
Neural Diary: Forming Compressed Visual Stories in Real-Time

Edward H. Lee
Stanford University

Stanford, CA
edhlee@stanford.edu

Abstract

In many applications, video data contains temporally-
redundant information about context that relates to who,
what, and where. In many applications it is not only suf-
ficient to sub-sample frames but necessary on a mobile de-
vice. We design a video captioning system on the embedded
TX1 that takes an ultra-long video stream (15 minutes to 2
hours) that samples salient frames in time, generates cap-
tions on the objects of these frames, and generates spatial
attention maps that attend to these captions.

We have three main contributions. First, since the main
computational bottleneck is in the LRNN, we design a tem-
poral sampler using CNN features to sample key frames
and to minimize the number of LRNN forward passes. This
allows us to decrease the number of sampled frames by
> 100×, speed-up runtime by 7.4×, and increase energy
efficiency by 8×. Second, in each temporally-salient frame,
we caption the frame and compute an attention map that
attends to the region of interest from the captions. Third,
we provide low-level optimization using matrix factoriza-
tion in the LRNN with retraining allowing 1.2× speedup on
the TX1 using only 9W of power and explore FPGA accel-
eration on the CNN.

1. Introduction
We as humans are actively bombarded with visual infor-

mation in a given day. And yet we are still able to retain and
highlight key personal experiences in the context of who,
what, where, and when of salient events that are added to
our long-term memory. Inspired by nature, we ambitously
aim to build a computationally efficient system that can au-
tomatically highlight certain salient events from long-term
video data in a compact representation of just a few salient
images and generated sentences. These samples then form
a compressed diary that represents the video seqeuence. We
deploy this on the real-time embedded TX1 [1].

As a long term vision, our eventual goal is to allow peo-
ple to wear the camera module for extended lengths of time

Figure 1: Neural Diary pipeline in the embedded TX1 that
takes a video sequence x and returns a compressed repre-
sentation of the video in a form of a few salient images,
attention maps, and descriptions.

to store salient events and to tell a story about these events
in the form of image-caption pairs. This has numerous ap-
plications such as automating journalism and assisting the
blind. To demonstrate this, we need to prioritize both net-
work performance, such as the ability to caption images,
and hardware performance, such as computational and en-
ergy efficiencies.

The main system objective is to take a video sequence
x ∈ RH×W×C×T with height, width, and color channels
H,W,C and total frames T of length > 15 minutes and
generate a short diary containing � T salient images and
captions using less than 10W of power at > 1 frame-per-
second inference on the embedded TX1.

Motivated by simpler design and computational con-
straints, we constrain the network to operate on individ-
ual frames as shown in Fig. 1. Each frame xt ∈
RH×W×C is passed through the Convolutional Neural Net-
work (CNN). The controller determines which frames xt

for t ∈ {1, . . . , T} are temporally salient. If salient, the
CNN(xt) is passed to the Language Recurrent Neural Net-
work (LRNN). This controller also highlights key regions
in xt used in the final diary using only one backward pass
through the CNN-LRNN network. This method of finding

1

which parts in xt have the highest influence in the generated
captions efficiently reuses the original network. Therefore
the controller serves two roles: 1) highlights parts of the
video salient in time and 2) highlights small key regions
of each sampled xt salient in the space. Finally, we also
provide low-level optimization using 1) matrix factorization
with retraining on the LRNN and 2) field-programmable
gate array (FPGA) implementation for the CNN forward
pass.

This paper highlights the tensions between optimizing
for computational efficiency and designing for better net-
work performance. For example, one of the questions we
answer is how do we best integrate time-domain informa-
tion. Should many adjacent frames in the video sequence
be used to caption a salient scene although it would entail
more complex and often times more computations? Should
we use an explicit or a learned neural controller to sample
salient frames in time where the explicit controller is an ef-
ficient vector-vector operation and the neural controller is
an Long Short-Term Memory (LSTM)?

1.1. Contributions

We have three main contributions:

1. Because the main computational bottleneck is in the
LRNN, we design a temporal sampler using CNN fea-
tures to sample only key frames in the video sequence
and to minimize the number of language RNN forward
passes. We enjoy over 1) > 100× decrease in num-
ber of saved frames, 2) 7.4× improvement in speed-up,
and 3) 8× increase in energy efficiency.

2. at each temporally-salient frames, we caption the
frame and perform one backward pass to compute an
attention map that attends to the region of interest de-
scribed by the generated captions.

3. we provide low-level optimization using matrix factor-
ization on the LSTM matrices in the LRNN with re-
training. This allows a 1.2× speedup. In order to im-
prove CNN efficiency, we explore FPGA implementa-
tion on the CNN.

2. Related Work
Recent state-of-the-art image caption generation con-

tains CNN-RNN architectures [8]. And there have been
major advances to extend to video captioning [5]. However
as demonstrated in [9], video frames contain highly redun-
dant temporal information which leads to modest improve-
ments in video classification over single-frame baselines.

A fundamental challenge is how and when to sample
frames. Sampling too fast yields little new information
and sampling too slow may lose too much. Furthermore,
this sampling ought to be efficient on an embedded system.

Many paper discuss methods to find key frames in a video
sequence using clustering techniques for frames and using
motion [12, 19]. In similar spirit, our method can be inter-
preted as online clustering and is performed using the net-
work without external hand-crafted motion energy models.
Similarly, to extract key spatial regions of interest in the
frame, we choose to reuse the same network for captioning.
This is commonly performed using saliency maps in con-
ventional CNN architectures [17]. However, we examine
the end-to-end interaction between xt and the caption gen-
eration outputs of the RNN, which is inspired by [21] but
which our method requires only 1 backward pass.

Low-level computational optimization such as matrix
factorization (tensorification) on FC layers (usually the fi-
nal layer) have been recently proposed [14, 16] to reduce
model size and runtime. We incorporate this into the LSTM
matrices of the LRNN with retraining. Implementation of
this system on the TX1 is inspired by the work of [4] that
deployed Neural Talk [7] on the Nvidia TK1 embedded
system. There are limited works on deep learning on FP-
GAs. However, both works [22, 6] create dedicated con-
volutional cores designed with optimal compute bandwidth
versus memory bandwith in mind.

3. Methods

Throughout this work and shown in Fig. 1, we use
VGG-16 [18] for the CNN with the last fully-connected
layer (FC) removed and a one-hidden layer LSTM with a
sequence length of 16 for the LRNN. We build upon the
framework of NeuralTalk 2 [7] and use Torch [2] for all
experiments and Xilinx Vivado for FPGA development of
the CNN. For computational efficiency, we use an explicit
controller to determine which frames are salient-in-time but
also explore an LSTM alternative. We primarily focus on
the optimization of the LRNN; this is because without any
optimization the average speed of the LRNN forward pass is
44× that of the CNN forward pass. All computation times
in this paper are computed using the lua os.clock call. As
shown in Table 1, the LRNN forward pass is the compu-
tational bottleneck. Therefore our goal is to minimize the
number of LRNN forward passes on frames that are tem-
porally highly redundant in context information using the
CNN features.

CNN LRNN All
Forward-Pass Time (ms) 0.7 310 390

Table 1: Average execution time (milliseconds) in CNN-
LRNN forward passes during frame-to-caption inference.
The input to the CNN is a single center-cropped 224× 224
frame.

2

We evaluate our methods on the MPII Movie Descrip-
tion Dataset [15] to train the CNN-LRNN network for im-
age caption generation. This dataset contains short clips
from movies and captions. Since our network operates on
individual frames, we save only the frame that appears in
the center of each clip and label it with the correspond-
ing caption. During training and factorization with retrain-
ing, ≈ 1700 frames and captions from Harry Potter 6 and
7 movies are used with ≈ 100 frames set aside for vali-
dation. We use the last Harry Potter movie for test with
≈ 1000 frames. Both the original and modified captions
were used. To evaluate our methods on real-life images, we
use the pretrained model from NeuralTalk2 with finetuning
(retraining) using MSCOCO2014 [11].

3.1. Temporal sampling and spatial attention

In order to reduce the number of saved frames in a real-
time video acquistion, we present a computationally cheap
method in Algorithm 1 that senses for changes in context
and samples the frames at these key frames. Fig. 2 illus-
trates the CNN features for a 2500-frame video clip with
redundant contextual information. We use these CNN fea-
tures to determine how to sample.

Figure 2: CNN features over time in a video sequence with
highly redundant temporal information.

Algorithm 1 Temporal and spatial sampling

1: procedure SAMPLE(x)
2: given γ, the detection threshold, and K, the LSTM

maximum time-span.
3: repeat
4: 1̄. Let yt ←CNN(xt).
5: 2. break if t = T .
6: 3. if ||ycluster − yt||v ≥ γ or LSTM(y) ≥ γ
7: ycluster ← mean(yt, ycluster).
8: zt ← LRNN(yt).
9: Ω = argmax zt (across word indices).

10: xts ← xt� backCNN(backLRNN(1(Ω)))
11: return xts.

The choice of norm v can range from 2 to∞. This hy-
perparameter is chosen based on how much the user empha-
sizes a few large changes or many small changes in CNN
features over time. In our demonstration, we set v = 5. We
also compare the performance of an explicit controller to
that of a learned LSTM controller.

The single-layer LSTM controller is trained to minimize
the regression MSE loss ||ztsalient − LSTM(CNN(xt))||2.
The labels ztsalient contains 1’s at salient time-stamps and 0’s
everywhere else, and a gaussian filter is applied to smoothen
sharp 1− 0 transitions.

3.2. Computational and hardware optimizations

We propose two low-level optimizations: 1) factor-
ing the LSTM weight matrices Wih ∈ R

m×p,Whh ∈
R

m×p,Wout ∈ Rn×p with retraining in the 1-layer LRNN
language model, and 2) accelerating the CNN in an FPGA.

Figure 3: The distribution of singular values in log-scale of
Wih,Whh,Wout on the pretrained LRNN model.

Figure 4: Matrix factorization is used on the LSTM matri-
ces to reduce the number of multiply-and-accumulate oper-
ations.

We motivate factorization on the LSTM matrices in order
to accelerate the speed-up of the LRNN forward pass. In
Fig. 3, the singular values of Wih,Whh,Wout are heavily
distributed around 0. This provides an opportunity for low-
rank matrix factorization to reduce the number of multiply-
and-add operations in the forward pass as shown in Fig. 4.
The algorithm for factorization and retraining is illustrated
in Algorithm 2.

3

Without factorization, one forward pass through the
LRNN requires 2np + mp = 12.1 × 106 multiply-and-
add operations to compute one element (word index) of the
output vector zti , which holds the unnormalized log prob-
abilities of the words in the dictionary and the end token.
Although this number is comparable to the forward pass
through the CNN (dominated by the 4096 × 4096 FC lay-
ers), the LRNN performs these multiply-and-add operations
a maximum of 16 times.

With factorization, one LRNN forward pass requires
only 2(nr + rp) + mr + rp multiply-and-add operations,
where r is the rank of all the matrices. If r ≈ 150, we need
only 2.7 × 106, which would entail a 4.5× reduction over
the unfactored case. To ensure that factorization does not af-
fect LRNN performance, we retrain over the entire network
with the factored matrices included in the new architecture
and initial model.

Algorithm 2 Training with factored LSTM matrices

1: procedure TRAIN-CNN-LRNN(factor with rank r)
2: B(1), C(1) = argmin

B(1)∈Rn×r,C(1)

||Wout −B(1)C(1)||F

3: B(2), C(2) = argmin
B(2)∈Rm×r,C(2)

||Wih −B(2)C(2)||F

4: B(3), C(3) = argmin
B(3)∈Rm×r,C(3)

||Whh −B(3)C(3)||F

5: initialize CNN with VGG-16 conv. weights.
6: initialize LRNN with B(i), C(i) for i = 1, 2, 3.
7: train CNN-LRNN jointly using Adam solver.

Figure 5: Embedded Jetson TX1 (left) and VC707 FPGA
(right) development boards.

We evaluate computational and hardware performance
using the Jetson TX1 and VC707 FPGA development kits
as pictured in Fig. 5 using Vivado [3]. Because of limited
time and constraints on the maximum configurable logic
block (CLB) utilization of the FPGA, we only deploy the
CNN on the VC707.

4. Experiments and Analysis
In order to evaluate our methods as described in Sec-

tion 3, we first train our CNN-LRNN model on MPII us-
ing Adam solver [10] with model and validation check-
points every 3000 iterations with training and validation

mini-batch size of 50 image-sentence pairs. All captions
for the training set are converted to lower-case and all words
that occur less than 2 times are removed. We also clip gradi-
ents elementwise for the LRNN training and apply dropout
in the CNN layers. The softmax output of the LRNN com-
putes the unnormalized log-probabilities of words across
the dictionary, and the log-loss criterion over the words is
the objective function. Convergence in validation loss is
achieved after a couple thousand iterations for the unfac-
tored LRNN.

Figure 6: Training and validation loss curves on MPII. Two
sets of curves are shown: 1) unfactored LRNN and 2) fac-
tored LRNN.

The training and validation log-loss is shown in Fig. 6
without and with matrix factorization on all three LRNN
LSTM matrices (Wih,Whh,Wout) for varying ranks r. The
final test loss is 2.9 for unfactored training and 2.9 with
factorization and retraining.

4.1. Temporal sampling and spatial attention from
generated captions

We first compare the sampling method as presented in
Algorithm 1 with the baseline method that uses the raw pix-
els on a short sequence of frames labelled event 1 and event
2 in Fig. 7. Frames 1 to 165 are marked Event 1 and con-
tains little motion and no changes in context while frame
165 is the time-stamp for when a change in context has oc-
curred. In this scenario, a new object enters the camera’s
field of view.

4

Figure 7: Detection detect(yt) = ||ycluster − yt||5 as used in
Algorithm 1 for a short clip. The signal to noise ratio using
the features is ≈ 8 dB higher than using the raw pixels.

We plot the normalized detect(yt) = ||ycluster − yt||p
where yt is the CNN feature vector of a frame at time t.
We compare this to the baseline where yt is simply the raw
pixels of the frame at time t. The detection responses indi-
cate a much higher signal to noise ratio using the features a
s opposed to the raw pixels. We also plot the result of using
an LSTM controller; while at frame 165 the learned func-
tion produces a high detect signal, it is still noisy at other
redundant frames such as in event 1 (high false positive).

Figure 8: t-SNE embedding visualization of a 30-second
clip in the Harry Potter test set with time flow. The colored
arrows represent the time flow from red to blue. Note the
clusters of many redundant frames.

We apply our proposed Algorithm 1 on both the Harry
Potter test set (2-hr. length movie) and a 15-minute video
demonstration across Stanford Campus. We compare our

Method False Pos. False Neg.
Uniform subsample1 0.51 0.34± 0.1
Using raw pixels1 0.32 0.28 ±0.1
Proposed explicit1 0.03 0.09± 0.1
Proposed learned1 0.03 0.4± 0.1
Uniform subsample2 0.63 0.25
Using raw pixels2 0.58 0.21
Proposed explicit2 0.00 0.11
Proposed learned2 0.15 0.31

Table 2: Sampling using Algorithm 1 on Harry Potter test
set1 of length 2-hours and user-video2 of length 15-minutes.
The total number of sampled frames is set approximately
the same for each video sequence.

method (proposed explicit) with naive uniform subsampling
and Algorithm 1 using raw pixels instead of the features.
Proposed explicit uses detect(yt) = ||ycluster−yt||5 and raw
pixels uses detect(xt) = ||xcluster − xt||2 It is empirically
observed that l2 norm produces the lowest false positive and
negative rates for raw pixels.

The false positive and false negative rates are shown
in Table 2. Each frame in the two sequences are human-
labelled. A false positive event is an event where the al-
gorithm incorrectly samples a frame that contains both the
same location and objects in the frame of view. A false
negative event is an event where the algorithm misses an
otherwise temporally-salient frame. To account for some
ambiguously salient events in the 2-hour movie, we add 0.1
margins to the false negative for the 2-hour movie.

Figure 9: Proposed method’s t-SNE embedding of the entire
2-hour movie in the test set.

5

Figure 10: t-SNE embeddings of subsampled (4×), proposed, naive sampling using raw pixels. The generated diary: A view
of a window in a house. A street scene with a bike on the side of the street. A building with a clock on the side of it. A view
of a building with a door open. A person standing in front of a building. A street with a traffic light on the side of it. A bike
parked on the side of a road. A bike parked in front of a building.

Figure 11: Sampled frames that the LRNN captions (on test set) and generates the spatial-attention maps based on its
generated captions.

Using proposed explicit, we see a more than 10× and
3× decrease in false positive and negative rates respectively
compared to using raw pixels. Unfortunately, the learned
controller does not work as well in false negative rates. This
is most likely due to the higher occurrence of false positives
during the training procedure. However, even if we penalize
false negatives higher than false positives in the optimiza-
tion, the performance does not improve.

We present qualitative t-SNE embeddings [20] that il-
lustrates the effect of subsampling. Fig. 8 illustrates the
t-SNE embedding using CNN features on a 30-second clip
of the test set. Using our proposed explicit method, we are
able to compactify all 100 salient frames from the 2-hour
length movie in one t-SNE visualization as shown in Fig. 9.
To qualitatively compare the sampling methods, we show t-
SNE on the user-video, which is a smaller video sequence.

6

Method Samples Avg. Time (ms) Power (W) Energy (J/frame)
Conventional ∼ 1000 390 9.7 to10.5 3.8
Proposed on TX1 9 52.6 9.0 to 10.5 0.47
Proposed factor-TX1 9 43.8 (r =150) 9.0 to 10.5 0.47
Projected FPGA (CNN) 9 33.3 < 1 < 0.03

Table 3: Performance results in hardware. The FPGA implementation is still an on-going development.

In Fig. 9, we visualize the t-SNE with subsampled 4× in
order to fit to screen, our sampling, and sampling using
raw pixels. We can clearly see that using raw pixels yields
frames that are redundant (high false positive) and missing
novel frames (high false negative).

Following the Algorithm 1, for each of the sampled
frames we feed the CNN features into the LRNN for caption
generation and backpropagate the derivatives from the gen-
erated words. This allows us to understand the end-to-end
interaction between the spatial regions of xt and the caption
generation outputs. Fig. 11 illustrates 4 representable sam-
pled frames that are captioned and element-wise multiplied
with the attention map. Before multiplication with xt, we
apply a small gaussian filter on the map to smoothen minor
high-frequency artifacts.

These attention maps highlight the regions of interest
corresponding to the captions but can also be used to hard-
segment the objects. Results of a simple hard thresholding
on the attention maps are shown in the Appendix (section
6). Performance of these saliency maps are not included in
this paper; these attention maps are used only for qualitative
purposes for the final generated diary.

4.2. Computational and hardware optimization

Since the LRNN is the computational bottleneck as
shown in Table 1, we perform matrix factorization on the
LSTM matrices as detailed in Algorithm 3.2. After fac-
torization for various ranks r, we retrain the entire CNN-
LRNN network. The hyperparameter r determines the sizes
of the factored matricesB(i), C(i); the larger the r the better
the approximation of the unfactored matrix in the Frobenius
sense but the greater the number of matrix operations. As
we show in Fig. 6, retraining with an 50 < r allows conver-
gence of validation loss to near unfactored levels. However,
for r = 50, convergence is dramatically impeded.

Using the best model checkpoints in the factorization
with retraining process, we measure the LRNN forward
pass runtime in Fig. 12. The test loss (log-loss) is also
shown; the test loss for this experiment is a direct measure
of the dissimilarity of the generated words and the ground
truth captions. With even a large r ≈ 500, we can boost
the runtime by about 5% without any loss in caption gener-
ation performance. This can be pushed to r ≈ 250 where
the best test loss exceeds the best test loss of the unfactored

case with a runtime close to 1.2× the unfactored case.

Figure 12: Test loss after retraining for varying matrix fac-
torization rank r.

We summarize the performance of our embedded system
on the TX1 using Algorithm 1 and 2 in Table 3. Here, we
clearly see the 100× reduction in the number of sampled
frames, 7.4× speed-up in runtime (8.9× with factorization
and retraining), and increase in energy efficiency by 8×.

Figure 13: Proposed multiplier-less algorithm to evaluate
the dot products in the CNN forward-pass as shown in [13].

7

Figure 14: Architectural floorplan on FPGA and the power
estimated using Xilinx Vivado environment.

By subsampling the forward pass through the LRNN,
the computational bottleneck is shifted to the CNN forward
pass. In order to increase energy efficiency and runtime of
the CNN pass, we explore FPGA acceleration, which con-
tains dedicated convolutional logic with distributed memory
for the weights and activations.

We modify the network that we published recently [13]
and deploy it on the FPGA. The network is a VGG-like net-
work without any FC layers. The algorithm is shown in
Fig. 13; this algorithm contains no dedicated multipliers.
The floorplan illustrating the CLB utilization and power are
shown in Fig. 14. Functionality of the FPGA-CNN has
been verified with the LRNN in simulation. However, end-
to-end functionality of the FPGA-CNN and LRNN is still
an on-going work. Using an FPGA for the CNN allows us
to improve frame rates and potentially reduce power by an
order of magnitude over the embedded TX1.

5. Conclusion
In this paper, we design a real-time video captioning em-

bedded system that takes an ultra-long video stream (15
minutes to 2 hours) and samples salient frames in time, gen-
erates captions on the objects of these frames, and generates
attention maps that attend to these captions. We have three
contributions. First, we design a temporal sampler using
CNN features to sample key frames and to minimize the
number of LRNN forward passes. This yields a 100× re-
duction in the number of sampled frames, 7.4× speed-up
in runtime (8.9× with factorization and retraining), and in-
crease in energy efficiency by 8× on the embedded TX1.
Second, for each temporally-salient frame, we caption the
frame and compute an attention map that attends to the re-
gion of interest from the captions. Third, we apply matrix
factorization on the LRNN matrices with retraining allow-
ing 1.2× speedup and an increase in energy efficiency. We
finally explore FPGA acceleration for the CNN.

Immediate future work consists of moving the system
that is currently deployed in the TX1 development kit to just
the TX1 module. This allows for ultra-portability. We also

consider moving both the LRNN and CNN to the FPGA.
Finally, results using the LSTM-based temporal sampler
have shown some promise and could be used for end-to-
end training. Finally, we hope that this project will be part
of a larger robotics system very soon.

6. Appendix - Hard Attention
We do not explore segmentation or localization in this

paper. However, we show preliminary qualitative hard at-
tention maps generated from captions in Fig. 15.

Figure 15: Thresholded spatial attention maps where the
spatial regions are set to 0 if backCNN(backLRNN(1(Ω)))
is smaller than a predetermined threshold. These maps and
captions are generated from the unthresholded image on the
test set.

7. Acknowledgements
We thank the entire teaching staff for their great sugges-

tions and teaching! We thank Daisuke Miyashita!

References
[1] Nvidia Jetson TX1. http://www.nvidia.com/

object/jetson-tx1-module.html, 2015.
[2] Torch. https://github.com/torch/torch, 2016.
[3] Vivado design suite. http://www.xilinx.com/

products/design-tools/vivado.html, 2016.
[4] S. Das and S. Han. Neuraltalk on embedded system and gpu-

accelerated rnn. CS224D Project, 2015.

8

http://www.nvidia.com/object/jetson-tx1-module.html
http://www.nvidia.com/object/jetson-tx1-module.html
https://github.com/torch/torch
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html

[5] J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach,
S. Venugopalan, K. Saenko, and T. Darrell. Long-term recur-
rent convolutional networks for visual recognition and de-
scription. arXiv preprint arXiv:1411.4389, 2014.

[6] C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and
E. Culurciello. Hardware accelerated convolutional neural
networks for synthetic vision systems. In Circuits and Sys-
tems (ISCAS), Proceedings of 2010 IEEE International Sym-
posium on, pages 257–260. IEEE, 2010.

[7] A. Karpathy. Neuraltalk 2. https://github.com/
karpathy/neuraltalk2, 2015.

[8] A. Karpathy and F. Li. Deep visual-semantic align-
ments for generating image descriptions. arXiv preprint
arXiv:1412.2306, 2014.

[9] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,
and L. Fei-Fei. Large-scale video classification with convo-
lutional neural networks. In CVPR, 2014.

[10] D. P. Kingma and J. Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[11] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Gir-
shick, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick. Microsoft COCO: common objects in context. arXiv
preprint arXiv:1405.0312, 2014.

[12] T. Liu, H.-J. Zhang, and F. Qi. A novel video key-
frame-extraction algorithm based on perceived motion en-
ergy model. IEEE Transactions on Circuits and Systems for
Video Technology, 13(10):1006–1013, Oct 2003.

[13] D. Miyashita, E. H. Lee, and B. Murmann. Convolutional
neural networks using logarithmic data representation. arXiv
preprint arXiv:1603.01025, 2016.

[14] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov. Ten-
sorizing neural networks. CoRR, abs/1509.06569, 2015.

[15] A. Rohrbach, M. Rohrbach, N. Tandon, and B. Schiele. A
dataset for movie description. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[16] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and
B. Ramabhadran. Low-rank matrix factorization for deep
neural network training with high-dimensional output tar-
gets. In Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, pages 6655–6659,
May 2013.

[17] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. arXiv preprint arXiv:1312.6034,
2013.

[18] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[19] S. Uchihashi and J. Foote. Summarizing video using a
shot importance measure and a frame-packing algorithm. In
Acoustics, Speech, and Signal Processing, 1999. Proceed-
ings., 1999 IEEE International Conference on, volume 6,
pages 3041–3044 vol.6, Mar 1999.

[20] L. van der Maaten. Barnes-hut-sne. CoRR, abs/1301.3342,
2013.

[21] K. Xu, J. Ba, R. Kiros, K. Cho, A. C. Courville, R. Salakhut-
dinov, R. S. Zemel, and Y. Bengio. Show, attend and tell:
Neural image caption generation with visual attention. arXiv
preprint arXiv:1502.03044, 2015.

[22] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. Opti-
mizing fpga-based accelerator design for deep convolutional
neural networks. In Proceedings of the 2015 ACM/SIGDA
International Symposium on Field-Programmable Gate Ar-
rays, FPGA ’15, pages 161–170, New York, NY, USA, 2015.
ACM.

9

https://github.com/karpathy/neuraltalk2
https://github.com/karpathy/neuraltalk2

