image. a) and b) are from “Backyard in the Middlebury dataset. c) and d) are from “bamboo_3” in the Sintel dataset. a) and 

c) are downsampled by a factor of 2. b) and d) are downsampled by a factor of 4. 
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d) c) 

b) 

a) 

Figure 4. The left graph is L2 error, the right graph is L1 error of the Middlebury and Sintel dataset images. 

Figure 5. a) and b) show the original frame on the left and the supperresolution frame on the right after downsampling 

by a factor of 2. c) and d) show the L1 error for a) and b) respectively. 


