
DeepPaint: A Tool for Image Inpainting

Kushagr Gupta
Stanford University

kushagr@stanford.edu

Suleman Kazi
Stanford Unversity

sbkazi@stanford.edu

Terry Kong
Stanford Unversity

tckong@stanford.edu

Abstract

This project focuses on solving the inpainting prob-
lem using both Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN) approaches. Popular
methods of inpainting include Adobe Photoshop’s Content
Aware Fill, which do not use neural networks. The goal
of this project was to explore successful architectures and
use them as a foundation in creating our own. The best ar-
chitectures that we came up with are a CNN with Sigmoid
Euclidean Loss and a simplified PixelRNN.

1. Introduction
The goal of inpainting is to fill in a portion of an image

that is either corrupted or unwanted. The applications of in-
painting include: removing noise from an image, undoing
deterioration (in historical or old photos), or to simply add
or remove elements from an image. It can also be incor-
porated indirectly in compression wherein some percentage
of original image can be transmitted and the whole can be
reconstructed on the other end using a pretrained neural net-
work.

There are many approaches to the inpainting problem,
so we have decided to focus on models whose primary ob-
jective is to determine the best texture for a selected re-
gion. The texture of a region that must be reconstructed
is something a talented painter could ascertain by looking
at different areas of the painting. Like a talented painter,
we preferred architectures that would learn how to paint
missing textures by looking at different areas of the image.
This contrasts other models, such as generative adversarial
networks[1], whose objective is to minimize the probability
of making a mistake. In the end, the upshot for both gener-
ative adversarial nets and our proposed architectures is the
same.

Also, there has been recent success with two-
dimensional RNNs in [2] and [3], which is encouraging
news and are the motivating architectures for the PixelRNN
presented in this report.

For both the CNN and RNN, the input is an (N×N×3)

RGB image, where N is the width and the height of the im-
age. Since we present multiple CNN architectures in our re-
port, the output is either a reconstruction of the entire RGB
image, or a reconstruction of a small patch of the image
(n × n × 3). The output of the RNN is the entire RGB
image.

Figure 1: Example of Image Inpainting using our CNN

2. Related Work
Interesting work has been done to solve the inpaint-

ing problem using Neural Network approaches spanning
from CNNs to RNNs. [4] follows a blind inpainting ap-
proach wherein they segment the corrupted image into small
subimages and feed that through a network of five conv relu
layers followed by a MSE calculation i.e. the euclidean loss
function. The positive aspects of this approach are that it
works well in removing small and local distortions but one
of the limitations is that there needs to be a separate network
for each type of corruption.

[5] uses an exemplar-based inpainting approach based
on techniques explored in [6] and [7] for texture synthe-
sis and inpainting and obtains amazing results in terms of
filling the corrupted region with background information.
This method is not able to fill in the ground truth, although
this can be solved using a neural network approach given
sufficient amount of training data and enough parameters
to learn variability of data. [8] presents a novel approach
to image denoising and blind inpainting combining sparse
coding and deep neural nets using pretrained encoders and
does a good job in removing overlaid text and small cor-
rupted pixels but doesn’t present any discussion for larger
corruptions.

1



[2] and [3] covers RNN and LSTM approaches to solve
the inpainting problem by building a generative model that
exploits the spatial structure of the entire image. They de-
fine a conditional distribution to learn every pixel value with
respect to other pixels in the image and the different chan-
nels (RGB) and the RNN uses a sequence of previous pixels
seen in the image to learn a dependency. They cover both a
row and diagonal RNN/LSTM which differ in how their re-
ceptive fields grow; for row RNNs the receptive field grows
upward and for diagonal RNNs the receptive field grows di-
agonally. The positive aspects of this approach are that it
can be used to paint large regions, but as a caveat, it takes
an incredibly long time to train as compared to a CNN ap-
proach due to the RNN/LSTM’s sequential nature.

3. Methods
The image inpatining problem can generally be classified

into two types:

1. Non-Blind Inpainting: In non-blind image inpaint-
ing the location of the pixels needed to be painted are
known a priori and provided to the network in some
form.

2. Blind Inpainting: In the blind image inpainting prob-
lem no information about the location of the regions
that are corrupted or need to be filled in is given to the
algorithm or network and the network must automati-
cally locate as well as fill in these regions. This tech-
nique is useful in cases in which the areas that need to
be filled in are not well defined for examples remov-
ing scratches and age-related wear from vintage pho-
tos. Blind inpainting is a harder problem to solve than
non-blind inpainting.

In our project we try both the non-blind and blind in-
painting methods and find that networks trained to do non-
blind inpainting perform much better than those trained to
do blind inpainting.

Loss Functions:
We experiment with two types of loss functions in our

project, both of these are computed pixel-wise for the region
to be inpainted.

1. Euclidean Loss: The euclidean loss is the equivalent
to the L2 loss function. It is commonly used in regres-
sion problems. The pixel-wise squared euclidean dis-
tance between the area to be inpainted and the ground
truth is considered to be the loss:

Losseuclidean =

N∑
i=1

(xi − xtruei)
2

Where N is the number of pixels in the region to be
painted, xi is the ith pixel in the output of the network

Table 1: Different CNN Architectures

Blind Softmax
5 x [Conv-ReLu] - [FC] - [Softmax Loss]

Non-Blind Softmax
6 x [Conv-ReLu] - [FC] - [Softmax Loss]

Non-Blind Euclidean w/o Sigmoid
10 x [Conv-ReLu] - [FC] - [Euclidean Loss]

Non-Blind Euclidean with Sigmoid
10 x [Conv-ReLu] - [FC] - [sigmoid] - [Euclidean Loss]

and xtruei is the ground truth value of the pixel at the
same location.

2. Softmax Loss: The softmax loss is sometimes called
the negative log-likelihood loss. It is commonly used
in classification problems. For the softmax loss, the
loss is computed pixel-wise where the classes are the
possible RGB triples a particular pixel can take on. As
an example in an 8-bit 3 channel (RGB) image we have
255 possible values for the intensities of each of the
three channels which means that the number of possi-
ble classes is 2553, in order to reduce the large number
of classes we quantize the image (for details please see
dataset section). The softmax loss is calculated as:

Losssoftmax =

N∑
i=1

Li

Where:

Li = − log

(
efyi∑
j e

fj

)
3.1. CNN Architecture

After conducting a literature review we came up with a
few architectures that we wanted to test. These differ in
the number of parameters, number of layers, and in what
they output depending on whether they use a softmax or
a euclidean loss and whether they are blind or non-blind
(For the exact details, e.g. number of parameters, please see
the CNN Setup section). We use a number of conv-ReLU1

sandwich layers followed by a fully connected (FC) layer,
followed by a sigmoid layer, and finally followed by a soft-
max loss or euclidean loss. The high-level difference be-
tween the networks with euclidean loss and softmax loss is
that the output of the euclidean networks is a continuum of
RGB triples, whereas with the softmax networks the output
for each pixel is the correct class (discrete), and we have to
convert the class back to the RGB values for that class.

Using repeated conv layers with a small filter size allows
us to increase the effective receptive field for each neuron

1A conv layer is the same as a convolutional layer

2



Figure 2: General skeleton of CNN networks used

whilst keeping the computational expense manageable. The
ReLU activations introduce non-linearities and offer sparse
activation and efficient gradient back-propagation. The FC
layer at the end of the network introduces additional param-
eters and also allows us to reshape the output of the conv
layers into the desired shape.2.

As shown in the results section, using the Blind Softmax
architecture does not perform well. We hypothesize this is
due to the fact that the network must reconstruct every pixel
in the image since it is not given information about the re-
gions it must reconstruct; so in this sense, the problem is
harder because there is a tougher objective to satisfy.

The Non-Blind Softmax architecture also does not give
visually pleasing results and introduces patterns of black
pixels in the reconstructed region. This might be due to the
fact that we have a large number of classes for the softmax
loss (even after we quantize the image we have 512 possi-
ble pixel classes) so the network is not able to classify them
correctly given the amount of training data we have.

The best performing network we have (and the one we
used as our final network and trained on the full CIFAR -10
dataset) was the None-Blind Euclidean with Sigmoid archi-
tecture. In early experiments we had the fully connected
layer’s output going directly to the euclidean loss but we
found that some pixels saturated in the output. We hypoth-
esize that this could be due to the fact that the FC layer out-
put was unbounded and had no guarantee of being within
the [0,1] normalized range for pixel values; we fixed this
problem by adding a sigmoid layer after the FC layer which
squashes the FC layer output to the required range before
passing it to the loss.

3.2. RNN Architecture

The RNN architecture implemented for this project is
based on Google Deepmind’s Multi-scale PixelRNN[2].
The novelty in this approach is how new hidden states are
computed. Since an image is not a one-dimensional data
structure, it does not have a linear ordering. For this rea-
son, any RNN that operates on an image must specify its
traversal on the input image. We first present an overview
of the architecture and then we list the key differences from
this architecture and the one presented in [2]. We will call
the our RNN architecture the Simplified PixelRNN from this
point forward.

2The desired shape output shape for the non-blind nets is the size of the
corrupted patch and for the blind nets is the size of the input image.

The general form of the Simplified PixelRNN is:

Figure 3: The general form of the Simplified PixelRNN Ar-
chitecture. The ellipsis indicates that any number of RNN
layers can be added in order to scale the model up. The
blocks represent the activation layers while the arrows rep-
resent the layers.

We also provide an intuition on the function of each layer
in this architecture. Since the cornerstone of this architec-
ture is the RNN, we can have any number of RNN layers,
where more RNN layers means that the model is more ex-
pressive. The FC Layer functions as a way to map the final
RNN activation layer to classes so that we can take the soft-
max. The classes in this case are the different colors a pixel
can take on. For this reason, the Simplified PixelRNN is a
generative model since it attempts to generate the complete
color distribution over all images. The only detail we have
not mentioned is the update for the hidden states.

3.2.1 RNN Hidden Update

The choice for the traversal over the image will be row-by-
row in the Simplified PixelRNN. This has two implications:
1. This means that the receptive field for a given pixel is
always above that pixel (it is in fact triangular as we will
later show) 2. The RNN can only predict pixels that are
below a selected row if the rows above that are completely
given. There is a hyperparameter, k, that controls how many
previous input pixels and previous hidden states are used in
the calculation of the new hidden state. We have seen that
k = 3 works very well in [2], so we will fix this in the
Simplified PixelRNN.

Figure 4 illustrates how a new hidden state is calculated.
The update equation for the Simplified PixelRNN is thus:

h(i,j) = tanh(Wxx+Whh+ b),

x =

x(i−1,j−1)

x(i−1,j)

x(i−1,j+1)

 , h =

h(i−1,j−1)

h(i−1,j)

h(i−1,j+1)


As the update equation and Figure 4 illustrate, the recep-

tive field for any pixel in the output is triangular with the
triangle beginning at an output pixel and opening upward.

3



Figure 4: Hidden state update illustration from input to hid-
den states. The blue square is the location of the new hidden
state. The green squares are the ”previous” hidden states
that the new hidden state uses for its update. The red squares
are the pixels in the input that the new hidden state uses for
its update

Since the Simplified PixelRNN is a multi-layered RNN,
it can have many of the layers defined above. The only con-
straint is that at a particular layer, l, the currently updated
hidden state in layer l can only be computed once the tri-
angular region above that pixel on earlier layers have been
computed.

A minor detail when updating the hidden states is that
the value of a pixel outside of the input activation layer and
the current activation layer is assumed to be 0. This way all
pixels are well-defined.

3.2.2 Simplified PixelRNN Backpropagation

We do not provide the equations for the backpropagation
of the simplified PixelRNN since they are almost exactly
the same as the standard RNN. The one thing to note when
backpropagating is that the RNN backpropagation looks
slightly different depending on whether it is the final RNN
layer or not. The difference is that if we are currently
backpropagating into the last RNN layer, only the gradi-
ent that contributes to the pixel at index (i, j) in the current
RNN layer is the (i, j)th gradient in the (FC) layer above
it. Whereas if we are backpropagating into an RNN layer
that is not the last RNN layer, the pixel at index (i, j) in the
current RNN layer receives gradients from the (i+1, j−1),
(i+1, j), and (i+1, j+1) indices in the (RNN) layer above
it.

3.2.3 Differences from DeepMind’s PixelRNN

We list the main of differences between the Simplified Pix-
elRNN and the the PixelRNN in [2].

1. The Simplified PixelRNN outputs all three of the color
channels at each iteration while the PixelRNN outputs
the color of one particular channel at each iteration

2. The Simplified PixelRNN does not use any informa-
tion about the current pixel (This is the main reason
this model is named ”Simplified”). Since the Pixel-
RNN updates color channels one at a time (in the or-
der of red, green, then blue), it may use some of the
color channels of the current pixel. For example, while
predicting the green channel of the current pixel, the
PixelRNN would use the red channel, but not the blue
channel since the blue channel has not been predicted
yet.

4. CNN Datasets and Features

For the CNN, the CIFAR-10 data set was used, consist-
ing of 60000 images of size 32x32x3. We generated a train-
ing set of 50,000 images and validation and test sets con-
sisting of 5000 images each.

1. Blind Inpainting: For this approach we added three
5x5 masks at random locations in the data set, as can
shown in 5, which became our input to the network.
Ground truth in this case were the true images them-
selves.

2. Non-Blind Inpainting: One spatially fixed 10x10
mask was used to generate the corrupted input data
set. Ground truth in this case was the small 10x10 true
patch that was removed from the image, as shown in 6.

Figure 5: Illustration of In-
put and Ground Truth for
blind network

Figure 6: Illustration of In-
put and Ground Truth for
Non-blind network

After generating the input and ground truth we converted
the datasets into LMDB format which could be easily read
in caffe. For the softmax loss we quantized the color space
into 8 bins in each channel, thus giving a total of 512 labels.
We then converted the ground truth images into correspond-
ing labels, since the softmax layer uses these labels to calcu-
late loss and do back propagation. Similarly during testing
time output of FC layer i.e. the labels were converted back
to images for visualization. For the euclidean loss, however,
quantization wasn’t carried out and the images were fed as
it is.

4



Other preprocessing steps involved scaling the dataset to
lie in [0, 1]. We didn’t remove the mean image from data as
[2] didn’t do that operation either.

5. RNN Dataset and Features
The Simplified PixelRNN also uses CIFAR-10, but it

only uses one class: frogs. For training, the entire un-
corrupted image is passed through the network, and the
output is an array of integers which map to RGB triples.
The ground truth used to compute the loss is the entire im-
age. Normally an RNN uses the input shifted by one as the
ground truth to calculate the loss, but the Simplified Pixel-
RNN does this internally.

At testing time, an image with only the upper half is
given and the PixelRNN will output the entire color map,
which can then be converted to RGB triples through a map-
ping.

6. Experimentation Setup
The following sections describe the experiments done

and the setup for both the CNN and RNN architectures
along with the observations made about each.

6.1. CNN Setup

We used the BVLC caffe library [11] and compiled the
GPU version of it on one of our machines in Linux (Ubuntu)
environment. Various architectures were tried and evaluated
to see which perform the best for the task at hand by creat-
ing a separate prototxt file for each network.

6.1.1 Networks

We started off with a Blind Softmax network consisting of
five Convolutional and ReLu (activation) layers made up of
3x3 filters followed by a fully connected (FC) layer with
512 outputs corresponding to the eight bit quantized color
space feeding into a softmax loss function to solve the blind
inpainting problem wherein the location and size of corrup-
tion is unknown. We realized that since the whole image is
reconstructed in this case, we would need a large number of
parameters and the time to train the network would be pro-
hibitively large given limited computational power. Thus,
we decided to stick to solving the non-blind problem which
yielded much more promising results.

The second network Non-Blind Softmax had six conv
layers wherein the first 5 layers had 64 filters of size 3x3
and the last one had 3 filters of size 3x3. Each conv Layer
was followed by a ReLu layer and finally a FC layer with
512 outputs which went to the softmax loss layer. Initial re-
sults obtained didn’t give decent performance which could
be due to the fact that we were trying to construct a gener-
ative model in the pixel space, which would have required
much more training data and time.

In order to improve the performance we modified our
loss function from softmax to euclidean(L2) loss in order
to make it into a regression problem. Our network i.e. the
Non-Blind Euclidean w/o Sigmoid had 10 Conv ReLu layers
with filter size of 3x3, followed by a FC layers mapping
to 300 outputs and a euclidean loss layer. We trained two
models, one having 64 filters in each layer and every third
conv layer having stride 2. The other network had 16 filters
in first 3 layers, 32 in next 3 and 64 in the last four with
every third layer having stride 2. Input to the network was a
32x32x3 image which after passing through the conv layers
gave an output of size 4x4x64 which was fed to the FC layer
that gave a vectorized output of size 300 corresponding to
the 10x10x3 ground truth for the corrupted region.

In the final network Non-Blind Euclidean with Sigmoid
we also added a sigmoid layer just before the loss function
in order to reduce color saturation as it helps in squashing
the outputs of the FC layer within the range [0,1].

6.1.2 Solver

Initially we used the default SGD solver but as it took a huge
number of iterations to converge we shifted to the Adam
solver which converged roughly 10x times faster. Since we
wanted to learn aggressively during the initial phase while
switching to smaller learning rates periodically the network
periodically reduced the learning rate by 80% of its value
every 50000 iterations.

[4] uses a batchsize of 1 on their entire dataset. Our
dataset consisted of 50000 training images so we chose a
batch size of 50 in order to be able to train faster as com-
pared to just training on one image while still allowing the
loss to ”wiggle” while the weights are updated. Our batch-
size is on the same order as mentioned in [2] and it helps
in regularizing the weights and prevents overfitting the net-
work. Along with this we also used a weight decay param-
eter to explicitly prevent the network from overfitting and
tried various values ranging few orders of magnitude and
finally decided on λ = 0.005.

6.2. RNN Setup

The Simplified PixelRNN architecture was built using
the CS231N homework code as a template. This deci-
sion was made in the interest of time since we were un-
sure whether we could finish testing both the CNN archi-
tecture in caffe and the RNN with a GPU-capable package
like Torch.

The Simplified PixelRNN is only able to run in CPU
mode since all of the code uses python and numpy. Python
is a language that is quite slow at running explicit for loops,
which means that for an RNN, which is sequential by na-
ture, it is not the preferred environment. This penalty in
speed allowed us to only train on a small number of layers

5



and a small training set. Despite this inconvenience, we still
observed very promising results.

All networks were trained with a 2.3GHz Intel Core i7.
Each network took about 12 hours to train.

There were two networks we trained for a substantial
amount of time.

1. Simplified PixelRNN with 1 RNN Layer on 50 frog
images from CIFAR-10 with a batchsize of 10. The
hidden dimension was 1024. The learning rate was
5e − 4. There is a learning rate decay applied 0.95
after each epoch of training.

2. Simplified PixelRNN with 2 RNN Layers on 64 frog
images from CIFAR-10 with a batchsize of 8. The hid-
den dimension was 256. The learning rate was 5e− 3.
There is a learning rate decay applied 0.99 after each
epoch of training.

Since it was infeasible to perform cross-validation given
the time-constraint, we decided to use [2] as a baseline for
hyperparameter choices. The batchsizes of 10 and 8 were
chosen since they prevented the Simplified PixelRNN from
overfitting to the training data. The reason only frog images
were used as training was because we believed the texture
and colors between from images of frogs were likely to be
very similar, which would yield better results despite our
small training set.

All of the hyperparameters were hand curated by refin-
ing the next best set of hyperparameters iteratively. This
was done simply because an exhaustive search over all hy-
perparameters was infeasible in terms of time.

6.2.1 Hidden Dimension

The choices of the hidden dimension hyperparameter for
the two networks may seem odd at first glance, but there is
a natural explanation. For the Simplified PixelRNN with
1 RNN Layer, to ensure that the model was expressive
enough, we needed to increase the hidden dimension to a
1024 (note that this is eight times what is used in [2]). How-
ever, for the model with 2 RNN layers, a hidden dimension
of 1024 was too large and led to overfitting since the sec-
ond RNN layer made the model much more expressive and
removed the need for a very high hidden dimension.

6.2.2 Solver

Both of the trained nets using the Adam update. Adam was
a much better choice than vanilla gradient descent because
Adam’s convergence rate is much faster than vanilla gradi-
ent descent and this implementation of the Simplified Pix-
elRNN was starved of computational resources.

7. Results
The results of inpainting are difficult to evaluate because

they are very subjective. A particular network may paint a
patch in a way that does not match the ground truth, but it
can still look natural. Thus, the metric for evaluating per-
formance should be the pixel-wise error, depending on the
loss function, and not whether or not an image is perfectly
reconstructed according to the ground truth.

For networks that use a euclidean loss (CNN only), the
metric of performance is the total L2 loss over the mini-
batch. As for the networks with a softmax loss layer (CNN
and RNN), the metric is the negative log likelihood over the
mini-batch.

We present some results for both our CNN and RNN
implementations below more results can be seen in the ap-
pendix.

7.1. CNN Results

Blind Softmax Results: Only one example from this
network is shown since it does not perform well and experi-
ments on this were stopped after we were unable to achieve
better results.

Figure 7: Test images for Blind Softmax architecture

Non-Blind Softmax Results: These are results using the
Non-Blind Softmax architecture. As mentioned earlier, this
architecture introduces jarring pixel artifacts.

Figure 8: Test images for the Non-Blind Softmax architec-
ture

Non-Blind Euclidean Loss Network w/o Sigmoid Re-
sults: These results are similar to our final chosen architec-
ture except for the over saturated pixels, which were fixed
with the sigmoid.

Non-Blind Euclidean Loss Network With Sigmoid
Results: These results are similar to our final chosen ar-
chitecture except for the over saturated pixels which were
fixed with the sigmoid activation before loss. This network
performs the best amongst all CNN’s in our experiments.

CNN Loss Curves: With the numerous experiments
tried for each type of network with parameter training it is

6



Figure 9: Test images for non blind euclidean without sig-
moid

Figure 10: Test images for non blind Euclidean with sig-
moid

not possible to display all of the loss curves that we gener-
ated. For the sake of brevity a typical loss curve obtained
for best CNN: Non-Blind Euclidean Loss with Sigmoid in
Figure 11.

Figure 11: Loss curves for Non-Blind Euclidean Loss with
Sigmoid. The train loss plot is the loss over the training set
at each iteration. The test loss plot is the loss after every
100 training iterations.

7.2. RNN Results

To illustrate how well each Simplified PixelRNN model
performed, we included both training loss curves in Figure
12. There is an aggressive drop in the loss at beginning
which is the result of the network greatly improving its per-
formance over the random initialization. The tail end of the
loss curves seem to flatten out, but the network is in fact

still learning. This is due to the fact that the Simplified Pix-
elRNN uses a softmax loss layer. Because the softmax con-
siders the argmax over all classes, a class’s value only needs
to inch itself ahead of the current largest class in order to
become the largest. If that margin between the largest class
and the new largest class is small, the loss may not change
very much, but the change in the output class would be very
noticeable in the result.

Figure 12: Simplified PixelRNN Training Loss curves. The
left plot is for the network with 1 RNN layer and the right
plot is for the network with 2 RNN layers. The blue curve is
the loss at each iteration and the red curve is the average loss
over the last 10 iterations (for the left) and 100 iterations
(for the right).

We provide some results to both Simplified PixelRNN
networks to qualify their performance and highlight their
limitations in Figure 13.

(a) 1 RNN Layer (b) 2 RNN Layers

Figure 13: A test result from both Simplified PixelRNNs

Figure 13(a) illustrates a problem with only using 1 RNN
layer. The pattern observed in most training and testing im-
ages when 1 RNN layer was used was that most frog images
were painted with little to no texture. There also seemed to
be a tendency to paint downwards using the color in the row
above. While this is a very discouraging result, what is al-
most amazing is how well the Simplified PixelRNN works
with 2 RNN layers.

What is surprising is that the Simplified PixelRNN with
2 RNN layers uses an order of magnitude less variables than
the one with 1 RNN layer, but still performs better. In Fig-
ure 13(b) we can see that the network paints the frog with
much more texture. Also, rather than painting downward,
it seems to understand that frogs have legs so it should not
continue painting downwards with the same color as the one

7



above. We include more results for the Simplified Pixel-
RNN with 2 RNN layers in the appendix.

Another thing to note is that there is a tendency in the 2
RNN layer Simplified PixelRNN to paint to the left. This
is the result of only using 64 training examples where many
of the training images all had this pattern.

8. Conclusion

In this project we tried out a number of different archi-
tectures and methods for blind as well as non blind image
inpainting. We found blind image inpainting to be a much
harder problem than non blind painting. During the course
of the project we were exposed to Neural Net frameworks
like Caffe and also came up with our own implementation
from scratch for the Simplified PixelRNN. We gained prac-
tical experience with the training and fine tuning of neural
networks and managed to produce reasonably good results.

9. Future Work

There are a large number of possibilities that can be con-
sidered for further work after this project. We list some
possibilities below:
1. At the moment we only test and train on the 32 x 32
CIFAR-10 dataset, the networks can also be trained and
tested on higher resolution images or data sets like IMA-
GENET.
2. We only consider operating in the RGB space, but we
could also try converting the image to the HSV space be-
fore trying to paint them. This might lead to better results
because of a different separation of the Hue Saturation and
Value leading to less jitter in the loss for the euclidean CNN
architecture.
3. The simplified PixelRNN can be coded up into a GPU
package to enable faster training and allow us to train it with
a larger dataset with more images.
4. The RNN layers of the Simplified PixelRNN can be
changed to LSTM layers.
5. At the moment we get our best results using non-blind in-
painting methods. For the CNN the region to be painted is
fixed (10x10 pixels from the center), different types of cor-
rupted regions can be tried and the blind inpainting problem
can be explored further to give better results.
6. A mask could be passed into the CNN architectures to
allow the size of corrupted region to be learned.

10. Appendix

10.1. More CNN Results:

Note: All of the CNN results shown in the appendix are
test images for our final architecture: NonBlind Euclidean
loss with a sigmoid layer before loss

10.2. More RNN Results:

Note: All of the RNN results shown in the appendix are
test images.

8



References
[1] Goodfellow, I, Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde- Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. Generative adversarial nets. In NIPS , 2014.

[2] Oord, Aaron van den, Kalchbrenner, Nal, and
Kavukcuoglu, Koray. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759 , 2016.

[3] Theis, Lucas and Bethge, Matthias. Generative image
mod- eling using spatial LSTMs. In Advances in Neu-
ral Infor- mation Processing Systems , 2015

[4] Blind inpainting using the fully convolutional neural
network, Nian Cai, et al. , Springer 2015

[5] Criminisi, Antonio, Patrick Prez, and Kentaro
Toyama. ”Region filling and object removal by
exemplar-based image inpainting.” Image Processing,
IEEE Transactions on 13.9 (2004): 1200-1212.

[6] Xu, Zongben, and Jian Sun. ”Image inpainting by
patch propagation using patch sparsity.” Image Pro-
cessing, IEEE Transactions on 19.5 (2010): 1153-
1165.

[7] Fadili, Mohamed-Jalal, J-L. Starck, and Fionn
Murtagh. ”Inpainting and zooming using sparse rep-
resentations.” The Computer Journal 52.1 (2009): 64-
79.

[8] Xie, Junyuan, Linli Xu, and Enhong Chen. ”Image
denoising and inpainting with deep neural networks.”
Advances in Neural Information Processing Systems.
2012.

[9] Bertalmio, Marcelo, Andrea L. Bertozzi, and
Guillermo Sapiro. ”Navier-stokes, fluid dynamics, and
image and video inpainting.” Computer Vision and
Pattern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conference on.
Vol. 1. IEEE, 2001.

[10] Van Den Oord, Aron, and Benjamin Schrauwen. ”The
student-t mixture as a natural image patch prior with
application to image compression.” The Journal of
Machine Learning Research 15.1 (2014): 2061-2086.

[11] Y. Jia, ”Caffe: An open source convolu-
tional architecture for fast feature embedding,”
gttp://caffe.berkeleyvision.org/,2013 2013

9


