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Abstract

Frame-to-frame stochasticity remains a big challenge for
video prediction. The use of feed-forward and recurrent
networks for video prediction often leads to averaging of
future states. This effect can be attributed to the networks’
limited ability to model stochasticity. We propose the use
of conditional variational autoencoders (CVAE) to model
frame-to-frame transitions. In addition, we provide a novel
extension of the standard VAE architecture by incorporat-
ing the use of a Gaussian mixture conditional prior and
resolve the issue of the intractable Kullback-Leibler diver-
gence between Gaussian mixtures via variational approxi-
mation. We tested our proposed Gaussian mixture condi-
tional VAE (GM-CVAE) on a simple video-prediction task
involving a stochastically moving object. Our architecture
demonstrated superior performance, achieving significantly
lower rates of blurring/averaging in comparison to a feed-
forward network and a vanilla conditional VAE.

1. Introduction
Deep reinforcement learning has largely focused on the

use of deep architectures with model-free reinforcement
learning techniques to tackle complex, high-dimensional
tasks. Most notably, Deep Q-Networks (DQN) have
demonstrated remarkable success in matching (and some-
times surpassing) human-level control on a variety of Atari
2600 games [10, 5]. Recently, the combination of deep
learning with Monte Carlo Tree Search (MCTS) has also
garnered much success in games with long-term rewards
[14]. However, the use of MCTS requires learning the tran-
sition model [9], making it challenging to use MCTS and
other model-based approaches in vision-based reinforce-
ment learning.

The difficulty stems from the fact that a model-based
approach for vision-based reinforcement learning requires
one to perform next-frame prediction conditioned on the
current frame and the current action taken by the agent.
Modeling video is in and of itself a challenging endeavor,
and recent studies have focused on modeling simple video

data where frame-to-frame transitions are largely determin-
istic [11]. Attempts to perform transition state modeling
in vision-based RL via the use of action-conditional video
prediction have successfully captured the movements of de-
termnistic elements within the visual environment, but have
great difficulty handling stochasticity [11].

It has previously been noted that “highly-structured”
data are data that have high signal-to-noise ratio and con-
tain a complex relationship between the underlying factors
of variation and the observed data [1]. While the research
done by [1] focused mainly on speech data, we believe the
same characteristics are present in video data. The existence
of stochasticity means that a deterministic network cannot
be used. Furthermore, the structured nature of video and
the means by which the underlying factors of variation af-
fect the observed data suggest that sampling pixels indepen-
dently (as is the case with a standard RNN) is not sufficient.

In this paper, we focus on the challenge of modeling
stochastic elements in videos. We demonstrate that a con-
ditional variational autoencoder can successfully handle the
highly-structured yet stochastic nature of video data. We
further demonstrate that the use of a conditional variational
autoencoder with Gaussian posterior and Gaussian mixture
prior can significantly improve sampling accuracy.

2. Related Work
2.1. Action-Conditional Video Prediction

[11] proposed the use of multiplicative action-
conditional transformations to tackle the problem of
modeling the transition function for vision-based reinforce-
ment learning. Their architecture involved the use of an
autoencoder framework. To perform an action-conditional
transition, they perform their frame transition in the encod-
ing space, generating a new encoding vector by using a
multiplicative interaction between the action vector and the
encoding of the current frame. In particular,

hdect = Wdec(Wenchenct �Waat) + b, (1)

where henct is the encoding of the current frame, hdect is the
action-transformed encoding, at is the one-hot vector repre-
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sentation of the action at time t, and Wdec,Wenc,Wa, and
b are learned weights for performing the multiplicative in-
teraction. This approach relies on a deterministic transition
in the encoding space and, as a result, is limited in its ability
to deal with stochasticity. Most notably, their proposed ar-
chitecture is unable deal with the stochastic movements of
the ghosts in Ms. Pacman, as can be seen in their video at
https://youtu.be/cy96rtUdBuE.

2.2. Deep Generative Models

In order to develop an accurate transition model for
vision-based reinforcement learning with stochastic ele-
ments, it is critical that the predicted next-frame must
be generated probabilistically in alignment with the dis-
tribution of the true transition model. Given the high-
dimensionality of frame-to-frame transitions, it is natural to
consider the use of deep generative models.

Two prominent approaches have gained much popularity
in the recent literature on deep generative models. [3] pro-
posed the use of generative adversarial networks (GAN),
which employs an adversarial framework to train a gener-
ative model that mimics the true transition model. GANs,
however, are well-known to be difficult to train, and the ap-
plication of GANs as conditional generative models is still
in its infancy [2, 12]. Since transition models for vision-
based reinforcement learning requires conditioning on the
current frame (a very high-dimensional variable), we be-
lieve that a variational autoencoder is more suited for the
task.

In contrast to generative adversarial networks, vari-
ational autoencoders were developed as a variational
Bayesian approach to deep generative models [7, 8]. At
its core, the variational autoencoder is a directed graphical
model involving a latent variable z generated from the prior
distribution pθ(z) and the data y generated from pθ(y | z)
(which we denote the generative distribution).

In general, computing the posterior pθ(z | y) (also
called the recognition distribution) is intractable. We there-
fore compute an approximation qφ(z | y) using variational
Bayesian inference. Under the variational Bayesian frame-
work,

log pθ(y) ≥ Eqφ(z|y)[− log qφ(z | y) + log pθ(y, z)] (2)

=−DKL(qφ(z | y)‖pθ(z))
+ Eqφ(z|y)[log pθ(y | z)]

(3)

where the RHS serves as the variational lowerbound, LVAE.
[8] proposes to use the variational lowerbound as a surro-
gate objective function, thus allowing the parameters of the
VAE to be learned via stochastic gradient descent.

In practice, neural networks are used to model the recog-
nition and generative distributions. The expectation term
in the variational lowerbound is then approximated with

Monte Carlo estimation. Assuming Gaussian latent vari-
ables, the empirical estimate of the objective for Gaussian-
VAE is then written as,

L̃VAE(y; θ, φ) =−DKL(qφ(z | y)‖pθ(z))

+
1

L

L∑
l=1

log pθ(y | z(l)),
(4)

where z(l) is a random sample drawn from the recognition
distribution qφ(z | y). Suppose the recognition distribution
parameterizes qφ(z | y) as N (µ,σ2). We can introduce
a function gφ(y, ε

(l)) that computes the parameters µ,σ
for given y and performs the transformation gφ(y, ε(l)) =
µ + σε(l). This allows the use of the reparameterization
trick, exploiting the fact that sampling z(l) ∼ N (µ,σ2) can
be rewritten as z(l) = gφ(y, ε

(l)), where ε(l) ∼ N (0, I).
This trick allows backpropagation through the Gaussian la-
tent variables, which is crucial when training the VAE. We
elaborate on the reparameterization trick in §4.1.

2.3. Conditional Variational Autoencoder

Because the transition model involves conditioning on
the current state and action, the variational autoencoder can-
not be applied directly. Instead, we use a natural extension
of the framework called the conditional variational autoen-
coder. The CVAE framework extends VAE simply by in-
cluding the additional factor that the prior, recognition, and
generative models may change when conditioned on a third
variable x. The new exact and empirical objective now take

θ

z yφ

x

Figure 1. The directed graphical model associated with the condi-
tional variational autoencoder architecture. Solid lines denote the
generative model pθ(z | x)pθ(y | z,x). Dashed lines denote the
variational approximation qφ(z | x,y) to the intractable posterior
pθ(z | x,y). The variational φ and generative θ parameters are
learned jointly.
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their respective forms,

LCVAE(x,y; θ, φ) =−DKL(qφ(z | x,y)‖pθ(z | x))
+ Eqφ(z|x,y)[log pθ(y | x, z)]

(5)

L̃CVAE(x,y; θ, φ) =−DKL(qφ(z | x,y)‖pθ(z | x))

+
1

L

L∑
l=1

log pθ(y | x, z(l)),
(6)

Note the high degree of similarity between (4) and (6). Fur-
thermore, if x is simply a non-informative constant, (6) re-
duces to (4). The graphical model associated with CVAE is
illustrated in Figure 1.

3. Evaluation of Gaussian-CVAE
By far the most common set-up is to assume that both

the prior and recognition models are Gaussian distributions
[1, 4, 15]. However, not only is it not necessary to assume
a Gaussian distribution, it is also not required for the prior
and recognition distribution to come from the same fam-
ily of distributions. Within the context of encoding images
(and, by extension, video frames), it is therefore important
to critically evaluate the appropriateness of both the Gaus-
sian prior and the Gaussian posterior.

3.1. Gaussian Posterior

Broadly speaking, the conditional variational autoen-
coder can be thought of as: given x, try to encode y into
z. It seems intuitively desirable for y to have exactly one
encoding z. Thus, the use of a unimodal Gaussian distribu-
tion for the recognition model feels most natural, with the
hope that recognition model learns to generate a distribu-
tion qφ(z | x,y) that is simultaneously singly-peaked and
has small variance.

3.2. Gaussian Prior

The use of a Gaussian prior, however, is noticably lim-
iting. As part of the variational Bayesian framework, it is
vital that we have a good variational approximation of the
posterior. If it is true that we have a reliable variational ap-
proximation of the posterior, it follows that,

pθ(z | x,y) ≈ qφ(z | x,y) (7)

pθ(z | x) ≈
∫
y

pθ(y | x)qφ(z | x,y)dy. (8)

Since the RHS is the true encoding distribution learned by
our autoencoder, (8) essentially describes that a necessary
condition is for the prior to match the encoding distribu-
tion. This makes intuitive sense too; because we draw from
the prior distribution during sampling time, it is crucial that
prior distribution reflects the actual encoding distribution
that our autoencoder has learned. As such, the use of the

Gaussian prior imposes the strict requirement that the en-
coding distribution cannot be multi-modal. Otherwise, the
trained CVAE will perform poorly when used as a gener-
ative model. This poses a serious limitation, as there are
many situations where a multi-modal encoding distribution
arises naturally. To address these issues, we propose an al-
ternative to the Gaussian-CVAE.

4. Proposed Architecture

In this section, we provide an example of an architec-
ture that solves the issue mentioned in §3.2. Our proposed
model, the Gaussian mixture CVAE (GM-CVAE), uses a
Gaussian for the recognition model but a Gaussian mixture
for the conditional prior model. Following [8], the choice of
distribution for the generative model can either be Gaussian
or Bernoulli for continuous and binary data respectively.
For simplicity, we focus on the use of binary data.

Let the conditional prior model be a neural network that
outputs parameters parameterizing a mixture of k Gaussians
with m dimensions. For simplicity, we assume all compo-
nent Gaussians to have diagonal covariance structure. Thus,

pθ(z | x) =
k∑
i=1

πiN (z;µi,σ
2
i ), (9)

where µi ∈ Rm, logσ2
i ∈ Rm,π ∈ Rk are the output of

the conditional prior network. To ensure
∑k
i=1 πi = 1, we

use a softmax layer to generate π. The recognition network
generates anm-dimensional Gaussian distribution, and thus
follows a similar set-up described in [8],

qφ(z | x,y) = N (z;µ,σ2), (10)

where µ ∈ Rm, logσ2 ∈ Rm are the output of the recog-
nition network. Finally, the generative model models each
pixel using an independent Bernoulli distribution. For an
image with n pixels,

pθ(y | x, z) = p, (11)

where p ∈ Rn is the output of the generative network de-
noting the Bernoulli parameter for each pixel.

4.1. Reparameterization Trick

In the original VAE architecture proposal by [8], several
other families of distributions were considered for the pos-
terior and prior. The use of a Gaussian mixture, however,
was not mentioned. We suspect that this is in part because
the use of a Gaussian mixture for the posterior distribution
makes the application of the reparameterization trick chal-
lenging. The reparameterization trick is a vital component
of the algorithm, because it allows one to easily take the
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derivative of Eqφ(z|x,y)[log pθ(y | x, z)] with respect to φ.
It does so by noting that,

EN (z;µ,σ2)[f(z)] = EN (ε;0,I)[f(µ+ σε)] (12)

≈ 1

L

L∑
l=1

f(µ+ σε(l)), (13)

where ε(l) ∼ N (0, I), f(z) = log pθ(y | x, z). If the pos-
terior distribution were to be a Gaussian mixture, however,
it is not readily apparent how the reparameterization trick
can be applied. Fortunately, our proposed model restricts
the use of the Gaussian mixture to the prior and retains the
use of a Gaussian distribution for the posterior. Thus, we
are able to use the original reparameterization trick as-is.

4.2. Objective Function

Another issue with the introduction of a Gaussian mix-
ture stems from the intractability of the KL-divergence term
when a Gaussian mixture is involved. One solution, pro-
posed by [8], is to perform Monte Carlo estimation of
the KL-divergence term (they denote this as the generic
Stochastic Gradient Variational Bayes estimator L̃A). This
approach, however, introduces significant variance into the
estimator and causes the gradients to become very noisy,
curtailing the effectiveness of gradient descent. Fortunately,
[6] showed that it was possible to derive a closed-form vari-
ational approximation of the KL-divergence term between
two Gaussian mixtures f and g,

DKL(f‖g) ≈∑
i

wi log

∑
i′ wi′ exp(−DKL(fi‖fi′))∑
j πj exp(−DKL(fi‖gj))

.
(14)

where fi, fi′ , gj indexes the component Gaussians of the re-
spective Gaussian mixtures, and w and π denote the com-
ponent weights. Because only our prior distribution uses a
Gaussian mixture, we set f to be Gaussian and the expres-
sion simplifies to,

DKL(f‖g) ≈ log
1∑

j πj exp(−DKL(f‖gj))
(15)

= DvKL(f‖g). (16)

We denote the RHS as DvKL(f‖g), the variational approx-
imate KL-divergence. It is now possible to construct the
objective function used by the GM-CVAE model,

L̃GM-CVAE =−DvKL(qφ(z | x,y)‖pθ(z | x))

+
1

L

L∑
l=1

log pθ(y | x, z(l)),
(17)

where qφ(z | x,y) is a Gaussian distribution produced by
the recognition model, pθ(z | x) is a Gaussian mixture pro-
duced by the conditional prior model, and pθ(y | x, z(l)) is

a multivariate Bernoulli distribution produced by the gener-
ative model. In practice, we set L = 1 when a sufficiently
large mini-batch is used. This function is fully differentable
and enables the use of backpropagation to efficiently tune
the model parameters θ and φ.

5. Experiments

We propose two experiments to demonstrate the superi-
ority of the GM-CVAE. The first experiment is a toy dataset
that specifically reflects the inability of the Gaussian-CVAE
to handle a multi-modal encoding distribution. The second
experiment illustrates the application of GM-CVAE to mod-
eling frame-to-frame transitions when the video contains a
stochastically moving object.

5.1. Two-Image Dataset

We propose an image dataset consisting only of two dis-
tinct images (see Figure 2). As such, an optimal encoding
will necessarily result in an encoding distribution with two
peaks. For both the Gaussian-CVAE and GM-CVAE, we
use only a single dimensional latent variable z. Unlike the
Gaussian-CVAE, the GM-CVAE is initialized to have three
component Gaussians (note that we overestimate the num-
ber of component Gaussians).

Figure 2. In this dataset, we seek to encode each image y into
z using a non-informative constant for x. An optimal encoding
necessarily yields two peaks.

5.2. Stochastic Sprite Dataset

[11] has demonstrated the success of the action-
conditional architecture for modeling the position of the
agent in the next-frame, but not the position of a stochas-
tic object. As such, we focus our transition modeling task
solely on a stochastically moving object for simplicity (in
other words, we deal with an actionless environment). We
use a dataset consisting of a free-moving object that ran-
domly chooses a direction when it reaches one of nine
checkpoints spread uniformly across the video frame. Sam-
ple trajectories are shown in Figure 3. To apply the con-
ditional variational autoencoder to next-frame prediction,
simply set the current frame to be x and the next-frame to
be y in (17).
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Figure 3. We use a dataset consisting of a sprite that pivots stochas-
tically at nine locations spread uniformly across the frame. Three
sampled trajectories are shown above, one in each row.

5.3. Details of Training

In all experiments a minibatch of 200 was used. The con-
ditional prior, recognition, and generative networks are all
constructed using two fully-connected layers. ReLU activa-
tions were applied to all hidden layers, and a learning rate of
α = 0.001 was used. The hidden layer is fixed to have 400
units. The number of units in the output layer is problem-
dependent. For the two-image dataset, the Gaussian-CVAE
uses a 1-dimensional Gaussian. Thus the prior and reconig-
ition networks contain two output units (one for µ and
one for logσ2). The GM-CVAE uses a 3-component 1-
dimensional Gaussian mixture as the prior. Thus the prior
network contains nine output units (µ1:3, logσ

2
1:3,π). The

generative network has number of output units equal to the
number of pixels.

For the stochastic sprite dataset, a 4-component 1-
dimensional Gaussian mixture is used as the prior for
the GM-CVAE. All other architecture details resemble the
aforementioned architecture for the two-image dataset. All
methods were implemented with Torch and trained on an
NVIDIA GRID K520 GPU [13]. The code is publicly ac-
cessible at https://github.com/RuiShu/cvae.

6. Results and Analysis

6.1. Two-Image Dataset

Our toy example confirms our hypothesis that the
Gaussian-CVAE functions poorly when applied to a dataset
whose encoding distribution is multi-modal. Not only is it
easy to see a clear difference between the prior distribution
versus the encoding distribution (Figure 4), but it is also
possible to see the impact this has on sampling—causing
the Gaussian-CVAE to be prone to averaging over the two
images (Figure 5). In contrast, the GM-CVAE successfully
matches the prior distribution with the encoding distribu-
tion and was far less likely to average over the two images

(a) Gaussian Prior (b) Gaussian-CVAE Encoding

(c) Gaussian Mixture Prior (d) GM-CVAE Encoding

Figure 4. Histograms for the Gaussian prior and Gaussian-CVAE
encoding shown in the first row. Using a Gaussian distribution for
the prior fails to capture the multi-modality of the encoding distri-
bution. Histograms for the Gaussian mixture prior and GM-CVAE
encoding shown in the second row. Using a Gaussian mixture for
the prior successfully captures the multi-modality of the encoding
distribution. Note that the GM-CVAE encoding is not symmetric.
This is because the solution space for the encoding distribution is
non-unique. To address this issue, future work will consider regu-
larizing the conditional prior network’s output.

(a) Gaussian-CVAE Samples (b) GM-CVAE Samples

Figure 5. The Gaussian-CVAE is more likely to sample incorrectly
in comparison to the GM-CVAE.

during sampling.
It is also important to note that the GM-CVAE produced

a prior distribution with only two Gaussian components de-
spite us initializing it with three components. We attribute
this to the successful application of backpropagation, which
allowed the network to learn to reduce one of the three com-
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ponent contributions to zero.

6.2. Stochastic Sprite Dataset

Figure 6. By row: sampled trajectories from a multi-layer percep-
tion (MLP), Gaussian-CVAE, and GM-CVAE respectively. The
full video is available at: https://youtu.be/5fe30qSxW5s.

Figure 7. Semi-log plot of the probability that the generated frame
is within some margin of error. The probability is plotted as a
function of the tolerance value. x-axis is on log10 scale. The
GM-CVAE framework demonstrates superior robustness, avoiding
large errors when compared to Gaussian-CVAE.

As expected, a simple feedforward network suffers when
attempting to predict a stochastically moving object, re-
sulting in the averaging of multiple future states. Visual
inspection further reveals that the GM-CVAE models the
true transition model more accurately than the Gaussian-
CVAE. The GM-CVAE is less likely to sample a next-frame
that contains an averaging of multiple future states than the
Gaussian-CVAE. We believe that this is directly attributable
to the GM-CVAE’s ability to match the prior distribution
with the multi-modal encoding distribution.

Quantifying the extent to which the GM-CVAE adhered
to the true transition model in comparison to the Gaussian-
CVAE is a non-trivial task. As a proxy, we decided to use
an simpler metric that simply quantifies the extent to which

each sample frame deviates from the nearest L2 neighbor
from the sample space of the true transition model.

Concretely, let X be the set of all possible frames that
can be sampled from the true dataset, and let x̂t be the frame
sampled by either the GM-CVAE or the Gaussian-CVAE at
time t. We define the margin of error between the sampled
frame and the true dataset to be,

d = min
x∈X
‖x− x̂t‖2. (18)

Using this metric, it was possible for us to quantitatively
ascertain that GM-CVAE is less likely to generate an incor-
rect frame than Gaussian-CVAE (Figure 7).

7. Conclusion

Our results demonstrate that conditional variational au-
toencoders successfully handles stochastic elements that ex-
ist within video. By modifying the Gaussian-CVAE to in-
stead use a Gaussian mixture prior, we were able to signifi-
cantly reduce the likelihood of sampling an incorrect frame.
To the best of our knowledge, this is the first time a Gaus-
sian mixture has been suggested and implemented for vari-
ational autoencoders, as well as the first time variational au-
toencoders have been applied to stochastic video prediction.

Given the promising success of the CVAE with stochas-
tic video data, it is now possible to consider the incorpora-
tion of CVAE’s into an action-conditional framework, thus
creating a transition model that can be used for vision-based
reinforcement learning. In our future work, we will also
evaluate whether the CVAE architecture can successfully
handle a visual environment with multiple stochastic ob-
jects and whether the architecture remains effective as we
transition to more refined time-scales.
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