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Abstract

Here we present various methods to predict words and
phrases from only video without any audio signal. We em-
ploy a VGGNet pre-trained on human faces of celebrities
from IMDB and Google Images [1], and explore different
ways of using it to handle these image sequences. The
VGGNet is trained on images concatenated from multiple
frames in each sequence, as well as used in conjunction
with LSTMs for extracting temporal information. While the
LSTM models fail to outperform other methods for a va-
riety of reasons, the concatenated image model that uses
nearest-neighbor interpolation performed well, achieving a
validation accuracy of 76%.

1. Introduction

Visual lip-reading plays an important role in human-
computer interaction in noisy environments where audio
speech recognition may be difficult. It can also be ex-
tremely useful as a hearing aid for the hearing-impaired.
However, similar to speech recognition, lip-reading systems
also face several challenges due to variances in the inputs,
such as with facial features, skin colors, speaking speeds,
and intensities. To simplify the problem, many systems
are restricted to limited numbers of phrases and speakers.
To further aid in lip-reading, more visual input data can
be gathered in addition to color image sequences, such as
depth image sequences.

The dataset used here is a set of image sequences
(i.e. low-rate videos) that each show a person speaking a
word or phrase. The goal is to classify these sequences.
One of the main issues that prevents older methods is
that sequence lengths, and hence number of features per
sequence, vary widely. Therefore, various methods for
capturing temporal information were used to take all input
features into account.

The first method consisted of concatenating a fixed
number of images from a sequence into one larger image
which can then be passed through a VGGNet (see Figure

1), which used a set of weights pre-trained on faces [1].
This packed each sequence towards the front, leaving
blank spaces at the ends of shorter sequences. The second
method was similar, except we used nearest-neighbor
interpolation to stretch and normalize the number of images
per sequence.

The third method first passed each individual image
through the VGGNet to extract a set of features, and then
passed each sequence of features through several LSTM
layers, retrieving the classification label from the final
output. This method was attempted both with freezing the
VGGNet, speeding up training time, and end-to-end, taking
longer but allowing the VGGNet to be trained further on
this particular dataset.

In order to make the problem tractable, we formulate
it as a classification problem of detecting what words
or phrases are being spoken out of a fixed set of known
words and phrases. Each method received a single image
sequence as input, and produced a single word or phrase
classification label as output.

2. Related Work

In this section, we describe the related work done in this
field. Most of the work done in lip reading uses non neural
network approaches. They extract various features out of
the image and then use machine learning approaches like
SVMs to classify what was spoken.

Rekik et al in [2] propose HMMs as a way to perform
lip reading using only image and depth information. The
system consists of two main blocks – feature extraction and
speech recognition. The first step estimates the speakers
face pose using a 3D face model, including a 3D mouth
patch to detect the mouth. This is followed by motion and
appearance descriptors to generate features for the model –
for instance HOG (histogram of gradients). The second step
segments the speech video to look for frames corresponding
to the utterance. The features on these frames are fed to the
HMM for classification. The dataset is the same as what we
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Figure 1: VGGNet

use – MIRACL-VC1 [3]. The final results for the speaker
independent testing (where one speakers data is never
used during training) gives 69.7% accuracy for phrases
and 62.1% for words – giving an overall accuracy of 65.9%.

Rekik et al in [4] proposes a four step method for
attempting the task of lip reading – 3D face pose tracking,
mouth region extraction, feature computation and classifi-
cation using SVM. In addition to the 3D images, they also
make use of the depth information available in the dataset.
The dataset comprises of MIRACL-VC1, OuluVS [5] and
CUAVE [6]. An interesting detail in their implementation
is the system that performs speaker identification thereby
allowing the algorithm to learn different models based
on different speakers. They achieve 79.2% accuracy on
phrases and 63.1% accuracy on words, thereby giving an
overall accuracy of 71.15% on the entire dataset – on the
MIRACL-VC1 dataset.

Figure 2: LR system using 3D face pose tracking and SVM

Rekik et al in [3] (see Figure 2) and [7] propose an adap-
tive lip-reading system using image and depth data. The
algorithm is split into two main steps – first the mouth is
extracted using 3D face pose tracking and then features are
extracted and three different classifiers are used to get three
different results – HMM, SVM and kNN. The algorithm
is evaluated on three different datasets – MIRACL-VC1,
OuluVS and CUAVE. SVMs are observed to be the best
of the three giving an overall accuracy of 71.15%, with
HMMs at 65.35% and kNNs at 50.85% when one of the
speaker’s entire data is held out for validation/testing. They
employ a variety of features to input to their classifier – for
instance, HOG (histogram of gradients) and MBH (motion

boundary histograms).

Pei et al also use a non deep learning method for
lip reading in [8]. They use Random Forest Manifold
Alignment for training. They test their model on various
lip reading data sets and compare their results to different
approaches.

In [9], Ngiam et al use deep learning approaches
to understand speech using both audio as well as video
information. They show how using multiple modes assist
each other in better prediction. This falls in line with
one of our motivations for lip reading. Their architecture
consists of using Restricted Boltzmann machines (RBMs)
for each of audio and video modalities separately and then
combining them. Their video only accuracy for two of the
data sets they use are 64.4% and 68.7%.

Other methods take a different approach by instead
recognizing phonemes and visemes, the smallest visually
distinguishable facial movements when articulating a
phoneme. Shaikh et al in [10] use vertical optical flow to
train an SVM to predict visemes, a smaller set of classes
than phonemes. Other features of their method include
removing zero-energy frames and using interpolation to
normalize the number of frames. While they achieve a high
accuracy of 95.9%, a complex language model must be
placed on top of this model to predict words from visemes
in order to complete the process of lip reading. Noda et al
try a different method that uses CNNs to predict phonemes,
achieving an accuracy of 58% [11]. A GMM-HMM then
uses these predicted phoneme labels to predict individual
words, bringing their final lip reading accuracy to 37%.

Unlike the previous approaches, Wand et al tackle the is-
sue of variance in sequence length by using LSTM layers
on top of a neural network [12]. Their results were simi-
lar for NNs and CNNs, both showing improvement over an
SVM with HOG or Eigenlips features. Although they used
a relatively large dataset and all of their tests were speaker-
dependent i.e. the train and test data were taken from the
same speaker, this suggests that LSTMs could indeed show
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improvement over dedicated sequence classifiers such as
HMMs.

3. Dataset
In this section we describe the dataset we use, some of

its properties and the pre-processing we performed on it.

3.1. Dataset characteristics

We use the MIRACL-VC1 [3] dataset in our project.
The dataset was created from 15 people who spoke each
of ten words and ten phrases ten times leading to a total
of 15 × 20 × 10 = 3000 instances. Each instance is a
sequence of color and depth images of 640 × 480 pixels.
For example, the images for one instance is shown in
Figure 3. We only use the color image and discard the
depth part since to conform to the pre-trained VGGNet
model. The words and phrases in the dataset are listed in
Table 1

Figure 3: Example instance

Words Phrases

Begin Stop navigation.

Choose Excuse me.

Connection I am sorry.

Navigation Thank you.

Next Good bye.

Previous I love this game.

Start Nice to meet you.

Stop You are welcome.

Hello How are you?

Web Have a good time.

Table 1: Words and phrases in the MIRACL-VC1 dataset

The length of sequences varies from a minimum of 4
images to a maximum of 22 images for words and the range
is from 6 to 27 images for phrases. On an average word
sequences have 10.33 images whereas phrase sequences

have 12.85 images. Overall, there are 11.59 images per
sequence. The distribution of sequence length for words
and phrases is shown in Figure 4.

Figure 4: Sequence length distribution for words and
phrases

Out of the data of 15 people, we use 13 of them for
training, 1 for validation and 1 for test. Thus, we have 2600
instances in training data, 200 instances in validation set
and 200 instances in test set. The objective is to achieve
as high classification accuracy as possible in the test set.
We would also like to analyze the accuracy separately for
words and phrases.

3.2. Data Pre-processing

The data has a lot of background information which is
not useful in the lip reading task. We use the face-detector
module in OpenCV [13] to detect and extract faces from
the images. This is crucial since our dataset is small, and
we cannot afford the algorithm to waste computations
on irrelevant parts of the image. After this step the size
of each image becomes 128 × 128. Note that this is not
the final size of image passed for training, since different
methods use different size by cropping it further as required.

3.3. Data Augmentation

Our dataset contains a total of 3000 instances only. Our
dataset is small especially for deep learning tasks. In or-
der to tackle this problem we use data augmentation to ar-
tificially increase the data size. Our data augmentation in-
cludes the following two modifications to the original im-
age.

• While cropping, slightly move around the crop region
by random number of pixels horizontally and vertically
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• Jitter the image by randomly increasing or decreasing
the pixel values of the image by a small amount.

4. Methods
In this section we describe the various methods that we

used to work on solving the lip reading problem using
CNNs and LSTMs. Our model is primarily based on using
convolutional neural networks, since they are excellent at
deriving the correct features from images. A small caveat is
that the dataset contains multiple images per data instance,
i.e., the X in an (X,Y ) pair in the dataset, is not a single
image but a list of images with variable length. We have
two different schools of thought to resolve this issue:

1. Our first idea was to simply append each image of a
sequence such that we get a larger image.

2. Our second idea was to use LSTM layers to handle a
sequence of features. This was expected to perform
better because now the CNN layers would not need to
infer the temporal information.

4.1. Concatenation Model

The first model first transforms the temporal information
per datapoint into spatial, i.e.,

1. the first k images of the sequence are concatenated

(a) 4 faces (b) 9 faces

(c) 25 faces (d) 25 faces stretched

Figure 5: Example concatenated images

2. the new list is a 2D array with equal width and height.
This essentially reshapes the sequence into a row-
major 2D array. We tried 5 different structures here,
with the first four setting missing images to 0:

(a) Using the first k = 4 images (Figure 5a)

(b) Using the first k = 9 images (Figure 5b)

(c) Using the first k = 16 images

(d) Using the first k = 25 images (Figure 5c)

(e) Using the first k = 25 images stretched (Figure
5d)

Figure 5d shows the stretched version of figure 5c. The
intuition behind this is that different speakers have differ-
ent speed of speaking. By stretching the sequence to fit a
length of 25, we are normalizing over the speaking speed.
We expect this to help improve our validation accuracy. The
sequence is stretched by filling in the missing images with
nearest image rather than append zeros at the end. Equa-
tion 1 gives the equation used to convert original sequence
to stretched sequence

stretch seq[i] = orig seq
[

round
(
i ∗ orig len

25

)]
(1)

Due to scarcity of data, we are required to use pre-trained
models for convergence without over-fitting. Therefore,
the image size we feed to the model must be identical to
the ones used during pre-training, i.e., we crop out sections
of the images before we join them such that the size of
the final image is identical - 224 X 224 X 3. However, we
ensure that no part of the lips is cropped out, since they are
the most valuable section of the images. Thus, all of the
input images are of the same size.

For training we retain most of the pre-trained VGGNet.
We only replace the final fully connected layer, which now
classifies among 20 classes using softmax (equation 2).

loss = −
∑
i

log

[
exp (Wxi)∑
j exp (Wxj)

]
(2)

Thus, the learning rates we finally converged to were
quite lower than usual, as most of the model already had the
correct weights. In addition, we use dropout and l2 regular-
ization to prevent overfitting. This model was implemented
in python and trained using Keras [14] supported by Theano
[15], [16] in the backend. The updates are done using Adam
shown in equation 3

m = β1m+ (1− β1) dx
v = β2v + (1− β2) dx2

mb =
m

1− βt
1

vb =
v

1− βt
2

x = x− r ∗ mb√
vb + ε

(3)
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where t is used to indicate the iteration number, r is the
learning rate and ε is a small positive number for numerical
stability.

4.2. Model trained from scratch

In addition, we tried training a smaller model (Figure 6)
from scratch, but the results were not very motivating.
While the model did perform better than the baseline (ran-
dom predictions), the results were not satisfactory. The
model we used comprised of 4 CNN layers with sizes 64,
128, 256 and 512, respectively, all with kernel sizes 3 × 3.
These were followed by two fully connected layers of size
512. The final layer was a softmax layer with output size
20.

Figure 6: Model trained from scratch

4.3. Recurrent Models

Our next model used recurrent neural networks (RNNs)
to capture the temporal information from the data. Re-
current models have state information associated with
them which gets updated with every point in the sequence.
This makes recurrent models a good choice to work with
sequential data. We use Long-Short Term Memory (LSTM)
layers since they do not have the vanishing gradient prob-
lem faced by vanilla RNNs.

A state in LSTM is represented by hidden state (h) and
cell state (c) variables. These variables are updated at each
point in the sequence. LSTM update consists of using input
(i), forget (f), output (o) and gate (g) variables. Equa-
tions 4 show the update equations for state variables of an
LSTM.

it = σ
(
W (i)

x ∗ x+W
(i)
h ∗ ht−1

)
ft = σ

(
W (f)

x ∗ x+W
(f)
h ∗ ht−1

)
ot = σ

(
W (o)

x ∗ x+W
(o)
h ∗ ht−1

)
gt = tanh

(
W (g)

x ∗ x+W
(g)
h ∗ ht−1

)
ct = ct−1 ◦ ft + gt ◦ it
ht = tanh (ct) ∗ ot

(4)

In this model, we feed the images through the VGGNet
pre-trained on human faces. The features extracted by the
last CNN layer are then used by LSTM layers to extract
temporal information from the sequence. The final hidden

vector of the last LSTM layer is used by a softmax classifier
to generate the label which is compared to the ground truth.
Figure 7 gives a pictorial depiction of this model. Note that
the number of LSTM layers and length of sequence shown
in this figure is just for representation and varies in our ac-
tual model. This model was implemented in Lua using the
Torch [17] module. We had to switch to Torch from theano
due to missing support for multiple gpus in Theano and eas-
ier integration of LSTMs with CNNs in Torch.

Figure 7: VGG and LSTM model

Since the VGGNet is pre-trained on faces, we tried two
different modes of update:

1. Decrease the learning rate of VGGNet and train the
complete model. We tried downscaling the learning
rate by 100 and 1000. Both seemed to give equivalent
results.

2. Freeze the VGGNet and only train the LSTM. This es-
sentially involves doing a single forward pass through
the VGGNet, and then reusing the extracted features
as inputs to the LSTM for each epoch without updat-
ing the VGGNet.

Further, we employed batch normalization (between
different LSTM layers) for quicker convergence and
dropout for regularization. We also used gradient clip-
ping to prevent gradients from exploding.

5. Results
The single-validation accuracies of each model can be

seen in Figure 8, along with the cross validation score of
the state of the art SVM model. With 20 classes, a ran-
dom baseline is 5%, while predicting from a single image
of the sequence performs slightly higher. The concatenated
image model performs progressively better as more frames
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from each sequence are used, with the interpolation model
surpassing the cross-validation score of the state of the art
SVM model, achieving an accuracy of 76%. The LSTM
models have lower accuracies, explained in more detail be-
low.

Figure 8: Accuracy of various models

The results from the best concatenated image model with
interpolation are shown in Table 2. We have achieved best
validation accuracy of 76%, and the test accuracy of our
best model is 44.5%.

Training Validation Test

Only words 63.1% 73.00% 56.00%

Only phrases 79.2% 79.00% 33.00%

Both 66.15% 76.00% 44.50%

Table 2: Best training, validation and test accuracies

Further testing produces the cross validation scores
shown in Table 3. The unstretched model achieves 47.57%,
while the stretched model achieves 59.73%, which both
fail to surpass that of the state of the art SVM model. Even
though these values are quite good as compared to random
baseline of 5%, there is room for improvement. Figure 9
shows the training and validation accuracy during training
which shows that our models are not able to generalize
well. Additionally, the declining accuracies in later epochs
shows that the model is regularizing too heavily and that
early stopping is ideal.

Figure 10 shows the training loss with epochs. Although
loss has not yet converged after training completes, we

5× 5 5× 5 stretched

Only words 41.60% 53.27%

Only phrases 53.53% 66.20%

Both 47.57% 59.73%

Table 3: Cross validation accuracies

Figure 9: Accuracies over 18 epochs

already see a peak accuracy (in Figure 9) and have no need
to wait for convergence.

Figure 10: Training loss over 18 epochs

Figures 11 and 12 give the confusion matrices for the
best model evaluated on validation and test set. The matri-
ces are quite informative in the kind of errors made. For
instance, the phrase “How are you” and the word “previ-
ous” are getting mixed up in the test set. This is because
the test set speaker’s mouth movement for both of them is
quite similar, which is not true for the speaker in validation
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set. This discrepancy among various speakers is also evi-
dent from Figures 14 and 15.

Figure 11: Confusion matrix on dev set for stretched model

This reveals another problem – difference in accents.
People from different parts of the world have different ways
of pronouncing the same word. This creates problems for
a model that uses lip orientation to figure out the spoken
word. We believe this to be the main cause behind the sharp
valleys in our cross validation experiment.

Figure 12: Confusion matrix on test set for stretched model

Further, it can be seen from the saliency map – see
Figure 13 – (generated using guided backpropagation
[18]) that the model is able to track the movement of lips
and teeth to figure out the correct word / phrase. Also, it
chooses to emphasize some images more than the others
in the sequence which means that it is able to leverage the
temporal information from the concatenated image.

When comparing the accuracy of words and phrases, we
notice that phrases have a higher accuracy as compared to

Figure 13: Saliency map for an image in dev set for normal
training, where the stretched model works

words. We can attribute this to phrases being long and thus
having a more data to differentiate between them whereas
words are short and it would be more difficult to differenti-
ate between them.

Figure 14: Cross Validation for 5× 5 unstretched

Figure 15: Cross Validation for 5× 5 stretched

It can be seen that the stretched model in general per-
formed better. To investigate the poor performance of the
stretch model during the 5th fold of cross validation, we
looked at the saliency map (Figure 16) for a test image. It
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can be seen that the model in this case has focussed on the
wrong parts of the images – the white regions in the saliency
map do not include the mouth but the nose and some part
of cheek. This is most likely due to scarcity of data, due to
which the model is not robust enough to work in all cases.

Figure 16: Saliency map for an image in dev set while cross
validating, where the stretched model fails

We also experimented with different parameter update
strategies. We noticed that SGD itself was incapable of
training the model in reasonable time. It gave no signifi-
cant improvements even after 20 epochs. In comparison,
Adam showed improvements right from the first epoch.

6. Conclusion
We proposed several new methods for performing visual

speech recognition on sequences of color images with
variable length. The initial methods concatenated the first
k images of each sequence into a 2D grid, which was then
classified by a VGGNet pre-trained on faces. One method
attempted to train a smaller model on these concatenated
images from scratch. The final model attempted to handle
variable-length sequences with multiple LSTM layers
which were given the feature vectors output from the
VGGNet as input.

Our best-performing model was the concatenated model
that used interpolation. This likely performed better than
the other concatenated models because it used nearly all
available input data, and it was invariant to speaking speed,
as opposed to the original 5× 5 concatenated model which
only compared each frame to corresponding frames in other
sequences.

The model we trained from scratch did not perform
well because the dataset we used is relatively small.
Our data augmentation did not provide any independent
data, so this could not have provided a significant boost.
Additionally, although we created custom concatenated
images, the features we hoped to extract from each
were the same as those that can be found in a photo-
graph of a single face. Therefore the pre-trained VGGNet

was still able to perform well on these concatenated images.

While we originally expected the LSTM model to per-
form the best, we expect that it failed because it does not
handle the sequence until after feature extraction. It may
perform better if we instead use recurrent networks through-
out the model to include temporal information while ex-
tracting features. Additionally, the LSTM model took a
long time to train, especially while updating the VGGNet
as well, and with more time it may have produced better
results.

7. Future Work
Our models leave much to be experimented, especially

the LSTM models which are difficult to tune due to long
training times. Due to the time constraint, we were unable
to train these models to their full potential, evident from
their dismal performance. In addition there are other archi-
tectures that seem appropriate for this problem setting:

1. Using volumetric convolutions rather than 2D convo-
lutions followed by recurrent networks. This has the
benefit of learning temporal information in conjunc-
tion with the spatial features, rather than learning them
separately. One key challenge would be training the
new model from scratch since it would be incompati-
ble with the pre-trained VGGNet.

2. The dataset has rich depth information that could be
useful in better estimating the texture of the mouth.
Since we were primarily working with pre-trained net-
works, we were unable to determine a reasonable way
to include it in the model.

3. Replacing the kernels in the CNN with recurrent ker-
nels similar to the method suggested in [19]. This not
only has the advantage that the volumetric convolu-
tions enjoy, but it can also learn longer temporal rela-
tions. Again the key issue would be training the model
from scratch.

4. Optical flow is an important feature used to train mod-
els on videos. This can be another feature besides
those learned through the CNN and directly used by
the LSTM.
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