

1

Abstract

This project implements “Enhancing and Experiencing

Spacetime Resolution with Videos and Stills” by Gupta et

al. [4] with convolutional neural networks. The input is a

series of video frames. The first and last frame are high

resolution while the middle frames are low resolution.

Optical flow is computed between both high resolution

frames to each low resolution frame by FlowNet [5]. The

high resolution images are warped with this optical flow. A

superresolution image is created by a Graphcut

composition from the two warped high resolution images

and the upsampled low resolution image. Multiple units of

this computation are concatenated to form video.

1. Introduction

This project implements “Enhancing and Experiencing

Spacetime Resolution with Videos and Stills” [6] with a

convolutional neural network (CNN) framework. The goal

of the original paper is to produce superresolution video

frames by inferring high resolution information from

periodically acquired high resolution still frames. The

authors originally envisioned this technology implemented

in hybrid camcorders which would have two image

sensors—one for acquiring low resolution video and one for

acquiring high resolution stills.

While such technologies did not gain traction in the

consumer market, the mobile computing platform has

developed to be quite capable. With the continuing advance

of consumer video resolutions from 2K to 4K, demand for

computational power, bandwidth, and storage requirements

will continue to increase as well. This could allow for

power-efficient real-time processing of high resolution

video.

From an even more constrained embedded system

perspective, this allows for relaxed hardware requirements.

Rather than having a hardware pipeline to process full

resolution video in real-time, fewer pixels have to be

processed in real-time and less data has to be stored. There

is then a tradeoff that more software processing will have

to be performed later to playback the video. This processing

could be performed on an accompanying mobile device or

offloaded to the cloud.

This project aims to implement [6] by using a CNN

framework. The goal is to create believable superresolution

video from low resolution frames while striving for real-

time computation.

2. Background

There are two primary technical areas in this project:

optical flow and image composition.

2.1. Optical Flow

Optical flow takes in two images and assigns a flow

vector for each pixel from one image to the other. With the

flow image, we can warp one image to the other to

approximate the other image.

There are several methods to compute optical flow. One

of the simplest methods is to search the neighborhood

around the current pixel and find the most similar pixel for

a given distance metric. There exist heuristics to determine

neighborhood size and traversal method.

Expanding on this idea are block-based methods since

pixels usually move similarly to their neighbors and are

likely to be part of the same object. The Lucas-Kanade

method is based upon this idea and solves for motion in a

least squares sense [9]. Extending this idea even further,

there are optical flow methods that first segment the two

images and then calculate the geometric distortion to arrive

at the final optical flow vector [14].

There are also models based upon other heuristics which

can be generalized as assuming some property of the image

is slowly varying while the flow field is smooth. A seminal

paper in this trend is the Horn-Schunck method [7].

With these methods, there have also been techniques that

enhance these methods [12]. Multi-scale coarse-to-fine

image pyramids are applicable to optical flow. High-order

filter constancy provides robustness to lighting changes.

Median filters remove outliers and smooths the flow field.

Traditionally, these objectives were formulated as a

matrix problem and solved by least-squares. With the rise

in popularity of non-convex objectives and increasingly

powerful convex solvers, many modern methods now solve

an objective to simultaneously determine the flow field.

Convolutional Neural Network Implementation of Superresolution Video

David Zeng

Stanford University

Stanford, CA

dyzeng@stanford.edu

2

Figure 1. FlowNet network architecture

Convolutional neural networks are resurging in the image

processing field and this course is based upon it. FlowNet

(Figure 1) is currently the only CNN method for optical

flow [5]. Rather than make assumptions and develop

quantifiable metrics for these assumptions, CNNs are data-

driven models. With enough training data, we can allow our

CNN to learn how to compute optical flow.

Briefly, FlowNet first processes each image individually

in parallel feature extraction networks and then combines

the results in a correlation network before computing

insertion into a series of convolutional layers. Coarser

layers from earlier in the neural network are input and the

convolutional layer output is the input to a series of

fractionally strided convolution layers to generate larger

images.

2.2. Image Compositing

Image composition is the blending of several images

with each other. The simplest method is alpha-blending.

Alpha blending is a linear transition between two images

with slope alpha [11]. The blending regions can vary in

geometry, including planes, rectangles, and ellipses.

Extending this idea, we can perform multi-scale

Laplacian pyramid blending [13]. We compute Laplacian

and Gaussian pyramids of each image and then linearly

combine them at each scale. We collapse the pyramid and

arrive at our final image. Again, the blending region can be

adjusted.

Another method is two-band blending [2]. Low

frequencies are smoothly blended with alpha blending

while high frequencies are concatenated. Extending this

idea is gradient blending where we adjust the image we

want to blend until the gradient is smooth enough [10].

In this project, we are using Graphcut [8]. Graphcut

segments out a piece of the intended image by minimizing

a cost metric. The cost metric is composed of a smoothness

cost so that the seams are not noticeable and a data cost so

that the pixels being replaced are similar to the rest of the

image.

3. Methods

The input for this project is a set of low resolution video

frames and two high resolution images which bookend the

video frames. For initial development, the Middlebury

dataset is used. After tuning, the system is validated on

actual video footage.

The Middlebury dataset is all full-resolution images and

provides eight frames for each video. Thus, we define a unit

of computation as a set of eight images. To synthesize an

appropriate dataset, the middle six images are

downsampled by a given factor with bilinear interpolation

and then upsampled by the same factor with bilinear

interpolation. The upsampling is necessary to create images

of identical size for input to the optical flow CNN. Various

downsampling factors are tested to explore the capabilities

of the algorithm.

4K and 2K video are also used. We also downsample and

upsample the middle frames to simulate low resolution

video acquisition.

There are two primary steps for implementing this

project. The first is computing optical flow from both high

resolution images to each low resolution frame and

synthesizing the warped images. The second step is

compositing the warped images to form the final high

resolution image.

3.1. Optical Flow

We use a pretrained FlowNet to compute optical flow

[5]. Optical flow is a pairwise operation and we can exploit

the temporal of the relations to improve optical flow results.

Consider a sequence of images A-B-C-…-H where A and

H are high resolution and B-I are low resolution. Denote the

upsampled low resolution images as Bu-Iu. Let us initially

consider optical flow for only one direction. We first

compute optical flow for A→Bu. Let the warped image of

A be denoted as Bt. We then compute optical flow for

Bt→Cu. Let the warped imaged of Bt be denoted as Ct. We

continue this until we have completed all of the pairwise

optical flows. By using the warped image to compute

optical flow, we are effectively accumulating the flow

vectors from A to each image.

We now use the intermediate results as a seed to refine

the long range optical flow from A to each target image. We

compute Bt→Bu, Ct→Cu, and so forth and arrive at final

forward warped images of Bf, Cf, and so forth.

We repeat this process for warped images of H to each

low resolution image. Let us call these backward warped

images Bb, Cb, and so forth. This results in a set of three

images: the upsampled image, the forward warped image,

and the backward warped image.

3

Figure 2. The left is composition by traditional Graphcut.

The right is using the data cost only.

3.2. Image Compositing

With the three candidate images, we now use Graphcut

[8] to composite the images. By optimizing the smoothness

cost and data cost, we can create a composite image.

Traditional Graphcut methods use an iterative approach,

minimizing data cost and smoothness cost alternately to

minimize the ultimate cost function. The upsampled image

and two warped images are all trying to approximate the

same image. Thus, we can assume smoothness a priori. For

verification, Figure 2 displays the results of using Graphcut

and only the data cost. The output compositions are nearly

indistinguishable. We can thus optimize the cost on a pixel-

by-pixel basis in a single pass. The data cost at a particular

3-channel RGB pixel follows.

𝑐𝑢𝑝𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑘𝑢

𝑐𝑓𝑜𝑟𝑤𝑎𝑟𝑑 = ‖𝐼𝑓(𝑥, 𝑦) − 𝐼𝑢(𝑥, 𝑦)‖2

𝑐𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 = ‖𝐼𝑏(𝑥, 𝑦) − 𝐼𝑢(𝑥, 𝑦)‖2

In this implementation, the upsampled image is viewed

as the base image and has self-cost ku. The self-cost is a

tunable parameter. A small ku results in a lower resolution

image but with fewer artifacts. A larger ku results in higher

detail but can introduce greater artifacts. For this project,

we choose ku=0.15.

4. Results and Discussion

For developing and tuning the system, the Middlebury

and Sintel test datasets are used [1,3]. The low resolution

images are downsampled by a factor of 2 and 4 in each

dimension. The results are displayed in Figure 3.

Figure 3a) is from the image set “Backyard” in the

Middlebury dataset and downsampled by a factor of 2. We

can see slight blurring in the image on the left. After

superresolution, we see significant resolution improvement

in the background plants, the facial features, and on the

piece of furniture that the girl with the red skirt is standing

on.

Figure 3b) is downsampled by a factor of 4. In this case,

the blurring is significant. The superresolution image

recovers many of the details but much of the information

has been lost as well.

Comparing the result in b) with the result in a), we notice

much more detail in a). Even comparing the result in b) with

the downsampled image in a), we notice that the result in b)

is worse.

This shows that downsampling by a factor of 4

negatively affects the image more significantly than

downsampling by a factor of 2. Analysis from a Fourier

approach suggests that the filter when downsampling by a

factor of 2 does not remove much information since energy

is sparse in high frequencies. When downsampling by a

factor of 4, denser energy frequencies are lost.

Figure 3c) is from the image set “temple_1” in the Sintel

dataset and downsampled by a factor of 2. We can see the

improvements most obviously at the textures around the

joints in the bamboo.

Figure 3d) is downsampled by a factor of 4. Similarly,

the blurring is very noticeable but we do recover lots of

sharpness in the image, again noticeable on the bamboo

joints.

While the Sintel dataset is a popular dataset for optical

flow development, it is not useful in this application based

upon its results. The Sintel dataset is entirely computer

generated and thus does not have the same level of detail

that a natural image would have. During downsampling,

little information is actually being discarded and thus there

is little information to recover. This is apparent even in the

images below. This is disappointing because the Sintel

dataset is commonly used in other papers and has video

sequences.

Figure 4 contains the L1 and L2 errors of each channel

of the superresolution frames compared to the original full

resolution frame. Frames 1 and 8 have zero error because

they are drawn directly from the source. The error for the

frames in the middle plateaus. This plateau is interesting

and unexpected. Intuitively, the error should have a peak in

the middle. Frames 2 and 7 would be expected to have low

error because they are very similar to the high resolution

frames. Frames 4 and 5 are temporally distant from the high

resolution frames and it is expected that the optical flow has

accumulated error as well as lost information.

Computing these errors on other image sets, using both

L1 and L2 error do not give additional insight so only L1

error is used for faster computation.

Based upon these results, downsampling by a factor of 2

still has an advantage of almost one fourth the necessary

pixels while maintaining enough recoverable detail. This

technique is now applied to 4K and 2K video. The results

are shown in Figure 5.

Viewing the video associated with Figure 5a), it is

notable that the method can handle the fast action of the

kick. Analyzing the error graph for the video does not

reveal any correlations between the motion and the error.

Qualitatively viewing the video associated with Figure

5b), the video still looks high resolution. Paying closer

attention to the video, there are some artifacts from this

4

method. Some out of focus areas of the video with fine

details are temporally oscillating in their quality such as the

trees in the background. This comes from the high detail in

the high resolution frames and less detail in the

superresolution frames.

Analyzing the error graph for the video, there is again no

correlation between error and the noticeable artifacts in the

video. Furthermore, there is no correlation between objects

entering and exiting the scene.

It is difficult to create a metric for superresolution

applications because almost all published image quality

metrics are correlated with image energy. In this case, we

have preserved most of the image’s energy as it is dense in

low frequencies. We are trying to recover the high

frequencies of each image where energy is sparse and small.

This raises the idea of only comparing high frequencies

with each other. However, this is also problematic because

high frequencies are dominated by noise and signal-to-

noise ratio is small. Comparing high frequencies would

ultimately be comparing noise floors between images

which is not the desired result.
The Middlebury dataset has RGB images with 640x480

resolution. Calculating the superresolution for one unit of

computation requires about 32 seconds. For eight frames,

this is an average 4 seconds per frame which is not fast

enough for real-time.

The Sintel dataset has RGB images with 1024x436

resolution. The superresolution for one unit of computation

requires about 34 seconds.

4K video has a resolution of 3840x2160 and requires

about 90 seconds for computation. 2K video has a

resolution of 1920x1080 and requires about 50 seconds of

computation.

We have not achieved even close to real-time

computational speeds with this method. There is still hope

though. The computational time does not scale linearly with

pixels as would be expected if computation alone were the

bottleneck. Almost the entirety of the computation is optical

flow since we reduced the complexity of Graphcut. This

suggests that most of the computation is spent transferring

the data to and from the GPU.

More efficient hardware stacks can be implemented to

reduce this cost in mobile and embedded systems. For

embedded systems especially, there exist dedicated

convolution chips which could increase performance.

All of the videos in the results are included in the

supplemental material. For space considerations, only the

2K version of the videos have been included.

4.1. Super-resolution CNN

As another point of comparison, there exists a super-

resolution CNN from Dong et al [4]. Unfortunately, the

CNN was only created for black-and-white images. Trying

to add back color is not quite successful but does help for

comparison. Since the image is black-and-white, the above

metrics cannot be used and it is for qualitative purposes

only. The videos are also included in the supplementary

materials.

The superresolution images retain sharpness but are

obviously lacking details that the above method recovers.

When comparing computation time with the above method,

the super-resolution CNN is significantly faster. The

architecture is CONV-RELU-CONV-RELU-CONV. Both

Middlebury and Sintel datasets takes 12 seconds. 2K video

requires 20 seconds and 4K video requires 30 seconds of

computation. This data again suggests that most of the time

is spent on data transit.

With better hardware optimization, this CNN could lead

to a camera that captures a slightly smaller amount of pixels

that then calculates a superresolution image at the promised

quality. The benefits of this would be less initial processing

while capturing in real-time and larger pixel sensors for

better low-light performance.

5. Future Work

Almost the entirety of the computation is calculating

optical flows. Optical flow is an expensive task and may

limit the efficiency of this method.

Future work could involve training a shallower network

with results that are still acceptable. Graphcut adds some

robustness to the method by filtering out significant

artifacts.

Another idea is to replace Graphcut with a CNN as well.

The current implementation performs a single computation

on each pixel so it is unlikely that it can be faster. However,

there may be higher quality image composition methods

that could compensate for lower quality optical flow

warped images.

A better metric to evaluate high frequency details also

needs to be developed for better quantitative comparison of

high frequency and detailed differences images.

References

[1] S. Baker et al., A Database and Evaluation Methodology for

Optical Flow, International Journal of Computer Vision,

2011.

[2] M. Brown and D.G. Lowe, Recognising Panoramas. ICCV,

2003.

[3] D.J. Butler et al., A Naturalistic Open Source Movie for

Optical Flow Evaluation. ECCV, 2012.

[4] C. Dong et al., Image Super-Resolution Using Deep

Convolutional Networks. ECCV, 2014.

[5] A. Dosovitiskiy et al., FlowNet: Learning Optical Flow with

Convolutional Networks. IEEE International Conference on

Computer Vision (ICCV), Dec 2015.

[6] A. Gupta et al., Enhancing and Experiencing Spacetime

Resolution with Videos and Stills. International Conference

on Computational Photography (ICCP), 2009.

[7] B.K. Horn, B.G. Schunck, Determining Optical Flow. Proc.

SPIE, 1981.

5

[8] V. Kwatra et al., Graphcut Textures: Image and Video

Synthesis Using Graph Cuts. SIGGRAPH, 2003.

[9] B. Lucas and T. Kanade, An Iterative Image Registration

Technique with an Application to Stereo Vision. Proceedings

of Imaging Understanding Workshop, 1981.

[10] P. Perez, M. Gangnet, A. Blake, Poisson Image Editing.

SIGGRAPH, 2003.

[11] T. Porter, T. Duff, Compositing Digital Images. SIGGRAPH,

1984.

[12] D. Sun, S. Roth, M.J. Black, Secrets of Optical Flow

Estimation and Their Principles. CVPR, 2010.

[13] R. Szeliski and H-Y Shum, Creating Full View Panoramic

Image Mosaics and Environment Maps. SIGGRAPH, 1997.

[14] C. Zitnick, N. Jojic, S.B. Kang, Consistent Segmentation for

Optical Flow Estimation. ICCV, 2005.

6

(d)

(c)

(a)

(b)

Figure 3. The left image is the downsampled and upsampled image. The right image is the synthesized superresolution

image. a) and b) are from “Backyard in the Middlebury dataset. c) and d) are from “bamboo_3” in the Sintel dataset. a) and

c) are downsampled by a factor of 2. b) and d) are downsampled by a factor of 4.

7

d) c)

b)

a)

Figure 4. The left graph is L2 error, the right graph is L1 error of the Middlebury and Sintel dataset images.

Figure 5. a) and b) show the original frame on the left and the supperresolution frame on the right after downsampling

by a factor of 2. c) and d) show the L1 error for a) and b) respectively.

