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1. Abstract
Book illustrations provide valuable insights into the cul-

tural fabric of their time. Traditionally, extraction of fac-
tual tags and stylistic trends have required human annota-
tors, making large-scale implementations impractical if not
impossible. In this project, we used convolutional neural
networks (CNNs) to categorize images and uncover trends
in an unbiased manner from Western book illustrations pro-
duced between 1500 and 1900. Working with a dataset of
over 1 million scanned illustrations from the British Library,
we utilized transfer learning techniques to train a classifica-
tion model for 12 categories (decorations, architecture, an-
imals, etc.) Using a 10K training set, the model achieved
80.6% top-1 accuracy and 96.4% top-3 accuracy on our 12
categories. We then utilized these tags to train CNNs to
classify book illustrations based on their dates of publica-
tion. We worked with the decorations and maps categories
which obtained good results: our model was able to pick
the correct publishing era 65.8% and 47.9% of the time, for
decorations and maps respectively. We then used neuron vi-
sualization techniques to find specific features that became
more or less popular over time. Our results demonstrate that
CNNs can not only be used as an accurate annotator of illus-
trations with order-of-magnitude efficiency improvements,
but also as a tool to understand large-scale trends and pat-
terns. We hope this work establishes CNNs as a novel tool
for annotation and analysis, and encourages further adop-
tion of neural networks in the field of bibliology.

2. Introduction
Book illustrations provide an important window into

how social, literary, and artistic constructs have changed
over time [2]. As literary tastes and the literate populace
evolve, so do the illustrations that accompany the books of
the time. Advances in printing technique, changes in styles
of art, or simply changing historical context are also re-
flected in these illustrations, thus making book illustrations
a rich and valuable source of historical and cultural infor-
mation.

Historically, the study of art has proceeded through a
bottom-up approach, where trajectories in art are pieced
together from intensive study of a small number of hand-
picked art pieces [3]. Evaluating artwork one piece at a
time is time-consuming, requires great expertise, and relies
on humans to recognize patterns that may be subtle or rare.
Moreover, the choice of art pieces influences the story that is
told. A top-down, computationally guided approach would
allow art historians to study the trajectory of art and culture
in a more unbiased and efficient manner [9].

Machine learning provides a framework for extracting
insights from data on a massive scale. In particular, deep
learning methods such as convolutional neural networks
(CNNs) are particularly suited for understanding the con-
tent of images, due to the highly nonlinear, hierarchical na-
ture of the neurons that make up the network [8]. CNN
algorithms have advanced significantly over the past five
years, with image classification results on the 1,000 class
ImageNet challenge approaching human-level performance
[6]. CNNs can also be useful in terms of the image fea-
tures that it learns. Each layer of a CNN sees a slightly
more complex set of features, and these sets are fine-tuned
so that they provide maximum separability between the tags
that the CNN is classifying over. Methods such as saliency
maps [11], dimensionality reduction of codes at each layer,
and class optimization provide ways to understand datasets
in terms of these intermediate features. In the context of art
history, these features can be especially useful because they
could theoretically represent styles, patterns, or sets of mo-
tifs that are hard for humans to notice. Thus, CNNs could
be a useful tool for studying art history via a novel top-down
approach.

In 2010, the British Library (through a collaboration with
Microsoft Labs) began an initiative to digitize books printed
between 1500 and 1900 and make them publicly available.
The result was a treasure trove of images ranging from illus-
trations, decorative motifs, portraits, satirical comics, maps,
to geological diagrams that correspond to a period of major
expansion in Western book production and popular media.
We reasoned that this dataset would provide rich insights
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into culture and art in the Western world, as well as trends
in art styles over time.

In this project we used CNNs to tag the British Library
dataset and analyze its historical trends. First, we used a
two-step bootstrapping approach to tag these images into
one of 12 categories that we deemed to be representative of
the dataset. These tags by themselves will provide art his-
torians with a resource for finding works of art that support
or extend their current hypotheses. Second, we classified
decorations and maps by date and used neuron visualiza-
tion techniques to find specific features that became more
or less popular over time. Together, this work establishes
CNNs as a novel framework for gaining insights into the
trajectory of book illustrations and culture over time.

3. Approach
3.1. Data Preprocessing

Images and associated metadata (e.g. author, title, pub-
lication date) were generously provided to us by the British
Library. All images were resized to 299x299 (the image
was scaled so that its smaller dimension was 299px, then
its larger dimension was cropped to match) and rendered as
grayscale.

3.2. Tag Classifier

First, approximately 1,500 images were manually classi-
fied into one of 12 categories (animals, architecture, decora-
tions, landscapes, nature, people, miniatures, text, seals, ob-
jects, diagrams, and maps). Each category had at least 100
images. These images were fed into a pretrained Inception-
V3 convolutional neural network running in TensorFlow on
8 NVIDIA Kepler GK104 GPUs in Amazon EC2 [1, 5, 12].
The last affine softmax layer was retrained for 1,000 mini-
batch steps (roughly 50 epochs) under various learning rates
and using the gradient descent algorithm Adam [7]. Data
augmentation was also performed using a series of ran-
domly chosen flips, scales, and crops. This was called the
1.5K model. We randomly partitioned the dataset with a
80%/10%/10% training/validation/testing split.

Using the 1.5K model, 10,000 randomly chosen images
were classified into one of the above 12 categories. The tags
for these images were then verified manually and corrected
as needed. These newly tagged images were then used to
train a second model, the 10K model, using similar methods
as above. Finally, the 10K model was used to tag all images
in the British Library 1 million images dataset.

3.3. Date Classifier + Analysis

Using the generated tags in the last section, we cre-
ated datasets consisting of single tags. we then trained ad-
ditional ConvNets on two of these datasets (decorations,
and maps, each of size roughly around 100K) to classify

the images based on the publishing year of the images.
We grouped dates into 7 different buckets as labels(pre-
1700s, 1700-1750, 1750-1800, 1800- 1850, 1850-1870,
1870-1890, post-1890s). We used the same Inception-v3
pretrained model and retrained the last affine softmax layer
with the new training sets using similar methods as above.
Due to the uneven distributions of the number of images per
date in the dataset, specific care were taken to ensure the
testing set contained even numbers of all classes to ensure
non-skewed results.

After training our models on our training set and evalu-
ating results, we turned our attention to the models itself in
attempts of inferring trends from the individual neurons in
the network. We compiled and analyzed differences in acti-
vations of different neurons throughout the network with re-
gards to the different periods. We then used the images with
the highest activations of such neurons to generate hypothe-
ses as to the potential interpretations of such differences.

4. Results
4.1. Characterization of Data

Figure 1: Example pictures from the British Library 1M
dataset.

We obtained 1,014,190 images from book scans per-
formed by the British Library (Figure 1). These images
are comprised of 414,727 small images (decorative mo-
tifs), 216,360 medium images (photos, drawings, etc), and
383,103 larger plate images and come from 30,994 books.
The subject matter of these books is varied and extensive.
About 70,000 images (7% of the dataset) also have manual
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Figure 2: Number of images per year.

tags submitted by Flickr users; however, these tags do not
come from a controlled vocabulary.

To further understand the dataset on a global scale, we
plotted the number of images (Figure 2). The dataset mostly
contains books from 1800 to 1900, with a substantial frac-
tion of those after 1850. While pre-1800 counts are highly
variable, the number of images per book generally increased
over time, from an average of 15 images per book in 1800
to an average of 50 per book by 1900.

4.2. Image Tagging

As an initial step, we randomly chose 1,408 images from
the dataset and manually tagged each of them into one of 12
classes that we deemed to cover most of the dataset (A.E.,
personal communication). These 1,408 images represented
926 books, had a publication date distribution similar to the
overall dataset, and had at least 100 representatives in each
class (Figure 3a-b). After manual tagging, we retrained
the last layer of Googles Inception-V3 CNN to output soft-
max scores for our 12 classes. Using stochastic gradient
descent (SGD) with a learning rate of 1e-3, we achieved
a top-1 validation error rate of 22.0% and a test error rate
of 31.7%. Further inspection of class assignments revealed
that landscapes, architecture, and nature are often confused
with each other, as are miniatures and decorations. In addi-
tion, since many images have multiple objects (e.g. people
and animals), the choice of tag is often subjective (Figure
S1). Thus, we calculated the top-3 error rate (10.4%) and
the top-5 error rate (3.9%).

To build a larger training set, we tagged 10,000 randomly
chosen images and validated them manually, observing tag
inconsistencies similar to what was seen in the manually
tagged dataset (Figure 3c). We then retrained the last layer
of Inception-V3 using both sets of data. Using the Adam
gradient optimizer with a learning rate of 8e-3, as well as
data augmentation with 3 transformations per image ran-
domly chosen from a set of predefined flips, crops, and
scales, we achieved the following test error rates: 19.7%
top-1, 3.6% top-3, and 0.7% top-5 (Figure 4a).

With this model, we classified all images in the dataset
and analyzed the global distribution of tags. In total,
970,000 images were tagged, with about 40,000 images

dropped due to errors during preprocessing. The dataset
is enriched for images of people, with high numbers of
landscape, architecture, and decoration images (Figure 4b).
Miniatures are rarest, reflecting their presence in select gen-
res of books and only at the start of passages. Most tags fol-
low a similar date distribution as the overall dataset (Figure
4c), with few images prior to 1800 and a monotonically in-
creasing distribution between 1800 and 1900. The majority
of pre-1800 images are decorations, with several instances
of people, seals, miniatures, and text.

4.3. Date Classification

With a complete dataset of tagged images, we began to
explore trends in art styles and content over time. Style
trends can often be difficult for humans to distinguish be-
cause they can be convolved with content trends, and vice
versa. Thus, we reasoned that CNNs might provide a more
unbiased approach for study of trends. We decided to fo-
cus on Decorations and Maps because their content is rela-
tively homogeneous and because trends would prove use-
ful for study by art historians and cartographers, respec-
tively (Figure 5a). As a first step, we retrained Inception-
V3 so that it would be capable of classifying images of each
type into specific eras (e.g. pre-1700, 1850-1869, or post-
1890). Individual parameter optimization for each (see Ap-
proach) yielded a 7-class CNN that achieved an error rate of
34.2% on the Decorations dataset (compared to 86% ran-
dom chance) and a 4-class CNN that achieved an error rate
of 52.1% on the Maps dataset (compared to 75% random
chance) (Figure 5b). Confusion matrix analysis showed that
for both Decorations and Maps, errors primarily occurred
between adjacent eras (Figure 5c-d). While far from per-
fect, these results indicate that CNNs are able to discover
features that at least partially distinguish decorations and
maps by the era in which they were produced.

We then set out to characterize the internal structure of
our decoration era-specific CNN at four representative lay-
ers (Conv0 - the initial convolution layer; Conv4 - the last
convolution layer - Mix5 - the fifth Inception layer; and
Mix10 - the tenth and last Inception layer, just before the
affine softmax layer). For each layer, we ranked the neu-
rons by how much their mean activations differed in the
post-1890 set versus the pre-1700 set. A large difference
indicates that the neuron is era-sensitive. We found that lay-
ers deeper in the network had a smaller proportion of era-
sensitive neurons than shallower layers, and that, at least
in the deeper layers, there were a roughly equal number
of neurons that had increased or decreased activations over
time (Figure 6a). This was also true for Maps (not shown).

For the Mix10 layer in the decorations CNN, we ad-
ditionally plotted the activations of its era-sensitive neu-
rons over time. We found that neurons are not era-specific
(Figure 6b) but instead seem to be activated in a contin-
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Figure 3: Statistics from manual tagging. a) Number of manually tagged images per tag. b) Date distribution across all
manually tagged images. c) Confusion matrix for 10K images after manual validation.

uous manner over eras (Figure 6c). In other words, era-
sensitive neurons seem to have activations that smoothly in-
crease or decrease over historical time, as opposed to an
all-or-none response with high activations only in one era.
We performed the same analysis on shallower layers (Mix5,
Conv4, and Conv0) and found a much less pronounced gra-
dient effect. To confirm this, we performed t-SNE on the
codes for each image at these layers [13]. Clustering of im-
ages into different eras was more pronounced as we moved
from Conv0 to Conv4 to Mix5 to Mix10, suggesting that
network depth provides discriminatory power between eras
(Figure 7). Thus, era-sensitive CNNs have neurons for com-
plex features that emerge or disappear gradually over histor-
ical time.

What are these complex features? Because neuron vi-
sualization approaches such as deconvolution are still in
their infancy in TensorFlow, we decided to interrogate each
neurons pattern preferences by surveying images for which

this neuron responds most and least strongly. We denote
neurons whose activations decrease over time as antique
neurons (their activations are highest pre-1700) and neu-
rons whose activations increase over time as modern neu-
rons (their activations are highest post-1890). Images that
are most preferred and rejected by antique neurons are dis-
played in Figure S2 and modern neurons in Figure S3. As
an example, the antique neurons 931 and 763 appear to pre-
fer different kinds of small rounded dark objects, which in-
dicates that these motifs are overrepresented in early deco-
rations. On the other hand, the modern neurons 126 and 541
have horizontal borders and complex features within these
borders, hinting that these may be common features of more
modern decorations. Therefore, visualizing neurons that are
more or less activated over time can serve as a generalizable
technique for studying art history over time.
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Figure 4: Tagging of all 1 million images. a) Training, validation, and test accuracy for the CNN during training. b) Number
of images per tag. c) Date distribution for each tag.

5. Conclusion/Future Work

In this paper we have shown that machine learning and
CNNs represent a powerful new technique to studying art
history with an unbiased top-down approach. First, we
tagged 1 million Western book illustrations from 1500 to
1900 into 12 distinct categories on eight GPUs in less than
six hours, achieving 19.7% top-1 and 3.6% top-3 error. Sec-
ond, we built a CNN that discriminated decorations by era

and, by defining neurons as antique or modern based on
their activations over time, found specific features of older
and newer decorations. These two advances should be of
great interest to art historians and serve as a novel approach
to hypothesis generation and discovery in the field.

We performed tagging through a two-step bootstrap ap-
proach where we first tagged 1,500 images manually and
built a small CNN, then used that to tag 10,000 images
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Figure 5: Analysis of decorations and maps over time. a) Examples of decorations (top) and maps over time (bottom). b)
Training, validation, and test accuracy for the decoration CNN during training. c) Confusion matrix for decorations. d)
Confusion matrix for maps.
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Figure 6: Analysis of neurons in decoration era CNN. a) Distribution of difference between post-1890 and pre-1700 mean
activations for all neurons in 4 different layers. Neurons are ranked from left (antique) to right (modern). b) Hierarchical
clustering of activations for all neurons in layer Mix10 across all 7 timepoints. Rows represent neurons and columns represent
eras. c) Heatmaps of activations for top 100 modern neurons (left) and top 100 antique neurons (right).

which we manually validated and then used to build a larger
final CNN. This approach was efficient because tagging 500
images took about 3 hours per person and validating 500
images took less than 15 minutes per person. However, val-
idation of images was more prone to human error than de
novo tagging. Additionally, tagging was often ambiguous.
Many images, for instance, incorporated both people and
animals or diagrams of objects, and it was unclear which
tag to assign. For that reason, top-3 accuracy was much
more representative of the power of our CNN than top-1

accuracy.

Date classification had much higher error rates than im-
age tagging (see next paragraph for discussion) yet was sur-
prisingly able to classify images into different eras at a rate
high above background. This classification performed bet-
ter for decorations for maps, probably because decorations
change quickly whereas cartographic styles are more resis-
tant to rapid change. We leveraged this capability to rank
neurons at different layers by their era sensitivity and found
that only a small proportion of neurons (especially at deeper
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Figure 7: t-SNE visualization of image codes at different
layers. Eras are represented as different colors.

layers) was sensitive to era. One interesting finding was
that these neurons seemed to be gradually activated or re-
pressed over historical time, rather than being specific to
only one era. However, this could have been an effect of av-
eraging different numbers of all-or-none responses at each
timepoint rather than smooth decreases in neuronal activa-
tions.

We then attempted to visualize neurons that we found
were important for distinguishing between eras. One con-
temporary approach for neuron visualization is to set the
gradient for that neuron at 1 with all other gradients set at
0, and continue to backpropagate while updating the input
image. However, we encountered difficulties implementing
this in a pretrained network in TensorFlow. As an alterna-
tive approach, we visually compared images that strongly
activate the neuron of interest to images that do not activate
the neuron. While this technique succeeded for several neu-
rons, many neurons had uninterpretable preferences (Fig-
ures S2-3). We believe that optimization-based neuron visu-
alization would give great insights and are currently work-
ing on this.

For both classifiers, we retrained the last layer of
Googles Inception-V3. Retraining, or transfer learning, is
a powerful method of quickly adapting a pretrained model
to specific needs [10, 4]. The assumption is that the higher-
order features learned by the model are useful for a wide
variety of domains, and only the final affine softmax layer
needs to be fine-tuned to the application in question. While
retraining worked well in our case for classification into dif-
ferent image classes, we found it performed much less accu-
rately for classification into eras. It is likely that the features
that distinguish images by era are likely to be lower-order,
so the features that enable class separation (into decorations

versus people, for instance) could have been too high-level
for era classification.

To conclude, we have used deep learning to tag the
British Library 1 million images dataset into 12 categories
and discover trends in art styles over historical time. Further
work will seek to improve era classification and automatic
visualization of artistic and contextual features that change
across these eras. Together, these efforts bring art history
into the world of machine learning.
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