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Abstract

We address the problem of adding colors to gray scale
images. We use convolutional neural-nets because color of
a pixel is strongly dependent on the features of its neigh-
bors. In this work, we use a pre-trained neural net (VGG) as
a base-network to extract features. We then add a feature-
compression layer and small conv-net on top of it to perform
the task of coloring. Since the base-network is pre-trained,
the rest of the network requires only 3 hours to train.

1. Introduction
Human intelligence will be eclipsed very soon. Sooner

than you think.
History of science consists of many scientific revolutions

and outcomes of these revolutions have completely changed
our lives by substituting particular human task with ma-
chines. For example the energy revolution paved the path to
eradicate human labor, whereas the information revolution
connected the whole world and gave us tremendous compu-
tation power. The next age is the age of artificial intelligence
and it will replace the job of the human brain - the task of
thinking!

Neural networks have tremendously accelerated the field
of machine learning by solving problems which were writ-
ten off as (near) impossible 10 years ago. They have suc-
cessfully infiltrated every field of science and have already
conquered a few of them; one of them being computer vi-
sion/image processing. This field of computer vision is un-
dergoing changes at an inconceivable rate and at the heart of
these changes are Convolutional Neural Networks (CNNs).
The reason for such a swift development is because neural
networks are relatively simple when compared to the kind
of tasks they accomplish. Unsurprisingly CNNs are per-
forming tasks, which few years ago, exclusively belonged
to the territory of human-creativity.

We attempt to solve one such task - the task of ’coloring’
a gray-scale image 1.

If we consider an image in a YUV 2 format, then the Y
channel corresponds to the intensity profile of the image,

Figure 1: Input : Left image Ideal Output: Right image.

Problem statement: Given a gray-scale image like
the left image, our goal is to produce a colored image like
the image in the right.

while the UV channels represent the color. Formally our
problem corresponds to designing a neural-net framework
(which we hereon call as ColorNet) which estimates the UV
channels, given the Y channel as the input.

Figure 2: Dividing the colour image into 3 channels YUV.
Where, Y - Intensity. U,V - Chrominance. The input to our
model is the Intensity image and output is U,V images.

Generally, it is very difficult to achieve exact coloring

1

https://en.wikipedia.org/wiki/YUV


from the black and white image, as there is an inherent loss
of information when one converts a colored image to gray-
scale. Thus for this task, one cannot expect to obtain high
accuracy (say) as compared to a classification problem. For
example a gray-scale image containing a gray-colored car
could correspond to car with various shades (like blue, red)
and each of these would be a ’valid’ image coloring in itself.

However, we can expect good colorization for natural
images, such as images containing skies, water (which gen-
erally have shades of blue), or grass (shades of green),
fruits, animals. We also expect good partial colorization of
portraits, in which we expect the model get the skin-tone,
hair color accurately but we do not expect it to get the color
of surroundings correctly because they generally consists of
dress, poster etc.

Figure 3: What is the dress color?

2. Existing Work
The traditional approaches to this problem can be di-

vided into three categories :

1. Models in which the input consists of gray-scale im-
age and color ”seeds” ( usually provided by a human).
These kinds of approaches use convex optimization to
achieve coloring.

2. Few approaches tackle the problem by coloring a gray-
scale image by ”using” similar colored images.

3. Semi-NN: In this approach, standard image features
such as HoG, DAISY, color bins are extracted from
the image. These features are then fed into a fully con-
nected neural network, which produces a colored im-
age.

Figure 4: Scribble-based Colorization method

The first class of models use user input[2, 3], which
forms the color palette. These ‘scribble-based’ methods re-
quire significant manual input. In these class of models, the
model uses convex optimization techniques to color the im-
age, however it does not ’learn’ the colour palette, which
happens to be the harder part.

Figure 5: [4]Transfer Colorization method

The second class of models, known as ’color transfer’
models [4, 5] transfer color from a reference colored image
onto the target gray-scale image. However, in such mod-
els finding a suitable reference image can be a difficult task.
Also, the performance heavily depends upon finding a sim-
ilar reference image.

The third class of models requires no input from the user.
In these class of models [6], specially designed features
such as patch feature, DAISY feature etc. are extracted from
the gray-scale image, which serve as the input to a neu-
ral network which performs the colorization. These mod-
els achieve impressive colorization results, but are slightly
rigid due to the specific custom-designed features used in
the models.

A similar, but a very novel approach involves extracting
the features from a Neural Network [1], instead of using
custom features. These features, known as hypercolumns
[10], are typically extracted from the intermediate layers of
a pre-trained Neural Network. This increases flexibility and
scalability of the model.

Our model builds upon this idea by choosing appropriate
features for the task of coloring. We describe our model in
the next section.

3. ColorNet Framework
Our model’s framework consists of three parts:

• Feature-Net: Extracts features from the image - We
accomplish this task by using a model pre-trained for
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Figure 6: Extracting hypercolumns from the gray-scale im-
age as features

classification. The extracted features contain redun-
dant features and unwanted features (for task of color-
ing).

• UpConv-Net: Compresses the features obtained from
the Feature-Net by removing redundant and unwanted
features. This also has significant computational bene-
fits.

• Shallow-Net This part obtains compressed features
from the UpConv-Net and outputs U,V channels of the
image.

The overall framework of the ColorNet is summarized in
figure 7.

Figure 7: Overall Neural Net Model

We now go into the details regarding the motivation for
choosing this framework for our ColorNet.

Feature-Net

For the task of colorization, the network requires local
features to color nearby pixels with similar shades, on the
other hand it needs global features to decide the macro-
colors of the image.

We obtain this information by extracting the intermedi-
ate features of a pre-trained image classification net (exam-
ple: VGGNet [11], ResNet [13]). These intermediate layers
constitute the hypercolumns [10]. In this case, the lower
layers of the Feature-Net give localized information, while
the higher layers represent more global information. In our
project, we use pre-trained VGG-16 net as our Feature-Net.

UpConv-Net

The UpConv-Net consists of a series of upconv layers,
which scale the hypercolumns extracted from different lay-
ers to the same spatial dimensions. The UpConv-Net also
reduces the effective number of feature layers, thus per-
forming a lossy compression of the features. In a sense, the
UpConv-Net learns an optimal set of features by removing
redundancies and unwanted features.

Shallow-Net

The Shallow-Net consists of a small sequential CNN (2
or 3-layer CNN), which takes in the compressed features as
an input from the UpConv-Net and outputs the UV chan-
nels, representing the color. The Shallow-Net architecture
which we are using is given below:

We are using the tanh transfer function to restrict the out-
put UV range to the valid UV-range [−0.5, 0.5].

Input : #hypercolumns× 224× 224

(Layer 1) : SpatialConvolution (64, 3x3, 1, 1)

(Layer 2) : SpatialBatchNormalization

(Layer 3) : ReLU

(Layer 4) : SpatialMaxPooling(2, 2, 2, 2)

(Layer 5) : SpatialConvolution (128, 3x3, 1, 1)

(Layer 6) : SpatialBatchNormalization

(Layer 7) : ReLU

(Layer 8) : SpatialMaxPooling(2, 2, 2, 2)

(Layer 9) : SpatialConvolution (2, 3x3, 1, 1)

(Layer 10) : Tanh[Transfer Function]
Output : 2× 56× 56

Loss : Mean Squared Error
/

Abs. Error
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Transfer Learning on VGG model

The pre-trained VGG model used is trained on color
images and thus many of the features given by the VGG
model contains information regarding the color of the im-
age. However, our input is a gray-scale image. Therefore
the features corresponding to the ’color’ of the image has to
be suppressed/altered. We do this by back-propagating the
gradients of the loss into the VGG layers. In short, here, the
VGG model trained on color images is transfer-trained to a
VGG model trained on black images.

We are pruning the VGG-Net after layer 15 (as that is the
last layer used for hyper-column construction). This leads
to speed improvements in the forward pass and backward
pass. We next discuss the different loss functions used for
evaluating the performance of the colorization.

4. Loss Functions
We have tried the following loss functions, their com-

binations and their variants. Here uTrue
i,j ,vTrue

i,j are the
true U,V values of the image at the pixel (i, j), whereas
uOp
ij ,vOp

ij are the U,V values of the output image.

Abs. Loss

The loss is given by

Loss =

i=56, j=56∑
i=0, j=0

(∣∣uTrue
i,j − uOp

i,j

∣∣+ ∣∣vTrue
i,j − vOp

i,j

∣∣)

MSE Loss

The loss is given by

Loss =

i=56, j=56∑
i=0, j=0

((
uTrue
i,j − uOp

i,j

)2
+
(
vTrue
i,j − vOp

i,j

)2)
Other loss function added in appendix 9

Performance

In this section we list out the pros and cons of using the
above loss functions.

1. MSE Loss: The output pixels (using MSE loss) were
good on average. None of the pixels were way off from
the original pixels. However, the output image was
blurred and the colors leaked out from the object - For
example the sun’s yellow color leaked out to the blue
sky.

2. Abs. Loss: Compared to MSE loss, the output given
by the Abs. Loss were sharp and they had no color-
leakage problem. However, few pixels in the image

were way off compared to the original image and these
pixels (even though they were a small fraction) re-
duced the quality of the image.

3. TV-Loss - This loss function had very poor results
and the results indicate that this loss function seems
to wrong at the fundamental level. More detailed ex-
planation provided in the later section.

5. Training and Validation Data-set
The Input dataset for the colorization problem is not a

big problem, as any standard image dataset into a gray-scale
dataset, which can be used to train the model. We used train
images from the ImageNet dataset [12] and the LFW dataset
[14].

We restricted our input images to the following classes

1. Natural scenes like mountains, sunset, beaches etc.

2. Fruits

3. Animals

4. Human portraits

6. Experiment details
We conducted experiments on two broad classes of

datasets. The first class consists of the LFW dataset[14]
containing human portraits. The second class of dataset
comprised a sub-dataset of the ImageNet dataset. We
picked a few different classes (3 to 6) from the ImageNet
dataset, consisting of mainly natural images of scenery, sea,
fruits, animals.

VGG16 has many layers from which features can be ex-
tracted and using features from all of the layers is not com-
putationally feasible. Also there is lot of redundancy in the
information across layers and hence we used a subset of lay-
ers. As expected, using features from more layers lead to
slight improvement in the color performance. After balanc-
ing the trade-off between accuracy and computation-ability,
we narrowed down 4 layers, each from different broad sec-
tions of the VGG16. In together they represented global in-
formation as well as local information, both of which are
necessary for the task of coloring. One of our aim was
to achieve good colorization results using a small Shallow-
Net.

We ran experiments with different Loss functions such
as MSE loss, Abs loss and Total-Variation Loss. MSE
Loss, Abs Loss gave a good results, whereas the TV
loss gave poor results. We also experimented with dif-
ferent transfer functions, such as sigmoid, tanh and
linear-clipped functions. Our results indicated that
the tanh transfer function allowed for much brighter and
better colors as compared with the sigmoid function. The
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reason was because sigmoid is not a zero-mean func-
tion and hence it biases a few colours over other colors.
The linear-clipped transfer function had poor perfor-
mance because many pixels were colored with the colors at
the clip.

We experimented with back-propagating the loss gradi-
ents through the Feature-net, along with the shallow net,
and it led to significant performance improvements. As
mentioned earlier, the reason behind this is the fact that the
VGG16 network is pre-trained for the classification task on
colored images. Thus, lot of neurons are sensitive to the
color of the input image rather than the intensity texture.
When the input is a gray-scale image, these neurons give
out noisy features. By back-propagating into the VGG16
layer, we reduce this problem significantly by suppressing
the weights of such neurons. .

Hyper-parameters

We used torch framework for our project. Since our net-
work was not sequential, we designed our network using the
nngraph from torch. We used Adam for updating the net-
work parameters. We experimented with the learning rate
hyper-parameter, and concluded that the optimal learning
rate in the range of [10−4, 10−6] with a decay factor of 0.85
per epoch. Our batch size was 32 on a CPU and 6 on a GPU

The training of the network clearly had two parts associ-
ated it with

1. First 250 iterations During the first 250 iterations the
training loss decreased rapidly and after 250 iterations,
the model produced images which has the ’sepia’ tone
to it.

2. After 250 iterations The training loss decreases
slowly but now the model’s output had more colors and
it was learning to add more colors.

In the next section we shall present the output of our models
on test cases. We also try explaining on why the model
performs good/bad on the given test case.

Note: For all the results described below, same hyper-
parameters were used.

6.1. Natural images colorization

We chose six different classes from the ImageNet dataset
and trained on the model described in the section 7. We
broadly ran two experiments, one using Abs. Loss function
and the other using MSE Loss function. After comparing
the results of both loss functions, we concluded that MSE
Loss function gave better performance. Few of the outputs
produced by the model on test data set can be seen in figures
8 and 9

(a) The output image misses the yellow color of the sunset,
however it is a plausible image in itself

(b) The model colors the lemon perfectly. However, the
’half’ apple in the right has been mistaken as lemon and
colored yellow

(c) The model completely misses the original image’s color.
It incorrectly gives a red shade to the whole picture.

(d) In this test case, the model performs very poorly, it is
not able to re-produce the color of sky, land, waters.

(e) The model gets the elephant’s color perfectly, however
it misses the background by a large margin and ends up col-
oring it in ’sepia’ tone

Figure 8: Test case outputs on a model trained on six classes
of images from ImageNet dataset with Abs. Loss. The left
figure is the gray-scale input, the center figure is the true
colored image and the right figure is the model’s output.
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(a) The model misses the sunset’s yellow color. But, the
output image a plausible color-image in itself.

(b) The original photo of a African red-elephant. How-
ever, the model might not have seen red-elephant before and
hence it gave the elephant a ’regular-elephant’ color.

(c) The model misses the blue color of water and sky. The
output mainly consists sepia colors.

(d) The model colors the image perfectly. There is no leak-
age of colors from tomatoes to lemons (or vice-versa)

(e) The model completely misses the original image’s color.
It gives a red shade to the whole picture instead of a blue,
green shade. It seems like the output image is shot on mars

Figure 9: Test examples on a model trained on six classes
of images from ImageNet dataset with MSE Loss. The left
figure is the gray-scale input, the center figure is the true
colored image and the right figure is the model’s output.

6.2. Human portraits colorization

This projects’ ultimate aim is to convert the gray-scale
photos/videos of the 1800-1935 era to color photos. Thus
training a neural network to color human portraits was the
obvious next step. Before we started training the neural net-
work for portraits, we had few expectations.

(i) The network will be able to learn the skin color per-
fectly (ii) However, it will perform poorly while coloring
the dress and the background.

Our expectations were confirmed after we analyzed the
output of the neural network. However to our surprise the
performance of model with MSE loss was significantly bet-
ter than the performance of model with Abs. Loss. In the
interest of space, we have presented the MSE model’s per-
formance on test cases.

In the cases 10b, 10e, the color of the dress is not
poorly re-produced, whereas the model colors skin very
well. In the cases 10a, 10e, the background is poorly col-
ored whereas the skin is color perfectly. Cases in 10c and
10d have been re-produced very well because the back-
ground is black.

7. Ideas which did not work
We tried various modifications to the network, loss func-

tion etc. Some of them improved the results while the others
did not improve. In this section we list the ideas which did
not ’work’.

1. TV loss + MSE Loss: The output image using only
MSE loss was a blur and to improve the ’sharpness’ of
the image, we tried combining TV loss and MSE Loss.
Reason: We thought that penalizing the gradient of
the output might increase the sharpness of the image
(since TV loss would enforce sparsity in the gradient).
However, the output images were ’pixelated’. Exam-
ple shown in fig. 11

Figure 11: Pixelated output

2. Weighted-TV Loss + MSE Loss : We then tried
weighing the gradient inversely proportional to the
”Expected” gradient.
Reason: We thought that penalizing all the gradients
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(a) Background 3, Skin-tone3 Dress 7

(b) Background 3, Skin-tone3 Dress 7

(c) Background 3, Skin-tone3 Dress 3

(d) Background 3, Skin-tone3 Dress 3

(e) Background 7, Skin-tone3 Dress 7

Figure 10: Test examples on a model designed to color hu-
man portraits. The left figure is the gray-scale input, the
center figure is the true colored image and the figure in the
right is the model’s output.

equally was unfair because we would ideally want the
gradients to be high at few pixels and low elsewhere.
However, the model output did not change signifi-
cantly and it was still pixelated.

3. Weighted-TV Loss + Abs. Loss : In the above ex-
periments, we replaced the MSE-Loss with Abs. Loss,
but we got the same output from the model.

Conclusion: Penalizing the gradient of the output im-
age doesn’t improve the quality of the image.
Reason: Our model produces the color of a gray-scale
image based on the intensity map and the texture of
the image. When the gradient of the output image is
penalized, indirectly we are penalizing the texture of
the output image. The fact that we are penalizing the
source of information might be the reason for the bad
performance of the TV-Loss function.

4. Abs. + MSE Loss: Both MSE and Abs. loss func-
tions individually produced good images. Each of the
loss functions had a class of images where they failed.
So we thought that combining the loss functions might
help the loss function solve each others problem. How-
ever, using a combination loss functions had no signif-
icant impact. We could not figure out the reason for
this observed phenomenon.

8. Conclusion

In our project we give a proof of concept of a neural
network which adds colors to a gray-scale image with very
good accuracy. For a specific class (say cats, dogs) our
model is trained in 3 hours! This heavily indicates that one
could potentially use a very large network to train a model
which could color any image on the internet.

Coloring a gray-scale image is an important problem be-
cause this task is not an easy task for a average human brain
and the fact that a neural network is able accomplish this
task indicates possibility that today’s neural networks are al-
ready performing certain complex tasks better than humans.
This also supplements the theory that the intelligence of a
neural network is different from that of a human brain.

9. Further Work

1. The current models seem to have a fundamental bottle-
neck - they favor ’sepia’ colors more than the oth-
ers. According to our experiments we concluded that
blindly increasing the network size might not solve this
problem and finding out the exact reason for this is a
good direction to proceed.

2. Trying out classification instead of regression might
improve the results for some classes.

3. Using a generative adversarial model over the existing
mode might enable to the model to color objects such
as cars, dresses etc.[9, 8]
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Appendices
A. Other Loss functions
Total-Variation (TV) Loss

The loss is given by

Loss =
i=56, j=56∑
i=0, j=0

(∣∣uOutput
i,j − uOutput

i−1,j

∣∣+ ∣∣uOutput
i,j − uOutput

i,j−1

∣∣+
∣∣uOutput

i,j − uOutput
i,j+1

∣∣+ ∣∣uOutput
i,j − uOutput

i+1,j

∣∣)
+

i=56, j=56∑
i=0, j=0

(∣∣vOutput
i,j − vOutput

i−1,j

∣∣+ ∣∣vOutput
i,j − vOutput

i,j−1

∣∣+
∣∣vOutput

i,j − vOutput
i,j+1

∣∣+ ∣∣vOutput
i,j − vOutput

i+1,j

∣∣)
Weighted Total-Variation Loss

The loss is given by

Loss =

i=56, j=56∑
i=0, j=0

(∣∣uOutput
i,j − uOutput

i−1,j

∣∣∣∣uTrue
i,j − uTrue

i−1,j

∣∣ +

∣∣uOutput
i,j − uOutput

i,j−1

∣∣∣∣uTrue
i,j − uTrue

i,j−1

∣∣ +

∣∣uOutput
i,j − uOutput

i,j+1

∣∣∣∣uTrue
i,j − uTrue

i,j+1

∣∣ +

∣∣uOutput
i,j − uOutput

i+1,j

∣∣∣∣uTrue
i,j − uTrue

i+1,j

∣∣
)

+
i=56, j=56∑
i=0, j=0

(∣∣vOutput
i,j − vOutput

i−1,j

∣∣∣∣vTrue
i,j − vTrue

i−1,j

∣∣ +

∣∣vOutput
i,j − vOutput

i,j−1

∣∣∣∣vTrue
i,j − vTrue

i,j−1

∣∣ +

∣∣vOutput
i,j − vOutput

i,j+1

∣∣∣∣vTrue
i,j − vTrue

i,j+1

∣∣ +

∣∣vOutput
i,j − vOutput

i+1,j

∣∣∣∣vTrue
i,j − vTrue

i+1,j

∣∣
)
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