
Let Blind People See: Real-Time Visual Recognition with Results Converted to
3D Audio

Rui (Forest) Jiang
Earth Science, Stanford
forestj@stanford.edu

Qian Lin
Applied Physics, Stanford
linqian@stanford.edu

Shuhui Qu
Civil and Environmental Engineering, Stanford

shuhuiq@stanford.edu

Abstract

This project tries to transform the visual world into the
audio world with the potential to inform blind people ob-
jects as well as their spatial locations. Objects detected
from the scene are represented by their names and con-
verted to speech. Their spatial locations are encoded into
the 2-channel audio with the help of 3D binaural sound sim-
ulation.

Our system composes of several modules. Video is cap-
tured with a portable camera device (Ricoh Theta S, Mi-
crosoft Kinect, or GoPro) on the client side, and is streamed
to the server for real-time image recognition with existing
object detection models (YOLO). The 3D location of the
objects is estimated from the location and the size of the
bounding boxes from the detection algorithm. Then, a 3D
sound generation application based on Unity game engine
renders the binaural sound with locations encoded. The
sound is transmitted to the user with wireless earphones.
Sound is play at an interval of few seconds, or when the
recognized object differs from previous one, whichever ear-
liest.

The prototype device is tested in a situation simulating
a blind people being exposed to a new environment. With
the help of the device, the user successfully found a chair
that is 3-5 meters away, walk towards it and sit on it. Issues
about current prototype have been identified as: detection
failure when objects are too close or too far, and overload of
information when the system tries to notify users too many
objects.

The project demonstration can be found in YouTube
https://youtu.be/s -gAVTJl18.

1. Introduction
Millions of people live in this world with incapacities of

understanding the environment due to visual impairment.
Although they can develop alternative approaches to deal
with daily routines, they also suffers from certain navigation
difficulties as well as social awkwardness. For example,
it is very difficult for them to find a particular room in an
unfamiliar environment. And blind and visually impaired
people find it difficult to know whether a person is talking
to them or someone else during a conversation.

Computer vision technologies, especially the deep con-
volutional neural network, have been rapidly developed in
recent years. It is promising to use the state-of-art computer
vision techniques to help people with vision loss.

In this project, we want to explore the possibility of using
the hearing sense to understand visual objects. The sense
of sight and hearing sense share a striking similarity: both
visual object and audio sound can be spatially localized. It
is not often realized by many people that we are capable
at identifying the spatial location of a sound source just by
hearing it with two ears.

In our project, we build a real-time object detection and
position estimation pipeline, with the goal of informing the
user about surrounding object and their spatial position us-
ing binaural sound. Section 2 discuss the relate works on
sensory substitution, assistive products using computer vi-
sion for blind people, and the exploration of 3D sound. Sec-
tion 3 introduces different components of our prototype.
The testing and result discussions are in Section 4. Then
the report concludes with Section 5.

2. Related Work
There exists multiple tools to use computer vision tech-

nologies to assist blind people.
The mobile app TapTapSee uses computer vision and
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crowdsourcing to describe a picture captured by blind users
in about 10 seconds. The Blindsight offers a mobile
app Text Detective featuring optical character recognition
(OCR) technology to detect and read text from pictures cap-
tured from the camera. Facebook is developing image cap-
tioning technology to help blind users engaging in conver-
sations with other users about pictures. Baidu recently re-
leased a demo video of a DuLight project. No further details
of the product is available at the moment. However, the
product video suggests concepts of describing scenes and
recognizing people, money bills, merchandises, and cross-
walk signal. However, these products were not focusing on
enabling general visual sense for blind people and did not
use the spatial sound techniques to further enhance the user
experience.

Some works exist in the general scope of sensory substi-
tution. Daniel Kish, who are totally blind, developed accu-
rate echolocation ability using “mouth clicks” for naviga-
tion tasks including biking and hiking independently . Col-
orblind artist Neil Harbisson developed a device to trans-
form color information into sound frequencies. An extreme
attempt of converting visual sense to sound is introduced
by the vOICe technology [6]. The vOICe system scans
each camera snapshot from left to right, while associating
height with pitch and brightness with loudness. However,
all these attempts on sensory substitution are reported with
very difficult learning process. In contrast, we utilize visual
recognition algorithms which lead to more direct ways of
understanding objects from a visual scene.

The use of 3D sound technology for providing useful in-
formation and assisting blind people has also been inves-
tigated by researchers. [7] introduced a system that uses
spatial audio to facilitate discovery of points of interest in
large, unfamiliar indoor environments (e.g. shopping mall).
[8] tries to integrate 3D sound into GPS-based outdoor nav-
igation product. However, no visual recognition has been
used in those works. The use of object detection techniques
can open up new possibilities in assisting indoor navigation
for blind and visually impaired people.

3. Methods

3.1. Object detection algorithm

To successfully detect surrounding objects, we inves-
tigate several existing detection systems that could clas-
sify objects and evaluate it at various locations in an im-
age. Deformable Parts Model (DPM) [10] uses root filters
that slides detection windows over the entire image. R-
CNN [11] uses region proposal methods to generate pos-
sible bounding boxes in an image. Then, it applies various
ConvNets to classify each box. The results are then post-
processed and output finer boxes. The slow test-time, com-
plex training pipeline and the large storage does not fit into

Figure 1. Data flow pipeline of our system.

our application. Fast R-CNN [12] max-pools proposed re-
gions and combines the computation of ConvNet for each
proposal of an image and outputs features of all regions at
once. Based on Fast R-CNN, Faster R-CNN [13] inserts
a region proposal network after the last layer of ConvNet.
Both methods speed up the computational time and improve
the accuracy. The pipelines of these methods are still rela-
tively complex and hard to optimize. Considering the re-
quirement of real-time objective detection, in this project,
we use You Only Look Once (YOLO) model [9]. YOLO
could efficiently provides relatively good objective detec-
tion with extremely fast speed.

3.1.1 YOLO Model

Figure 2. The YOLO Model.

Instead of using region proposal method, YOLO model
divides an image into S×S grid. Each grid cell predicts B
bounding boxes, and boxes’ confidence scores for the pre-
diction and detect if a class falls in the boxes. The confi-
dence is defined as Pr(object) × IOU truth

pred , which repre-
sents the confidence of a class in the box and accuracy of
the box coordinates. Thus, each box has five parameters
to predict: x, y, w, h and confidence. Each grid cell also
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predicts Pr(Classi|Object). Thus the confidence for each
box is Pr(Classi|Object) × Pr(object) × IOU truth

pred =

Pr(Classi) × IOU truth
pred . The overall variables to be pre-

dicted can be represented as a S ×S × (B× 5+C) tensor.

3.1.2 YOLO Model ConvNet

Figure 3. Convolutional neural network of the YOLO Model.

The ConvNet architecture is shown in Figure 3. The net-
work has 24 convolutional layers with 2 fully connected lay-
ers. The ConvNet is to extract features from input images
and the fully connected layers are to predict the probability
of the boxes coordinates and confidence score. The accu-
racies of the predictions also depend on the architecture of
the network. The loss function of the final output depends
on the x, y, w, h, prediction of classes and overall proba-
bilities. In our project, we use pretrained YOLO weight to
detect objects.

3.2. Depth estimation

After detecting the type of objects in a video frame, the
next step is to obtain the depth or distance of the detected
object from the user. We make two separate attempts to this
problem.

In our initial attempt, we use a Microsoft Kinect as the
video camera device in our pipeline. Kinect has the bene-
fit of capturing real-time depth map together with the RGB
image. After detecting the object in the RGB image and its
corresponding bounding box, we can simply use the average
depth of the bounding box area as the distance. The disad-
vantage is that Kinect is very bulky as a personal carry-on
camera, and that it’s difficult to work in a wireless mode,
thus limiting the traveling range of the user. There exist
other more portable depth cameras, for example the Zed
camera with relies on depth estimation from stereo vision.
However, such camera generally requires high computation
resource (GPU) to estimate depth from stereo image.

To overcome the difficulty of integration of depth camera
into our project pipeline, we revisit the user need for depth
information. First of all, human are good at inferring direc-
tion from binaural sound, and the relative distance, namely
object A is closer than object B or object is moving closer
and closer between frames. However, absolute distance is

difficult to deduce from binaural sound. This means our
image processing algorithm needs to provide the accurate
directional information and the relative distance, but not the
exact depth.

Thus we resort to estimate the direction and relative
depth from an RGB image. We choose to use GoPro Hero
3 since it’s a very light-weight carry on camera with large
field of view, high frame rate and wireless compatibility.
Giving the field of view of the camera, and the bounding
box of the object, the direction can be estimated from the
central pixel location of the bounding box. For the esti-
mated depth, we assume a “default” height for any partic-
ular class, for example human is assumed to be around 5.5
feet, and chairs are assume to be 2.5 feet. We hard code
this for each of the 20 classes in our classifier. Then from
the height of the bounding box and the default height of the
object we can estimate the depth.

3.3. Data streaming

Figure 4. Initial Data flow pipeline.

Our project is based on a platform that is capable of pro-
cessing real-time image. Thus, it is required to have a pow-
erful GPU that could give feedback in no time. Considering
the computational cost and performance, we initially use
rye machine provided by Stanford as our prototype’s server
machine. A pipeline is developed that enables us to com-
municate quickly. As Figure 4 shows, a program in local
machine extracts raw image from a camera (e.g. Kinect),
encodes it into a string and sends through a client to a server
running on the Stanford Rye machine. The server decodes
it and use trained object detection engine to return detected
items. The server then sends that information back to the
client, which triggers the Unity-based stereo generator to
play the 3D sound. During the implementation, we find
that the communication between our personal computer and
Rye machine takes a few milliseconds to transfer each video
frame. Also the performance of the Rye machine is not sta-
ble due to the mass occupancy of GPU.

Based on our initial platform, we switch to local platform
that is more efficient. The architecture is shown in Figure 5.
In this platform, the evnironment is captured by a portable
camera and transfers through HD video link directly to the
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Figure 5. Current Data flow pipeline of our system.

YOLO model running on a local server machine with high
performance GPU. The server detects objects, sends infor-
mation directly to the unity sound generator and plays the
binaural sound.

Figure 6. Camera device and image streaming device.

In particular, the environment picture is captured by a
portable GoPro Hero3 at 30 frames 1080p resolution. The
video is live streamed through the HD video link to the
computer server as shown in Figure 6. The HD video link
could transfer a high resolution image within 2 miles in 1
millisecond. The object detection engine YOLO then pre-
dicts objects in the stream. The YOLO algorithm could pro-
cess a single image frame at a speed of 4-60 frames/second
depending on the image size we send to the engine. The
outputs are sent to unity sound generator and the generated
sounds are played through wireless earbuds shown in Fig-

Figure 7. Unity program for generating 3D sound and device to
transmit the audio signal to the user.

ure 9. During the implementation, the platform is capable
of processing all captured live stream at a minimum speed
of 30 frames per second at 1080p resolution.

3.4. Result filtering

YOLO outputs the top classes and their probability for
each frame. We take any probability above 20% as a confi-
dent detection result.

To present the results to the user in a reasonable manner,
our algorithm also has to decide whether to speak out a de-
tected object and at what time. Obviously it’s undesirable
to keep speaking out the same object to the user even if the
detection result is correct. It’s also undesirable if two object
names are spoken overlapping or very closely that the user
won’t be able to distinguish.

To solve the first problem, we assume a cool-down-time
of five seconds for each class. For example, if a person is
detected in the first frame and is spoken out, the program
will not speak out “person” again until after five seconds.
This is only an sub-optimal solution since it does not deal
with multiple objects of the same class. Ideally, if there are
two persons in the frame, the user should be informed about
the two person, but he does not need to be informed about
the same person continuously. One possible improvement,
which we are still working on, is to track the object using
overlapping bounding box between frames. To solve the
second problem, we plan to enforce a delay of half a second
between any spoken classes.

Among all 20 classes of the existing YOLO model, we
choose the following classes to inform the user: “bottle”,
“chair”, “diningtable”, “person”, “pottedplant”, “sofa”, “tv-
monitor”.

3.5. 3D sound generation

We use a plug-in for Unity 3D game engine called
3DCeption to simulate the 3D sound. We developed a
Unity-based game program “3D Sound Generator” using
either a file watcher or TCP socket to receive the informa-
tion about the correct sound clips to be played as well as
their spatial coordinates. Then, 3DCeption renders the bin-
aural sound effect with the help of the Head-Related Trans-
fer Function (HRTF) to simulate the reflection of the sound
on human body (head, ear, etc.) and obstacles (such as wall
and floor).

As most of the sighted people may be not aware of the
sound localization capability, the reader is recommended
to experience the 3D binaural sound effect demonstrations
(e.g. 3Dception Realtime 3D Audio Demo and Virtual Bar-
ber Shop) on YouTube.
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Figure 8. Principle of 3D sound.

Figure 9. Unity program for generating 3D sound and device to
transmit the audio signal to the user.

Figure 10. Testing setup.

4. Testing and Discussion
4.1. Testing

We first try our system on ourselves with eyes covered
by a paper box, as shown in Figure 10. The objective is to
simulate the situation of a blind person just exposed with
a new environment. Wearing the device, the user correctly
identified objects such as persons, and chairs at the indoor
range.

Figure 11 shows a situation where an user entered a small
room, with common objects like chair, table, and monitor,
and intended to find a bottle. The user was notified by the
system the type and spatial location of the objects, and suc-
cessfully located the bottle and grabed it.

Figure 12 shows an example where a “blind” person en-

tered a lobby and successfully identified a chair, walked and
sat on it. With existing device prototype, the user on average
takes about 15 seconds to identify and walk to the chair.

In both situations, the user immediately identified the
spatial locations of objects just by hearing the 3D sound
notification and reported a sense of augmented reality, and
a feeling of “that person is right there.”

We also let a blind person try the device. Showed posi-
tive feedback along with some suggestions of improvement
(see discussion below.)

4.2. Discussion

The prototype we build successfully recognizes visual
objects and presents the detection information as 3D sound,
giving the user a sense of “augmented reality”. However,
the prototype suffers from the following limitations.

First, it is common for user to focus on certain object
from afar and navigate to a location close to the object. In
this task, the user need a consistent instruction of the tar-
get object from approximately 10 m away to only 20 cm
away. That impose a very high requirement to the object
detection model. To our experience, YOLO can correctly
detect objects, such as chair, within a range about 2-5 m
away. Objects that are outside this range are either unrec-
ognized or misclassified. One approach to solve this issue
is to incorporate training images with greater scale ranges
(e.g., include chair picture captured from 20 cm away and
10 m away). However, it may be difficult for object detec-
tion models to classify the object from a picture of extreme
scale (too close or too far). Another approach to solve this
is to use object tracking algorithm to track the object (e.g. a
chair) once the user have identified as the target. These two
approaches are worth exploring in the future work.

The second issue reported by the blind user is the block-
ing of ambient sound by using earbuds. However, this can
be solved by using bone conduction earphones, which leave
ears open for hearing surrounding sounds.

The third issue reported by the blind user is “informa-
tion overload” when the system is trying to notify user of
multiple objects at the same time. This can be solved by
delayed notifications. For example, the system can sequen-
tially notify the user of the object from left to right. How-
ever this solution requires the user stands still while playing
the 3D sounds. Moreover, blind people usually do not want
to know every objects in his “eyesight”, but instead want to
know objects that are pertinent to their immediate need. For
example, they may want to find a particular room in a build-
ing, or find food and drinks during a conference. In this
regard, the system should have three modes: exploration
mode where users are notified with every detected objects,
search mode where the system only notify users of the ob-
ject they are looking for, and navigation mode where only
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the target object and obstacle objects are notified to users in
real time.

In sum, extensive work is required to analyze users’ need
if one would like to stem from this prototype to a really
helpful assistive product.

5. Conclusion and Future Work
In this project, we investigate the need from blind and

visually impaired people. Base on the impetus of the
CNN, we develop a blind visualization system that helps
blind people better explore the surrounding environment. A
portable and real time solution is provided in the project.
We present a platform that utilizes portable cameras, fast
HD video link and powerful server to generate 3D sounds.
By using YOLO algorithm and advanced wireless transmit-
ter, the solution could perform accurate real time objective
detection with live stream at a speed of 30 frames, 1080P
resolution. A prototype for sensory substitution (vision to
hearing) is established in the project. Through this project,
we hope to demonstrate the possibility of using computer
vision techniques as a type of assistive technology.

The project demonstration can be found in YouTube, see
https://youtu.be/s -gAVTJl18.
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Figure 11. In this test scenario, the user is entering a small room,
with common place objects like chair, table, monitor. He is trying
to grab the water bottle on the table.

Figure 12. In this test scenario, the user is entering an unfamiliar
open space and try to find a place to side down. He also wish to
get informed of objects around him and their relative position.
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