
Using Convolutional Neural Networks to demystify aesthetic works of art

Pujun Bhatnagar
Stanford University

353 Serra Mall, Stanford, CA, 94305
pujun@cs.stanford.edu

Abstract

When one visits a museum and looks at some piece of
art, she/he not only understands the subject matter that is
being depicted, but is also able to analyze other ‘subjective’
qualities such as the aesthetic quality, emotional intensity,
creativity etc. associated with the piece. And after 1-2 short
glimpses, the person is able to come up with a description
that aptly describes it. All this is possible because humans
have a notion of aesthetic appeal of art works. In this pa-
per, these abilities are transferred to a computer. Different
types of Convolutional Neural Networks architectures and
Siamese Networks are used to train models that hierarchi-
cally understand and intelligently predict the degree of aes-
thetics of an image. I visualize the learned weights in order
to understand the underlying features that makes some art
works so appealing and am able to perform better than the
state of the art techniques that have been previously used to
tackle this problem.

1. Introduction
The field of Computer Vision often deals with problem

related to classification or localization of objects in images.
However, when humans look at images, they not only just
see objects, but are able to analyze and make comments
about the subjective quality of an image, talk about its aes-
thetic quality, its emotional intensity and comment about
artist’s creativity. Unlike computers, which with the advent
of Deep Learning architectures, often treat images as digi-
tal dark matter that can be mined to learn hidden structure
and representations and recognize, classify and localize im-
ages and objects, humans go further and are able to easily
describe these images with words.

1.1. Subjective Qualities of Images

Many psychological case studies have been conducted
to provide insight into the human brain to find how humans
evaluate a piece of art. These show that for most humans,
looking at a photo or a piece of art results in psychological

responses in various parts of the brain. [12]. These have
been found to be correlated to ‘quality‘ of an image, which
can be split into objective and subjective quality of images.

The objective qualities of images can be related to the
photo properties like exposure, color, contrast, background
and sharpness. For instance, case studies show that a photo
is fully appreciated when it is well exposed and not-blurry.
Blurry shots and over or under-exposed photos are generally
regarded as bad shots [8].

The remaining subjective qualities of the images, as the
name suggests are harder to quantify and these are the at-
tributes which make this regression problem challenging.
For instance, some case studies show that people, when
asked about any image, often attribute aesthetics to ques-
tions like ‘Is the composition balanced?’ or ‘How is the
color distribution in the image?’ More often than not, there
are no nice mathematical ways to capture these subjective
qualities as they vary from person to person [9].

Therefore, it is easy to see that even though the objective
qualities can be easily quantified in order to predict which
photos are aesthetically pleasing, we still haven’t found
ways to capture the subjective qualities of images. There
are some heuristics, like The Rule of the Third and The
Golden Angle, that attempt to capture these notions with
varying degree of success[12]. Finally, photos are also as-
sociated to people’s memory, which may contribute to their
appeal. Both extrinsic and intrinsic image features for mak-
ing an image memorable have been studied [9].

1.2. Problem Statement

This paper aims at providing insights to the understand-
ing of human being’s appreciation of art and beauty; aims
at answering the pivotal question ‘What is it that makes
an image/art a magical mystical work that blows people
away when they look at it?’ Using the hierarchical learning
capabilities of a Convolutional Neural Networks, the mod-
els learn these unique set of features that contribute to the
works’ popularity and, when given an input image, are able
to assign a score to the image based on its aesthetic appeal.
Towards the end, the developed model is used to predict the

1

scores of renaissance artworks to see how do these learned
features do against world renowned artworks.

1.3. Challenges

One of the biggest challenges in estimating image aes-
thetics is that most current techniques only utilize low level
features, that are unable to capture the higher level represen-
tations that may contribute to aesthetics. Also, traditional
techniques, being very imperative and non-hierarchical in
nature, are unable to figure out the best ways to com-
bine and integrate the lower level features to assign cor-
rect score. Finally, before 2012, when AVA dataset was
released, there was no proper dataset, with enough detailed
meta-data about aesthetics, that could be used to train such
models.

2. Related Work

Some studies, aiming to quantify the aesthetic quality of
images, have been done in the past. Most of the early ap-
proaches tried to approach these problems by using hand-
crafted features based on photographic intuitions [8]. For
instance, the use of low level features such as spatial dis-
tribution of edges, color frequency distributions, contrast in
addition to using some high level features like object place-
ment, orientation templates depth of view etc. have been
used to train classifiers to solve this problem. Most of these
approaches work well with their own dataset but fail to de-
liver similar results on more generalized data. [12]

More recent works in this domain have started using
Convolutional Neural Networks. For instance, Lu et al.
showed state of the art aesthetic classification performance
using convolutional Neural Network [9]. In 2012, Mur-
ray et al. introduced the AVA which a large scale dataset
of images with aesthetic and style rating. In their origi-
nal work, they formulated a binary classification problem
and trained SVMs with Fisher Vector signatures to achieve
67% accuracy [11]. Lu et al. also used the same AVA
dataset and same experimental settings as [11] and were
able to obtain 71% accuracy on this dataset by using single
column deep convolutional networks. The convolutational
layer contained 64 kernels, size of 11, 5,3 and 3 respectively
and the fully connected layer contained 1000, and 256 neu-
rons respectively. In 2014, the RAPIDNet, was able to out-
perform existing models and techniques in this domain[10].
Their most accurate architecture contained 4 convolutional
layers and 2 fully connected layers. They achieved this by
using a specialized dual column network where one column
is the same as their original aesthetics classification network
and the second column is used to classify image style which
then combine into a aesthetic prediction [9].

3. Technical Approach
3.1. Problem formulation

Based on the AVA dataset, the problem statement turns
itself into a regression problem where each of the input im-
age would be given a score from 1 to 10 based on its aes-
thetic evaluation. However, since CNNs rarely work well on
regression problems, I decided to discretize the scores into
10 buckets, 1...10, thus transforming this into a classifica-
tion problem. Additionally, in order to compare my results
with past results, these scores were also transformed into
two labels: ”HIGH” or ”LOW” (i.e. as a binary classifica-
tion problem) based on a threshold δ, where, any score ≤ δ
was labeled as LOW while score > δ was treated as HIGH.
The initial value of δ was chosen to be 5.

3.2. Dataset

For this project, AVA dataset [11], containing 250 thou-
sand labeled images was used. This data is an amalgamation
of photos that were submitted to a worldwide photography
competition, where each contestant submitted entries in var-
ious competitions and the members of the community voted
on each of the entries. Each image is labeled on a scale of
1 to 10 based on overall appeal for the given contest theme
by an average of 200 site members [11].

It was decided to use this dataset for a variety of rea-
sons. First, it has enough images that I did not need to
worry about having too little data. Second, various research
studies have already been done using this dataset which can
serve as good baselines and comparisons for the project.
Finally, while starting to work on this problem, this was
the only dataset that offered so much meta-data in a well-
defined format.

The dataset was obtained by scraping from DPchal-
lenge.com using a python script. Here is the distribution
of the resulting data and the associated statistics:

For more information about the dataset, one can refer
to [11]. It contains a detail comparison of AVA with other
datasets and documents good reasons why AVA is a suitable
choice when training a model for image/art aesthetics.

4. Experiment
4.1. Data Pre-processing

As highlighted in [12][8], there are objective and sub-
jective characteristics that lead to an overall aesthetic ef-
fect. Since the input is not of any default size or aspect
ratio, data pre-processing was done for the model to prop-
erly pick up these features. Firstly based on 231N lectures,
the mean was subtracted from all the samples. Also, Based
on [9] suggestions, the images were re-sized in two ways:
first, by warping the images to be 256 X 256 without con-
sidering the aspect ratio (i.e. simply down-sampling to 256

2

Figure 1: Preview of AVA data set

Figure 2: Histogram showing rating meta-data of AVA
dataset

X 256). Second: by doing data augmentation. 10 random
crops of size 256 X 256 from Top-Left, Top-Right, Bottom-
Left, Bottom-Right and Center of the image and taking a
mirror image of these while preserving the associated label
were also taken as an input.

4.2. Models

4.2.1 Naive Baseline: A Non-CNN model

Using WEKA data mining and machine learning software
[4], a 3 layer Neural net model and a support vector regres-
sor were trained to perform regression task on the aesthetics
of images. These models served as baselines for the more
sophisticated CNN models. PCA was performed on the in-
put images to do away with dimensions with little variation
and train these models faster.

Figure 3: Data Augmentation used to increase performance

4.2.2 Better Baseline- Machine Learning applied on
specific feature

Studies in the past have used different properties of images
to come up with heuristics for image aesthetics [3]. There-
fore, a stronger baseline was developed using these features,
which included image sharpness (calculated using Gradient
and Gradient Entrophy methods described in [8]), color dis-
tribution, SIFT BOW descriptor and salient maps.

4.2.3 CaffeNet

CaffeNet model was the first CNN model that was used to
do the classification task. It is available in Caffe modelzoo
[7] and is similar to the AlexNet architecture. It contains 5
convolutional layers and 3 fully connected layers. To per-
form this task, the last fully connected layer was replaced
with a FC layer, initialized with random weights, and fine
tuned on the AVA dataset.

Figure 4: CaffeNet

Additionally, to compare my experiments with the pre-
viously published results, the scores were converted into
HIGH and LOW labels, i.e. binary classification task. The

3

deep network was initialized with ImageNet weights to and
was trained over 120k epochs with batch size of 128.

4.2.4 VGGNet

After playing with CaffeNet, it was decided to move to a
deeper architecture in hope of seeing performance gains.
Therefore, I downloaded VGGNet and repeated the same
steps as CaffeNet. VGGNet is a 16-layer (13 convolutions
and 3 fully connected layers) network from Simonyan et al.
[13]. Even with this, the last fully connected layer was re-
placed with a Soft max loss layer, initialized with random
weights, and fine tuned on AVA dataset. Again, as done
with the CaffeNet, a separate copy of VGGNet was trained
to do classification task.

Training this model was more cumbersome than imag-
ined and the first couple of trails failed in achieving any
accuracy (when compared to CaffeNet). After investiga-
tion, it was found that this network architecture was much
more sensitive to learning rate and the initial learning rate
was too high which made the loss blow up. Therefore, I
went with a learning rate of 10−6. Also, since this model is
more computationally intensive than CaffeNet, I trained it
for 100k epochs.

NOTE: I also tried using PReLU instead of ReLU for
both the CaffeNet and VGGNet, while keeping all other
hyper-parameters constant to study its affect on accuracy.

4.3. Convolutional Neural Network with ‘Deeper’
channels

This was inspired [3] and by the intuition that the current
industry standard is to use features like color distribution,
composition, edge distribution. Therefore, what if, for ev-
ery image, these features were computed and augmented to
make them more deeper. After looking into various features
and based on [5], the following features were augmented as
additional channels to every image:

1. Salient Map as channel 4
2. Color distribution Map as channel 5
3. sharpness Map as channel 6
I decided to make a convolutional network with deeper 8

conv layer architecture followed by 2 fully connected layer.
Also, since I was using 256 * 256 warped images with 6
channels (augmented information), I came up with the fol-
lowing architecture:

This was trained in Python using numPy (see the end of
the paper for the source code).

4.3.1 Siemese Networks

This was inspired by [9]. The generic structure of Convolu-
tional Neural Network, containing M Conv-ReLU-Pool fol-
lowed by N Affine Layers + regression layer, remained the
same but two CNNs were used instead of one. The intuition

Figure 5: Integrating global and local information into
deeper channels and running the CNN

Layer Parameters Channels ReLU POOL Layer*
Data 256x256 6

CONV1 3x3x6 64 Yes Yes 128x128x64
CONV2 3x3x64 64 Yes Yes 64x64x64
CONV3 3x3x64 64 Yes Yes 32x32x64
CONV4 3x3x64 64 Yes Yes 16x16x64
CONV5 3x3x64 64 Yes Yes 8x8x64
CONV6 3x3x64 64 - - 8x8x64
CONV7 3x3x64 64 - - 8x8x64
CONV8 3x3x64 64 - - 8x8x64

FC-1 FCx1024
FC-2 FCx10

Table 1: Custom CNN network trained using numPy and
Python

was that since the convolutional network was used to solve
the task of predicting image aesthetics, which was modeled
as returning a number between 1-10, a L-2 loss was used
in the last layer while partially training (only a few layers
weights’ were allowed to be updated) and fine-tuning the
model.

Research and techniques described in these areas, es-
pecially those covered in CS231N lectures and by Lu.et
al [10], were significantly used while playing with data
augmentation and to fine tune the parameters for different
CNNs. For instance, inspired by [10], I used the idea of us-
ing two CNNs together. The first was a normal CNN that
was taking the entire image as the input while the second
CNN tried to integrate the global and the local view, while
simultaneously accounting for style information.

4

Figure 6: RAPIDNet [9]

5. Results

5.1. Baseline Results

In [9], Lu et al. achieved 64% baseline accuracy. [11],
Murray et al. were able to achieve a 67% accuracy with-
out using CNNs. The following were my baseline results
(* means that in addition to image values, custom features
were also used):

SVR NN SVM* NN* [9] [11]
66.7% 67.6% 68.5% 69.01% 64% 67 %

Table 2: Comparing baseline accuracies for predicting im-
age aesthetics

Therefore, I decided to choose the highest value, 69%,
as the baseline for further experiments.

5.2. CaffeNet experiment

The first experiment was training the CaffeNet with ran-
domly cropped images. After training it for 100k epochs,
I got 74.3% accuracy. After reading [14], I decided to try
warping the images. The intuition was that CNNs initialized
with ImageNet weights, which are trained on down sampled
whole images, do not inherently work well with non-down
sampled random crops [3]. I was able to achieve 77.02%
accuracy. This was counter intuitive, since I was initially
assuming that random crops would perform better since the
power of CNN comes from the local features.

My results Results from [14]
Random Crops Warps

74.3% 77.02%
Random Crops Warps

74.1% 76.82%

Table 3: Comparing CaffeNet performance

My results were better than previous studies. This could
be attributed to having more data, more computing power
and more number of epochs. Also, my results were consis-
tent with previous studies which concluded that warps are
better than random crops for CaffeNet because CaffeNet,
originally was trained on downsampled whole trained.

5.3. VGGNet experiment

After training CaffeNet, I moved to VGG16 in hope to
see more improvements. Here is how my results compare
with the experiments done in [14] and [9]:

My VGGNet [14] VGGNet [9] ConvNet
78.6% 77.07% 74.46%

Table 4: Comparison of VGGNet experiments

This shows that the fine-tuned version of VGGNet was
a little better than [14] and much better than [9]. I believe
that this increase in accuracy happened because of training
for more epochs while keeping low learning rate.

5.4. Results of Custom CNN with deeper channels

This was inspired by [3] and I implemented this by us-
ing Python and numPy. It took longer than CaffeNet and
VGGNet to train and the model was able to achieve 77.8%
accuracy.

[3] ConvNet1 [3] ConvNet2 ConvNet w/ deeper channels
70.6% 75.2% 77.8%

Table 5: Comparison of CNN with deeper channels with
others

5.5. Comparing all one-column CNNs tried so far

After training CaffeNet, VGGNet and custom CNN, I
compared my experiment results with previous studies [14]
[9] [11] as a midpoint check. I see that overall my model
achieves better results than past studies. This could be
attributed to two main reasons: I initialized the CNNs with
ImageNet weights whereas past studies had trained things
from scratch. Also, my CNN models were deeper which
may have allowed the network to have more expressive
power.

When experimenting with ReLU and PReLU, it turned
out that since the original CNN weights had used ReLU
during training, replacing with PReLU led to a lower per-
formance. Also, while doing this, I had to add another
parameter for PReLU and this lead to the exploding loss

5

phenomena in some cases. After some failed attempts, the
learning rate was set to 10−6 to make sure that the weights
did not blow up.

5.6. Weight Visualizations

Here are the weight visualizations of the convolutional
network with deeper channels.

Figure 7: weight visualizations of trained CNN with deeper
channels: 1st convolutional layer

In the first layer, most of them are lower level features
that capture a lot of the edges and color information. As
seen in the figure, there is a lot of blue and green and some
red. After seeing these visualizations, I revisited the data to
confirm if AVA indeed had a lot more blue and green col-
ors. It turns out that most of the highly aesthetic images
of landscape either contain an ocean, sky and/or a tree in
the background. This explains why the first layer had abun-
dance of those colors.

When I looked at the weights of the fully connected
layer, most of them captured the higher level features. How-
ever, as seen in the figure above, the particular set of weights
looked most visually interesting. The neuron in the 1st row
1st column and 2nd row, 2nd col (zero indexed) were ac-
tivated for most of Carvaggio’s work, which are most fa-
mous for chiaroscuro: contrasting treatment given to light
and shade in drawings and paintings. This shows that the
network may be able to hierarchically combine features into
more abstract and broad concepts like shades.

Therefore, after doing these experiments, it was con-
firmed that pre-trained and fine-tuned CNNs could indeed
be used for predicting picture aesthetics.

Figure 8: Weight Visualizations of FC-1024

5.7. Results of using Siamese Networks

Inspired by [9], I decided that the following would be
my baseline while trying Siamese networks. Caffe has a

Figure 9: RAPIDNet results from [9]

Siamese model, [1], which was used to replicate RAPID-
Net. Like [3], I decided to use a L-2 loss for the last layer
and train the model. I was able to achieve 71.45% accuracy
which is lower than the original paper. I tried playing with
the parameters but was not able to achieve a much better
result.

5.8. Choosing the best network to classify popular
art forms from Renaissance Era

6. Classification and mis-classifications
6.1. From the AVADataset

Most of the image that correctly labeled had very ex-
plicit attributes that allowed the model to assign the correct
label. For instance, most of the HIGH aesthetics images
had good contrast, great placement of objects and overall
sense of aesthetics. Similarly, most of the images that were
correctly labeled as LOW had attributes, like most of them
were dull and had random colors, spots and no homogene-
ity, that made it easy for the models to classify them cor-
rectly.

I noticed an interesting trend with the images that were
mis-classified. First, most of them, from a broader perspec-

6

Figure 10: Correctly classified examples from AVA dataset

Figure 11: Incorrectly classified examples from AVA
dataset

tive, looked aesthetically appealing, but if one were to pay
attention to the detail, one could point of elements of the
image that was responsible for the label. For instance, in
the above figure, the image on the top left, looks relatively
aesthetic if one looks at it. There are trees in the background
and some part of the sky is visible. However, if one were to
pay a closer attention, one would notice that the flag hang-
ing from the tree is covered with mud, which is the reason
why, even though the model thinks that this has HIGH aes-
thetics, it ought to be classified as LOW (in accordance to
the comments on DPchallenge). Also, in some cases like
the middle column, it was really hard to come to a decision
on whether a particular image should be classified as hav-
ing HIGH or LOW aesthetics. In such cases, I tried using
different δ values to get some performance boost.

Finally, it is worthy to note that hand sketches, most of
which had HIGH ratings, were mis-classified as images
with LOW aesthetics.

6.2. Images from the Renaissance Era

After training and fine-tuning the model on the AVA
dataset, I tried to test my model with renaissance art im-
ages. The idea was to test if the model was able to predict
the correct label of these world famous pieces of art. Here
are the results: Most of the portraits, specially with the dark

Figure 12: Best model classifying renaissance images

background were classified correctly by the model. For in-
stance, works of Carvaggio, who is world renowned for this
mastery of experimenting with light and shadows, were cor-
rectly classified. Also, works of Leonardo Da Vinci, were
classified correctly to a great degree.

However, for most of the images of artworks that were
sketches or with really light colored background, the model
had real difficulty in classifying correctly. As seen in the
above figure, one of the greatest works, The Renaissance
Man, was mis-classified as LOW. After seeing this, I pro-
posed that this was due to the speckles that were part of the
original artwork. I found a replica of the same image, which
did not have the speckles, and the model was able to clas-
sify it correctly. I concluded that some of the works, were
mislabeled because of the granular nature of the art.

7. Failed experiments and things learned
7.1. During the Training Process

Initially, while playing with different architectures, I
found the accuracy of my models to be low. After digging
deeper, I realized that I had to resolve a potential issue with
my loss function. Since, I had modeled the original regres-
sion problem as a classification problem, I had to introduce

7

a L-2 loss function which accounted for mis-classification
appropriately. For instance, if my model predicted an image
as a 8 when the true score was a 7, the penalty ought to be
smaller than when the true score was a 7 and the predicted
score was a 5. Therefore, I ended up using L-2 loss:∑n

n=1(xi − x̄)2

2n

and got better results.
After training a bunch of models in Caffe and getting

low accuracy, I realized that monitoring the effect of learn-
ing rate was quintessential to getting good accuracies, espe-
cially in the case of VGGNet whose weights would easily
explode with high learning rates.

After getting a good model, I spent some time looking
at what were the areas where the model was not performing
well. The following figure shows different types of mis-
classifications: For the AVA dataset, the model had most

Figure 13: Mis-classifications by the best model

issues with images that broadly looked aesthetically appeal-
ing but had certain strong components that made them less
appealing. In those cases, the model was not able to pick up
those attributes and ended up mis-classifying them. Also,
some of the images, like the one with Santa Claus, that
had inherent graininess in the depicted subject, led to mis-
classification. Finally for most of the renaissance images
that were sketches were classified incorrectly.

There are a couple of reasons why I think this happened.
Most of the images that were rated as LOW in the AVA
dataset, either were of construction site or had bad expo-
sure. In both these cases, the associated images were really
grainy and in some of them, one could see dust like parti-
cles. I believe that the model learned to associate the graini-
ness with less aesthetic beauty and thus mis-classified these

images.
Also, AVA dataset did not have any sketch images. Thus,

I hypothesized when the model encountered all the renais-
sance era sketches, it mis-classified them because of the in-
herent graininess associated with sketching. In order to test
out this, I found a clear image of the Renaissance Man and
fed it to the network and model gave it a higher score.

8. Conclusion
In this paper, I experimented with predefined Convo-

lutional Network architectures: CaffeNet, VGGNet and
Siamese Net and showed that CNNs can be successfully
trained to predict the aesthetics of an image. Then, by aug-
menting additional information into extra channel of im-
ages, I was able implement a deeper channel architecture
which was able to perform better than the existing state of
the art models trained on AVA dataset. I compared my best
model with other existing models and finally, I evaluated
it on renaissance art to measure how well it generalized
on predicting image aesthetics for these world renowned
pieces.

9. Future Work
From the experiments covered in this and other related

papers (see references), there should be little doubt in CNNs
potential to be used for the task of rating images based
on their aesthetics. This is an interesting problem domain
where one can spend more time to achieve better results. I
would love to look further into different loss functions, bet-
ter data augmentation and regularized and transfer learning
to improve accuracy.

While starting to work on this problem, I spent some
time looking for appropriate data sets that could be used for
training and fine tuning. However, I could only find AVA
that fit this criteria. I believe that, with a more specialized
dataset, for instance specific to art in Renaissance Era, I
could build better more specific models and see the features
that make those world class paintings so amazing.

Finally, while testing the model, I tried gathering human
data on how the model was doing. In the limited time I had,
I created a small user interface which showed all the images,
along with their bucket (score) labels, that were classified as
HIGH by the model. I noticed, though the model captures
the broad notion of art, it could do even better if I were able
to incorporate people’s personal preferences. Given more
time, I would like to explore this domain. I hope that using
similar trained models, one could use a computer to evaluate
the aesthetics of any image and provide editing recommen-
dations for artists, designers and photographers.

8

References
[1] C. community. Siamese Networks in caffe.
[2] C. cumminity. CaffeNet and VGGnet in caffe.
[3] E. Gong. Estimating photo aesthetic rating using convolu-

tional neural networks. 2015.
[4] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,

and I. H. Witten. ; the WEKA data mining software: An
update; SIGKDD explorations. 11, 2009.

[5] M.-M. C. N. J. M. X. H. P. H. S. T. S.-M. Hu. Global contrast
based salient region detection. 2011.

[6] Y. Jia. Caffe: An open source convolutional architecture for
fast feature embedding. 2013.

[7] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408, 5093, 2014.

[8] Y. Ke, X. Tang, and F. Jing. The design of high-level fea-
tures for photo quality assessment. In in IEEE Computer
Society Conference on Computer Vision and Pattern Recog-
nition,2006,vol.1, page 419426. 2006.

[9] X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang. Rapid: Rating
pictorial aesthetics using deep learning. In Proceedings of
the ACM International Conference on Multimedia, MM 14,
page 457466. 2014.

[10] X. Lu, Z. Lin, H. Jin, J. Yang, and J. Z. Wang. Rapid: Rat-
ing pictorial aesthetics using deep learning. In Proceedings
of the ACM International Conference on Multimedia, page
457466. 2014.

[11] N. Murray, L. Marchesotti, and F. Perronnin. Ava:
A largescale database for aesthetic visual analysis. In
Computer Vision and Pattern Recognition (CVPR), page
24082415. June 2012.

[12] V. O. S. Dhar and T. Berg. High level describable attributes
for predicting aesthetics and interestingness. Computer Vi-
sion and Pattern Recognition (CVPR), pages 1657–1664,
2011.

[13] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[14] P. Veerina. Learning good taste: Classifying aesthetic im-
ages. 2015.

9

10. Supplementary Material

Figure 14: Correctly classified HIGH aesthetic images

10

Figure 15: Correctly classified LOW aesthetic images

11

Figure 16: Correctly classified Renaissance images

12

10.1. Source Code

10.1.1 Check if AVA dataset links are valid

1

2

3

4 #
5 # While download ing AVA images , you may need t o

check t h e un−downloaded images .
6 # Th i s s c r i p t w i l l d i s p l a y i n f o r m a t i o n o f m i s s i n g

images i n c o n s o l e .
7 #
8 #
9 # Note : Th i s s c r i p t s h o u l d be p l a c e d unde r

AVA datase t / s c r i p t / and images a r e saved a t
10 # AVA datase t / image / f o l d e r .
11

12 i m p o r t os
13 i m p o r t s y s
14

15 s a v e P a t h = r ’ . . / image ’
16 AVAtxt = r ’ . . / AVA. t x t ’
17

18 # a r g check
19 i f l e n (s y s . a rgv) < 3 :
20 p r i n t ’ a r g f a i l e r ! # py thon checkWholeness . py

b e g i n I n d e x s t o p I n d e x ’
21 e x i t ()
22

23 # must >= 1
24 b e g i n I n d e x = i n t (s y s . a rgv [1])
25 # must >= 255530
26 s t o p I n d e x = i n t (s y s . a rgv [2])
27

28 f = open (AVAtxt)
29 f o r l i n e i n f :
30 l i n e = l i n e . s t r i p () . s p l i t (’ ’)
31 imageIndex = l i n e [0]
32 imageID = l i n e [1]
33

34 # use b e g i n and s t o p i n d e x c o n s t r a i n
35 i f i n t (imageIndex) < b e g i n I n d e x :
36 c o n t i n u e
37 e l i f i n t (imageIndex) >= s t o p I n d e x :
38 b r e a k
39

40 # i f t h e image does n o t e x i s t , d i s p l a y i t s ’
i n d e x ID ’ p a i r

41 i f os . p a t h . i s f i l e (os . p a t h . j o i n (s avePa th ,
imageIndex + ’ . j p g ’)) == F a l s e :

42 p r i n t imageIndex , imageID

10.1.2 Download AVA data-set images

1 #
2 # Use ’AVA. t x t ’ p r o v i d e d by d a t a b a s e a u t h o r t o

download a l l images from ’ d p c h a l l e n g e . com ’ .
3 # Th i s s c r i p t s h o u l d be p l a c e d unde r

AVA datase t / s c r i p t / and images a r e saved a t
4 # AVA datase t / image / f o l d e r .
5 #
6 #
7 # Usage :
8 # py thon downloadImage . py b e g i n I n d e x s t o p I n d e x
9 # So you can download i n m u l t i−p r o c e s s .

10 #

11 # Note : few images were d e l e t e d from t h e w e b s i t e ,
p l e a s e use checkWholeness . py t o check

12 # missed images and manua l ly d e l e t e t h e i r
i t e m s from AVA. t x t

13

14 i m p o r t t ime
15 i m p o r t os
16 i m p o r t u r l l i b
17 i m p o r t s y s
18 from HTMLParser i m p o r t HTMLParser
19

20 ##
21 # H e r i t a t e from HTMLParser t o p a r s e main image ’ s

u r l
22 #
23 c l a s s d p c h a l l e n g e I m a g e P a r s e r (HTMLParser) :
24 d e f i n i t (s e l f) :
25 HTMLParser . i n i t (s e l f)
26 s e l f . name = None
27

28 # f e t c h u r l and loop o u t when bo th image ’ s
wid th and h e i g h t exceed 200 p i x .

29 d e f h a n d l e s t a r t t a g (s e l f , t ag , a t t r s) :
30 i f s e l f . name i s n o t None :
31 r e t u r n
32 i f t a g == ’ img ’ :
33 tmpWidth = 0
34 tmpHeight = 0
35 f o r key , v a l u e i n a t t r s :
36 i f key == ’ s r c ’ :
37 tmpName = v a l u e
38 tmpWidth = 0
39 tmpHeight = 0
40 e l i f key == ’ wid th ’ :
41 tmpWidth = f l o a t (v a l u e)
42 e l i f key == ’ h e i g h t ’ :
43 tmpHeight = f l o a t (v a l u e)
44

45 # e x t r a c t main (b i g) image on ly
46 i f (tmpWidth > 150) and (tmpHeight > 150) :
47 s e l f . name = tmpName
48 b r e a k
49

50 s a v e P a t h = r ’ . . / image ’
51 URLpref ix = r ’ h t t p : / / www. d p c h a l l e n g e . com / image .

php ?IMAGE ID= ’
52 AVAtxt = r ’ . . / AVA. t x t ’
53

54 # a r g check
55 i f l e n (s y s . a rgv) < 3 :
56 p r i n t ’ a r g f a i l e r ! # py thon downloadImage . py

b e g i n I n d e x s t o p I n d e x ’
57 e x i t ()
58

59 # must >= 1
60 b e g i n I n d e x = i n t (s y s . a rgv [1])
61 # must >= 255530
62 s t o p I n d e x = i n t (s y s . a rgv [2])
63

64 f = open (AVAtxt)
65 f o r l i n e i n f :
66 l i n e = l i n e . s t r i p () . s p l i t (’ ’)
67 imageIndex = l i n e [0]
68

69 # use b e g i n and s t o p i n d e x c o n s t r a i n
70 i f i n t (imageIndex) < b e g i n I n d e x :
71 c o n t i n u e

13

72 e l i f i n t (imageIndex) >= s t o p I n d e x :
73 b r e a k
74

75 # s k i p e x i t i n g images
76 i f os . p a t h . i s f i l e (os . p a t h . j o i n (s avePa th ,

imageIndex + ’ . j p g ’)) == True :
77 c o n t i n u e ;
78

79 # g e t d i s p l a y webpage u r l
80 imageID = l i n e [1]
81 URL = URLpref ix + imageID
82

83 # u r l r e q u e s t and w r i t e image
84 t i c = t ime . t ime ()
85 # g e t ’ d p c h a l l e n g e ’ d i s p l a y page
86 u r l o p e n = u r l l i b . URLopener ()
87 fp = u r l o p e n . open (URL)
88 d a t a = fp . r e a d ()
89 fp . c l o s e ()
90 # p a r s e o u t image u r l i n ’ s e l f . name ’
91 u r l P a r s e r = d p c h a l l e n g e I m a g e P a r s e r ()
92 # i g n o r e i l l e g a l c h a r a c t e r s (a l m o s t

i m p o s s i b l e a p p e a r i n image ’ s u r l)
93 d a t a = d a t a . decode (’ a s c i i ’ , ’ i g n o r e ’)
94 u r l P a r s e r . f e e d (d a t a)
95

96 # some main images a r e even s m a l l e r t h a n
a d v e r t i s e m e n t s

97 # or have been d e l e t e d from w e b s i t e
98 # t h e y need manual download ing
99 i f u r l P a r s e r . name i s None :

100 c o n t i n u e
101

102 # g e t iamge
103 f img = u r l o p e n . open (u r l P a r s e r . name)
104 d a t a = fimg . r e a d ()
105 f img . c l o s e ()
106 # w r i t e image
107 f o u t = open (os . p a t h . j o i n (savePa th , imageIndex

+ ’ . j p g ’) , ’w+b ’)
108 f o u t . w r i t e (d a t a)
109 f o u t . c l o s e ()
110 t o c = t ime . t ime ()
111

112 # d i s p l a y p r o g r e s s
113 p r i n t ’ P r o c e s s i n g image : {}\ t t i m e e l a p s e : {}\

t s t o p a t : {} ’ . f o r m a t (i n t (imageIndex) , t o c −
t i c , s t o p I n d e x)

10.1.3 transform original AVA dataset to make it work
with Caffe

1 i m p o r t numpy as np
2

3 d e f g e t a v g r a t i n g s (r a t i n g s) :
4 r a t i n g s = [f l o a t (x) f o r x i n r a t i n g s]
5 a s s e r t l e n (r a t i n g s) == 10 , ” some th ing f i s h y yo !

”
6 c o u n t = 0 . 0
7 f o r indx , r i n enumera t e (r a t i n g s) :
8 c o u n t += (indx + 1) ∗ f l o a t (r)
9

10 r e t u r n c o u n t / np . sum (r a t i n g s)
11

12 d e f g e n e r a t e A V A t r a n s f o r m e d () :
13 d e l t a = 5 . 0 # t h r e s h o l d v a l u e f o r

c l a s s i f i c a t i o n

14 f = open (” AVA datase t / AVA 67140 . t x t ”)
15 c l a s s i f i c a t i o n = open (” AVA datase t /

A V A c l a s s i f i c a t i o n . t x t ” , ’w’)
16 r e g r e s s i o n = open (” AVA datase t / AVA regress ion .

t x t ” , ’w’)
17 f o r i i n f :
18 a r r = i . s p l i t (” ”)
19 f i l e n a m e = ”%s . j p g ” % a r r [0]
20 r a t i n g s = a r r [2 : 1 2]
21 a v g r a t i n g = g e t a v g r a t i n g s (r a t i n g s)
22 c l a s s i f i c a t i o n r a t i n g = 1 i f a v g r a t i n g >

d e l t a e l s e 0
23 r e g r e s s i o n . w r i t e (”%s %s\n ” %
24 (f i l e n a m e , a v g r a t i n g))
25 c l a s s i f i c a t i o n . w r i t e (”%s %s\n ” %
26 (f i l e n a m e , c l a s s i f i c a t i o n r a t i n g))
27

28

29 i f n a m e == ” m a i n ” :
30 p r i n t ” Your t a s k has s t a r t e d . . . ”
31 g e n e r a t e A V A t r a n s f o r m e d ()
32 p r i n t ” Your t a s k i s c o m p l e t e ! ”

10.1.4 Transform images into Caffe supported LMDB
format

1 # ! / u s r / b i n / env sh
2 # C r e a t e t h e i m a g e n e t lmdb i n p u t s
3 # N. B . s e t t h e p a t h t o t h e i m a g e n e t t r a i n + v a l

d a t a d i r s
4

5 EXAMPLE=/ mnt / AVA datase t
6 DATA=/ mnt / AVA datase t
7 TOOLS= b u i l d / t o o l s
8

9 TRAIN DATA ROOT=/ mnt / AVA datase t / image /
10 VAL DATA ROOT=/ mnt / AVA datase t / image /
11

12 # S e t RESIZE= t r u e t o r e s i z e t h e images t o 256 x256
. Leave as f a l s e i f images have

13 # a l r e a d y been r e s i z e d u s i n g a n o t h e r t o o l .
14 RESIZE= t r u e
15 i f $RESIZE ; t h e n
16 RESIZE HEIGHT=256
17 RESIZE WIDTH=256
18 e l s e
19 RESIZE HEIGHT=0
20 RESIZE WIDTH=0
21 f i
22

23 i f [! −d ”$TRAIN DATA ROOT”] ; t h e n
24 echo ” E r r o r : TRAIN DATA ROOT i s n o t a p a t h t o a

d i r e c t o r y : $TRAIN DATA ROOT”
25 echo ” S e t t h e TRAIN DATA ROOT v a r i a b l e i n

c r e a t e i m a g e n e t . sh t o t h e p a t h ” \
26 ” where t h e ImageNet t r a i n i n g d a t a i s

s t o r e d . ”
27 e x i t 1
28 f i
29

30 i f [! −d ”$VAL DATA ROOT”] ; t h e n
31 echo ” E r r o r : VAL DATA ROOT i s n o t a p a t h t o a

d i r e c t o r y : $VAL DATA ROOT”
32 echo ” S e t t h e VAL DATA ROOT v a r i a b l e i n

c r e a t e i m a g e n e t . sh t o t h e p a t h ” \
33 ” where t h e ImageNet v a l i d a t i o n d a t a i s

s t o r e d . ”

14

34 e x i t 1
35 f i
36

37 echo ” C r e a t i n g t r a i n lmdb . . . ”
38

39 GL OG lo g to s tde r r =1 $TOOLS / c o n v e r t i m a g e s e t \
40 −−r e s i z e h e i g h t =$RESIZE HEIGHT \
41 −−r e s i z e w i d t h =$RESIZE WIDTH \
42 $TRAIN DATA ROOT \
43 $DATA/ t r a i n . t x t \
44 $EXAMPLE/ AVANet t ra in lmdb
45

46 echo ” C r e a t i n g v a l lmdb . . . ”
47

48 GL OG lo g to s tde r r =1 $TOOLS / c o n v e r t i m a g e s e t \
49 −−r e s i z e h e i g h t =$RESIZE HEIGHT \
50 −−r e s i z e w i d t h =$RESIZE WIDTH \
51 $VAL DATA ROOT \
52 $DATA/ v a l . t x t \
53 $EXAMPLE/ AVANet val lmdb
54

55 echo ”Done . ”

10.1.5 Custom convolutional layer for images with
Deeper channels

1 # NOTE: t h e f o l l o w i n g f i l e c o u l d be w r i t t e n by
u s i n g loops , t h u s d e c r e a s i n g t h e number o f
l i n e s o f code .

2 # however t h e a u t h o r d e c i d e d t o w r i t e t h i s i n
t h e u n r o l l e d f a s h i o n f o r debugg ing e a s e

3

4 i m p o r t numpy as np
5

6 from cs231n . l a y e r s i m p o r t ∗
7 from cs231n . f a s t l a y e r s i m p o r t ∗
8 from cs231n . l a y e r u t i l s i m p o r t ∗
9

10

11 c l a s s DeepChannelNet (o b j e c t) :
12 # conv − r e l u − 2x2 max poo l
13 # conv − r e l u − 2x2 max poo l
14 # conv − r e l u − 2x2 max poo l
15 # conv − r e l u − 2x2 max poo l
16 # conv − r e l u − 2x2 max poo l
17 # conv − r e l u − 2x2 max poo l
18 # conv − r e l u − 2x2 max poo l
19 # − a f f i n e − r e l u
20 # − a f f i n e
21 # − so f tmax
22

23

24 d e f i n i t (s e l f , i n p u t d i m =(3 , 32 , 32) ,
n u m f i l t e r s =32 , f i l t e r s i z e =7 ,

25 h idden d im =100 , n u m c l a s s e s =10 ,
w e i g h t s c a l e =1e−3, r e g = 0 . 0 ,

26 d t y p e =np . f l o a t 3 2) :
27 s e l f . params = {}
28 s e l f . r e g = r e g
29 s e l f . d t y p e = d t y p e
30 # e x t r a c t i n g v a r i o u s p a r a m e t e r s from t h e

i n p u t d i m e n s i o n s
31 C , H, W = i n p u t d i m
32 p r i n t ”C : %s H: %s W: %s ” % i n p u t d i m
33

34 # a l l my c o n v o l u t i o n a l l a y e r s
35 s e l f . params [’W1’] = w e i g h t s c a l e ∗ np . random .

randn (n u m f i l t e r s , C , f i l t e r s i z e ,
f i l t e r s i z e)

36 s e l f . params [’ b1 ’] = np . z e r o s (n u m f i l t e r s)
37

38 s e l f . params [’W2’] = w e i g h t s c a l e ∗ np . random .
randn (n u m f i l t e r s , n u m f i l t e r s , f i l t e r s i z e ,
f i l t e r s i z e)

39 s e l f . params [’ b2 ’] = np . z e r o s (n u m f i l t e r s)
40

41 s e l f . params [’W3’] = w e i g h t s c a l e ∗ np . random .
randn (n u m f i l t e r s , n u m f i l t e r s , f i l t e r s i z e ,
f i l t e r s i z e)

42 s e l f . params [’ b3 ’] = np . z e r o s (n u m f i l t e r s)
43

44 s e l f . params [’W4’] = w e i g h t s c a l e ∗ np . random .
randn (n u m f i l t e r s , n u m f i l t e r s , f i l t e r s i z e ,
f i l t e r s i z e)

45 s e l f . params [’ b4 ’] = np . z e r o s (n u m f i l t e r s)
46

47 s e l f . params [’W5’] = w e i g h t s c a l e ∗ np . random .
randn (n u m f i l t e r s , n u m f i l t e r s , f i l t e r s i z e ,
f i l t e r s i z e)

48 s e l f . params [’ b5 ’] = np . z e r o s (n u m f i l t e r s)
49

50 s e l f . params [’W6’] = w e i g h t s c a l e ∗ np . random .
randn (n u m f i l t e r s , n u m f i l t e r s , f i l t e r s i z e ,
f i l t e r s i z e)

51 s e l f . params [’ b6 ’] = np . z e r o s (n u m f i l t e r s)
52

53 s e l f . params [’W7’] = w e i g h t s c a l e ∗ np . random .
randn (n u m f i l t e r s , n u m f i l t e r s , f i l t e r s i z e ,
f i l t e r s i z e)

54 s e l f . params [’ b7 ’] = np . z e r o s (n u m f i l t e r s)
55

56 # end of t h e c o n v o l u t i o n a l e r a
57 s e l f . params [’W8’] = w e i g h t s c a l e ∗ np . random .

randn (H ∗ W ∗ n u m f i l t e r s / pow (4 , 2) , H ∗ W ∗
n u m f i l t e r s / pow (4 , 3))

58 s e l f . params [’ b8 ’] = np . z e r o s (H ∗ W ∗
n u m f i l t e r s / pow (4 , 3))

59

60 # f o r t h e o u t p u t a f f i n e l a y e r
61 s e l f . params [’W9’] = w e i g h t s c a l e ∗ np . random .

randn (H ∗ W ∗ n u m f i l t e r s / pow (4 , 3) ,
n u m c l a s s e s)

62 s e l f . params [’ b9 ’] = np . z e r o s (n u m c l a s s e s)
63

64 f o r k , v i n s e l f . params . i t e r i t e m s () :
65 s e l f . params [k] = v . a s t y p e (d t y p e)
66

67

68 d e f l o s s (s e l f , X, y=None) :
69 W1, b1 = s e l f . params [’W1’] , s e l f . params [’ b1 ’]
70 W2, b2 = s e l f . params [’W2’] , s e l f . params [’ b2 ’]
71 W3, b3 = s e l f . params [’W3’] , s e l f . params [’ b3 ’]
72 W4, b4 = s e l f . params [’W4’] , s e l f . params [’ b4 ’]
73 W5, b5 = s e l f . params [’W5’] , s e l f . params [’ b5 ’]
74 W6, b6 = s e l f . params [’W6’] , s e l f . params [’ b6 ’]
75 W7, b7 = s e l f . params [’W7’] , s e l f . params [’ b7 ’]
76 W8, b8 = s e l f . params [’W8’] , s e l f . params [’ b8 ’]
77 W9, b9 = s e l f . params [’W9’] , s e l f . params [’ b9 ’]
78

79 # p a s s conv param t o t h e f o r w a r d p a s s f o r t h e
c o n v o l u t i o n a l l a y e r

80 f i l t e r s i z e = W1. shape [2]
81 conv param = { ’ s t r i d e ’ : 1 , ’ pad ’ : (

f i l t e r s i z e − 1) / 2}

15

82

83 # p a s s poo l pa ram t o t h e f o r w a r d p a s s f o r t h e
max−p o o l i n g l a y e r

84 poo l pa ram = { ’ p o o l h e i g h t ’ : 2 , ’ p o o l w i d t h ’ :
2 , ’ s t r i d e ’ : 2}

85

86 s c o r e s = None
87 # p r i n t ” s t a t i s t i c s f o r X, W1” , X. shape , W1.

shape
88 a1 , c1 = c o n v r e l u p o o l f o r w a r d (X, W1, b1 ,

conv param , poo l pa ram)
89 a2 , c2 = c o n v r e l u p o o l f o r w a r d (a1 , W2, b2 ,

conv param , poo l pa ram)
90 a3 , c3 = c o n v r e l u p o o l f o r w a r d (a2 , W3, b3 ,

conv param , poo l pa ram)
91 a4 , c4 = c o n v r e l u p o o l f o r w a r d (a3 , W4, b4 ,

conv param , poo l pa ram)
92 a5 , c5 = c o n v r e l u p o o l f o r w a r d (a4 , W5, b5 ,

conv param , poo l pa ram)
93 a6 , c6 = c o n v r e l u f o r w a r d (a5 , W6, b6 ,

conv param)
94 a7 , c7 = c o n v r e l u f o r w a r d (a6 , W7, b7 ,

conv param)
95

96 a8 , c8 = a f f i n e r e l u f o r w a r d (a7 , W8, b8)
97 s c o r e s , c9 = a f f i n e f o r w a r d (a8 , W9, b9)
98

99 # f o r i , a i n enumera t e ([a1 , a2 , a3 , a4 , a5 ,
a6 , a7 , a8]) :

100 # p r i n t ”A%s shape i s %s ” % ((i +1) , a .
shape)

101

102 # p r i n t ”W8 shape and b i a s ” , W8. shape , b8 .
shape

103 # p r i n t ”W9 shape and b i a s ” , W9. shape , b9 .
shape

104 i f y i s None :
105 r e t u r n s c o r e s
106

107 l o s s , g r a d s = 0 , {}
108 d l o s s , d s c o r e s = s o f t m a x l o s s (s c o r e s , y)
109

110 da8 , dw9 , db9 = a f f i n e b a c k w a r d (d s c o r e s , c9)
111 da7 , dw8 , db8 = a f f i n e r e l u b a c k w a r d (da8 , c8)
112 da6 , dw7 , db7 = c o n v r e l u b a c k w a r d (da7 , c7)
113 da5 , dw6 , db6 = c o n v r e l u b a c k w a r d (da6 , c6)
114 da4 , dw5 , db5 = c o n v r e l u p o o l b a c k w a r d (da5 ,

c5)
115 da3 , dw4 , db4 = c o n v r e l u p o o l b a c k w a r d (da4 ,

c4)
116 da2 , dw3 , db3 = c o n v r e l u p o o l b a c k w a r d (da3 ,

c3)
117 da1 , dw2 , db2 = c o n v r e l u p o o l b a c k w a r d (da2 ,

c2)
118 dX , dw1 , db1 = c o n v r e l u p o o l b a c k w a r d (da1 ,

c1)
119

120 g r a d s [’W1’] = dw1
121 g r a d s [’W2’] = dw2
122 g r a d s [’W3’] = dw3
123 g r a d s [’W4’] = dw4
124 g r a d s [’W5’] = dw5
125 g r a d s [’W6’] = dw6
126 g r a d s [’W7’] = dw7
127 g r a d s [’W8’] = dw8
128 g r a d s [’W9’] = dw9
129

130 g r a d s [’ b1 ’] = db1
131 g r a d s [’ b2 ’] = db2
132 g r a d s [’ b3 ’] = db3
133 g r a d s [’ b4 ’] = db4
134 g r a d s [’ b5 ’] = db5
135 g r a d s [’ b6 ’] = db6
136 g r a d s [’ b7 ’] = db7
137 g r a d s [’ b8 ’] = db8
138 g r a d s [’ b9 ’] = db9
139

140 r e g l o s s = 0 . 0
141 f o r i i n r a n g e (1 , 1 0) :
142 l a y e r n a m e = s t r (i)
143 # p r i n t ” working on l a y e r %s ” %

l a y e r n a m e
144 r e g l o s s += 0 . 5 ∗ s e l f . r e g ∗ np . sum (s e l f .

params [’W’ + l a y e r n a m e] ∗ s e l f . params [’W’ +
l a y e r n a m e])

145 g r a d s [’W’ + l a y e r n a m e] += s e l f . r e g ∗
s e l f . params [’W’ + l a y e r n a m e]

146

147 l o s s = d l o s s + r e g l o s s
148 r e t u r n l o s s , g r a d s
149

150 p a s s

10.1.6 CaffeNet, VGGNet, Siamese Network imple-
mentation

For training CaffeNet, VGGNet and Siamese network,
Caffe[6], along with native scripts available in the model
zoo[2] and [1] were used.

16

