
Image Colorization with Deep Convolutional Neural Networks

Jeff Hwang
jhwang89@stanford.edu

You Zhou
youzhou@stanford.edu

Abstract

We present a convolutional-neural-network-based sys-
tem that faithfully colorizes black and white photographic
images without direct human assistance. We explore var-
ious network architectures, objectives, color spaces, and
problem formulations. The final classification-based model
we build generates colorized images that are significantly
more aesthetically-pleasing than those created by the base-
line regression-based model, demonstrating the viability of
our methodology and revealing promising avenues for fu-
ture work.

1. Introduction

Automated colorization of black and white images has
been subject to much research within the computer vision
and machine learning communities. Beyond simply being
fascinating from an aesthetics and artificial intelligence per-
spective, such capability has broad practical applications
ranging from video restoration to image enhancement for
improved interpretability.

Here, we take a statistical-learning-driven approach to-
wards solving this problem. We design and build a convolu-
tional neural network (CNN) that accepts a black-and-white
image as an input and generates a colorized version of the
image as its output; Figure 1 shows an example of such a
pair of input and output images. The system generates its
output based solely on images it has “learned from” in the
past, with no further human intervention.

In recent years, CNNs have emerged as the de facto stan-
dard for solving image classification problems, achieving
error rates lower than 4% in the ImageNet challenge [12].
CNNs owe much of their success to their ability to learn
and discern colors, patterns, and shapes within images and
associate them with object classes. We believe that these
characteristics naturally lend themselves well to colorizing
images since object classes, patterns, and shapes generally
correlate with color choice.

Figure 1. Sample input image (left) and output image (right).

2. Related work

Our project was inspired in part by Ryan Dahl’s CNN-
based system for automatically colorizing images [2].
Dahl’s system relies on several ImageNet-trained layers
from VGG16 [13], integrating them with an autoencoder-
like system with residual connections that merge interme-
diate outputs produced by the encoding portion of the net-
work comprising the VGG16 layers with those produced
by the latter decoding portion of the network. The resid-
ual connections are inspired by those existing in the ResNet
system built by He et al that won the 2015 ImageNet chal-
lenge [5]. Since the connections link downstream network
edges with upstream network edges, they purportedly allow
for more rapid propagation of gradients through the system,
which reduces training convergence time and enables train-
ing deeper networks more reliably. Indeed, Dahl reports
much larger decreases in training loss on each training iter-
ation with his most recent system compared with an earlier
variant that did not utilize residual connections.

In terms of results, Dahl’s system performs extremely
well in realistically colorizing foliage, skies, and skin. We,
however, notice that in numerous cases, the images gen-
erated by the system are predominantly sepia-toned and
muted in color. We note that Dahl formulates image col-
orization as a regression problem wherein the training ob-
jective to be minimized is a sum of Euclidean distances be-
tween each pixel’s blurred color channel values in the target
image and predicted image. Although regression does seem
to be well-suited to the task due to the continuous nature
of color spaces, in practice, a classification-based approach
may work better. To understand why, consider a pixel that

1

exists in a flower petal across multiple images that are iden-
tical, save for the color of the flower petals. Depending on
the picture, this pixel can take on various tones of red, yel-
low, blue, and more. With a regression-based system that
uses an `2 loss function, the predicted pixel value that min-
imizes the loss for this particular pixel is the mean pixel
value. Accordingly, the predicted pixel ends up being an
unattractive, subdued mixture of the possible colors. Gener-
alizing this scenario, we hypothesize that a regression-based
system would tend to generate images that are desaturated
and impure in color tonality, particularly for objects that
take on many colors in the real world, which may explain
the lack of punchiness in color in the sample images col-
orized by Dahl’s system.

3. Approach
We build a learning pipeline that comprises a neural net-

work and an image pre-processing front-end.

3.1. General pipeline

During training time, our program reads images of pixel
dimension 224× 224 and 3 channels corresponding to red,
green, and blue in the RGB color space. The images are
converted to CIELUV color space. The black and white
luminance L channel is fed to the model as input. The U
and V channels are extracted as the target values.

During test time, the model accepts a 224×224×1 black
and white image. It generates two arrays, each of dimension
224 × 224 × 1, corresponding to the U and V channels
of the CIELUV color space. The three channels are then
concatenated together to form theCIELUV representation
of the predicted image.

3.2. Transfer learning

We initialized parts of model with a VGG16 instance that
has been pretrained on the ImageNet dataset. Since image
subject matter often implies color palette, we reason that
a network that has demonstrated prowess in discriminating
amongst the many classes present in the ImageNet dataset
would serve well as the basis for our network. This moti-
vates our decision to apply transfer learning in this manner.

3.3. Activation function

We use the rectified linear unit as the nonlinearity that
follows each of our convolutional and dense layers. Mathe-
matically, the rectified linear unit is defined as

f(x) = max(0, x)

The rectified linear unit has been empirically shown to
greatly accelerate training convergence [9]. Moreover, it is
much simpler to compute than many other conventional ac-
tivation functions. For these reasons, the rectified linear unit
has become standard for convolutional neural networks.

Figure 2. Regression network schematic.

One downside of using the rectified linear unit as the ac-
tivation function in a neural network is that the model pa-
rameters can be updated in such a way that the function’s
active region is always in the zero-gradient section. In this
scenario, subsequent backpropagated gradients will always
be zero, hence rendering the corresponding neurons perma-
nently inactive. In practice, this has not been an issue for
us.

3.4. Batch normalization

Ioffe et al introduced batch normalization as a means of
dramatically reducing training convergence time and im-
proving accuracy [7]. For our networks, we place a batch
normalization layer before every non-linearity layer apart
from the last few layers before the output. In our trials, we
have found that doing so does improve the training rate of
the systems.

3.5. Baseline regression model

We used a regression-based model similar to the model
described in [2] as our baseline. Figure 2 shows the struc-
ture of this baseline model.

We describe this architecture as comprising a “summa-
rizing”, encoding process on the left side followed by a
“creating”, decoding process on the right side

The architecture of the leftmost column of layers is in-
herited from a portion of the VGG16 network. During this
“summarizing” process, the size (height and width) of the

2

feature map shrinks while the depth increases. As the model
forwards its input deeper into the network, it learns a rich
collection of higher-order abstract features

The “creating” process on the right column is a modified
version of the “residual encoder” structure described in [2].
Here, the network successively upscales the preceding layer
output, merges the result with an intermediate output from
the VGG16 layers via an elementwise sum, and performs
a two-dimensional convolution on the result. The progres-
sive, decoder-like upscaling of layers from an encoded rep-
resentation of the input allows for the propagation of global
spatial features to more-local image regions. This trick en-
ables the network to realize the more abstract concepts with
the knowledge of the more concrete features so that the cre-
ating process will be both creative and down to earth to suit
the input images.

For the objective function in our system, we considered
several loss functions. We began by using the vanilla `2
loss function. Later, we moved onto deriving a loss function
from the Huber penalty function, which is defined as

L(u) =

{
u2 |u| < M

M(2|u| −M) |u| > M

Intuitively, the function is defined piecewise in terms of
a quadratic function and two affine functions. For residu-
als u that are smaller than the threshold M , it follows the
`2 penalty function; for residuals that are larger than M , it
reverts to the `1 penalty function. This feature of the Huber
penalty function allows it to extract the best of both worlds
between the `2 and `1 norms; it can be more robust to out-
liers while de-emphasizing points the system has fit closely
enough to. For our particular use case, this behavior is ideal,
since we expect there to be many outliers for colors that cor-
respond to a particular shape or pattern.

3.6. Final classification model

Figure 3 depicts a schematic of our final classification
model. The regression model suffers from a dimming prob-
lem because it minimizes some variant of the `p norm,
which motivates the model to choose an average or inter-
mediate color when multiple distinct color choices are pos-
sible. To address this issue, we remodeled our problem as a
classification problem.

In order to perform classification on continuous data, we
must discretize the domain. The targets U and V from
the CIELUV color space take on values in the interval
[−100, 100]. We implicitly discretize this space into 50
equi-width bins by applying a binning function (denoted
bin()) to each input image prior to feeding it to the in-
put of the network. The function returns an array of the
same shape as the original image with each U and V value
mapped to some value in the interval [0, 49]. Then, instead

Figure 3. Classification network schematic.

of directly predicting numeric values for U and V , the net-
work outputs two separate sets of the most probable bin
numbers for the pixels, one for each channel. We used the
sum of cross-entropy loss on the two channels as our mini-
mization objective.

In terms of the architecture, we introduced a concate-
nation layer concat, which is inspired by segmentation
methods. Combining multiple intermediate feature maps in
this fashion has been shown to increase prediction quality in
segmentation problems, producing finer details and cleaner
edges[4]. Although there is no explicit segmentation step in
our setup, this approximate approach allows our system to
minimize the amount of visual noise that is generated along
object edges in the output image.

We experimented with placing various model structures
between the concatenation layer and output. In our final
model, the concatenation layer is followed by three 3 × 3
convolutional layers, which are in turn followed by the final
two parallel 1×1 convolutional layers corresponding to the
U and V channels. These 1 × 1 convolutional layers act
as the fully-connected layers to produce 50 class scores for
each channel for each pixel of the image. The classes with
the largest scores on each channel are then selected as the

3

Dataset Training Test
McGill 896 150

MIT CVCL 361 50
ILSVRC 2015 CLS-LOC 12486 494

MIRFLICKR 7500 1000
Table 1. Number of training and test images in datasets.

Figure 4. Sample images from the MIT CVCL Open Country
dataset.

predicted bin numbers. Via an un-binning function, we then
convert the predicted bins back to numericalU and V values
using the means of the selected bins.

4. Dataset

We tested our system on several datasets; Table 1 pro-
vides a summary of the datasets we considered.

The MIT CVCL Urban and Natural Scene Categories
dataset contains several thousand images partitioned into
eight categories [10]. We experimented with 411 images in
the ”Open Country” category to measure our system’s abil-
ity to generate images pertaining to a specific class of im-
ages; Figure 4 shows some sample images from the dataset.

To gauge how well our system generalizes to diverse im-
ages, we experimented with larger datasets encompassing
broader classes of photos. The McGill Calibrated Colour
Image Database contains more than a thousand images of
natural scenes organized by categories [11]. We chose to
experiment with samples from each of the categories. The
ILSVRC 2015 CLS-LOC dataset is the dataset used for
the ImageNet challenge in 2015 [12]. We sampled images
from the following categories: spatula, school bus, bear,
book shelf, armor, kangaroo, spider, sweater, hair dryer, and
bird. The MIRFLICKR dataset comprises 25000 Creative
Commons images downloaded from the community photo-
sharing website Flickr [6]. The images span a vast range of
categories, artistic styles, and subject matter.

We preprocess each image in our dataset prior to for-
warding it to our network. We scale each image to dimen-
sions of 224× 224× 3 and generate a grayscale version of
the image of dimensions 224× 224× 1. Since the input of
our network is the input of the ImageNet-trained VGG16,
which expects its input images to be zero-centered and of
dimensions 224 × 224 × 3, we duplicate the grayscale im-

age three times to form a (224× 224× 3)-sized image and
subtract the mean R, G, and B value across all the pictures
in the ImageNet dataset. The resulting final image serves as
the black-and-white input image for the network.

5. Experiments
5.1. Evaluation metrics

For regression, we quantify the closeness of the gener-
ated image to the actual image as the sum of the `2 norms
of the difference of the generated image pixels and actual
image pixels in the U and V channels:

Lreg. = ||Up − Ua||22 + ||Vp − Va||
2
2

Likewise, for classification, we measure the closeness of
the generated image to the actual image by the percent of
binned pixel values that match between the generated image
and actual image for each channel U and V :

Acc.U =
1

N2

(N,N)∑
(i,j)

1{bin(Up) = bin(Ua)}

Acc.V =
1

N2

(N,N)∑
(i,j)

1{bin(Vp) = bin(Va)}

, where bin : R → Z50 is the color binning function
described in Section 3.6. We emphasize that classification
accuracy alone is not the ideal metric to judge our system
on, since the accuracy of color matching against target im-
ages does not directly relate with the aesthetic quality of an
image. For example, for a still-life painting, it may be the
case that virtually none of the colors actually match the cor-
responding real-life scene. Nevertheless, the painting may
still be regarded as being artistically impressive. We, how-
ever, report it as one possible measure because we do be-
lieve that there exists some correlation between the two.

We can also apply these formulae to the regression re-
sults to compare with the classification results.

Finally, we track the percent deviation in average color
saturation between pixels in the generated image and in the
actual image:

Sat. diff. =

∣∣∣∑(N,N)
(i,j) Spij

−
∑(N,N)

(i,j) Saij

∣∣∣∑(N,N)
(i,j) Saij

Generally speaking, the degree of color saturation in a
given image strongly influences its aesthetic appeal. Ide-
ally, then, the saturation levels present in the training images
should be replicated at the system’s output, even when the
exact hues and tones are not matched perfectly. This metric
allows us to quantify the faithfulness of this replication.

4

5.2. Experiment setup and alternative structures

Our networks were implemented with Lasagne [1] and
were trained on an AWS instance running a NVIDIA GRID
K520 GPU.

We started by trying to overfit our model on a 270-image
random subset of ImageNet data.

To determine a suitable learning rate, we ran multiple tri-
als of training with minibatch updates to see which learning
rate yielded faster convergence behavior over a fixed num-
ber of iterations. Within the set of learning rates sampled on
a logarithmic scale, we found that a learning rate of 0.001
achieved one of the largest per-iteration decreases in train-
ing loss as well as the lowest training loss of the learning
rates sampled. Using that as a starting point, we moved to
with the entire training set. With a hold-out proportion of
10% as the validation set, we observed fastest convergence
with a learning rate of 0.0003

We also experimented with different update rules,
namely Adam [8] and Nesterov momentum [14]. We fol-
lowed the recommended β1 = 0.9 and β2 = 0.99, 0.999.
For Nesterov Momentum, we used a momentum of 0.9.
Among these options, the Adam update rule with β1 = 0.9
and β2 = 0.999 produced slightly faster convergence than
the others, so we used the Adam update rule with these hy-
perparameters for our final model.

In terms of minibatch sizes, we experimented with
batches of four, six, eight and twelve images based on
network architecture. Some alternative structures we tried
required less memory usage, so we tested those with all
four options. The model shown in Figure 3, however, is
memory-intensive. Due to the limited access of computa-
tional resource, we were only able to test it with batch sizes
of four and six with the GPU instance. Nevertheless, this
model with a batch size of six demonstrated faster and sta-
bler convergence than the other combinations.

For weight initialization, since our model uses the rec-
tified linear unit as its activation function, we followed the
Xavier Initialization scheme proposed by [3] for our origi-
nal trainable layers in the decoding, “creating” phase of the
network.

We also developed several alternative network struc-
tures before we arrived at our final classification model.
The following are some design elements and decisions we
weighed:

1. Multilayer aggregation – elementwise sum versus con-
catenation: we experimented with performing layer
aggregation using an elementwise sum layer in place
of the concatenation layer. An elementwise sum layer
reduces memory usage, but in our experiments, it
turned out to harm training and prediction perfor-
mance.

2. Presence or absence of residual encoder units: a

residual encoder unit refers to a joint convolution-
elementwise-sum step on a feature map in the “sum-
marizing” process and an upscaled feature map in the
“creating” process, as described in Section 3. We
experimented with trimming away the residual en-
coder units and applying aggregation layers directly on
top of the maxpooling layers inherited from VGG16.
However, the capacity of the resulting model is much
smaller, and it showed poorer quality of results when
overfitting to the 300-image subset.

3. The final sequence of convolutional layers before
the network output: we experimented with one and
two convolutional layers with various depths, but the
three-layer structure with the current choice of depths
yielded the best results.

4. Color space: initially, we experimented with the HSV
color space to address the under-saturation problem. In
HSV, saturation is explicitly modeled as the individual
S channel. Unfortunately, the results were not satis-
fying. Its main issue lies in its exact potential merit:
since saturation is directly estimated by the model, any
prediction error became extremely noticeable, making
the images noisy.

5.3. Results and discussion

Figure 5 depicts two sets of regression and classifica-
tion network outputs along with their associated black-and-
white input images. The model that generated these images
was trained on the MIT CVCL Open Country dataset.

Figure 5. Test set input images (left column), regression network
output (center column), and classification network output (right
column).

The regression network outputs are somewhat reason-
able. Green tones are restricted to areas of the image with
foliage, and there seems to be a slight amount of color
tinting in the sky. We, however, note that the images are
severely desaturated and generally unattractive. These re-
sults are expected given their similarity to Dahl’s sample
outputs and our hypothesis.

5

In contrast, the classification network outputs are amaz-
ingly colorful yet realistic. Colors are lively, nicely sat-
urated, and generally tightly restricted to the regions they
correspond to. For example, for the top image, the system
managed to infer the reflection of the sky in the water and
colorized both with bright swaths of blue. The foliage on
the mountain is colorized with deep tones of green. Over-
all, the output is highly aesthetically pleasing.

Note, however, that there exists a noticeable amount of
noise in the classification results, with blobs of various col-
ors interspersed throughout the image. This may result from
several factors. It may be the case that the system discretizes
the U and V channels into bins that are too large, which
means that image regions that contain color gradients may
appear choppier. Also, the system performs classification
on a per-pixel basis without explicitly accounting for the
color values of surrounding pixels. Finally, it may simply
be the case that a particular patch containing a shape or pat-
tern has many possible color matches in the real world, and
the system does not have the capacity to choose a partic-
ular color consistently. For instance, considering the sec-
ond classification-network-generated image, we see that the
brush in the foreground takes on varying shades of green,
yellow, and brown. In the wild, grass does take on many
colors depending on seasonality and geography. With the
little context present in the corresponding black and white
image, it can be difficult for even a human to discern the
most probable color for the grass.

System Acc. (U) Acc. (V) Sat. diff.
Classification 34.64% 24.14% 6.5%

Regression 12.92% 19.02% 85.8%

Table 2. Performances on MIT CVCL Open Country test set.

Despite the aforementioned flaws in its output, all in all
the classification system performs very well. Via our eval-
uation metrics, we can quantify the superiority of the clas-
sification network over the regression network for this par-
ticular dataset (Table 2). For the landscape data test set,
using the classification network, we find that the U and V
channel prediction accuracies are 0.3464% and 0.2414%,
respectively, and that the average percent difference in sat-
uration is 6.5%. In comparison, using the regression net-
work on the same test set, we find that the U and V channel
prediction accuracies are 0.1292% and 0.1902%, and that
the average percent difference in saturation regression is a
whopping 85.8%. Evidently, not only is the classification
network able to correctly classify the color of a particular
pixel more effectively, but it is also much more likely to
predict colors that match the saturation levels of images in
the training set.

In Figure 6, we present sample colored test images along
with the black and white input. The model generally yields

Figure 6. Sample test set input and output from ImageNet.

more convincing images on nature themes. It is the case
because the candidate colors for objects in nature are more
well defined than some man-made objects. For example,
the sky might be blue, grey or even pink at the a sunset,
but it is almost never green. However, chair cushions, for
example, may bear almost any color. The model needs to
see more cushion images than sky images before it learns
to color it nicely. On the bottom right image, for example,
the table is colored partially red. Since we did not sample
the table class, there is not many images with tables in the
training set for the model to learn how to color table objects
properly.

Figure 7. Sample outputs exhibiting color inconsistency issue.

The main challenge our model faces is inconsistency in
colors within individual objects. Figure 7 shows two test
input and output pairs that suffer from this issue. For the
first example, the model colored parts of the sweatshirt red
and other parts of it grey. As human beings, we can imag-
ine a sweatshirt being red or grey as a whole. Our cur-
rent system-on the other hand-makes one color prediction
on each pixel, and hopefully the close-by pixels have sim-
ilar color assignment. However, it is not always the case.
Even though local regions of small sizes are examined to-
gether given the nature of convolutional layers, there is no
explicit enforcement on the object level. We experimented
with applying a Gaussian smoothing on the class scores to
address this issue. This kind of smoothing performed only
slightly better. Unfortunately,it introduced another issue: it
significantly increased visual noise along object edges. Ac-
cordingly, we left out the smoothing in our final model.

Figure 8 shows two under-colored images. As we ob-
served earlier, man-made objects with a large intra-domain
color variation are generally more challenging. The model
was not able to give a good prediction for the sweater, most
likely because of the wide range of color choices. Upon

6

Figure 8. Under-colored output examples.

close examination, we noticed that the model even painted
part of it slightly green. Similarly for the crowd picture, the
model did not provide much color to non-white clothes.

6. Conclusion and future work
Through our experiments, we have demonstrated the ef-

ficacy and potential of using deep convolutional neural net-
works to colorize black and white images. In particular, we
have empirically shown that formulating the task as a clas-
sification problem can yield colorized images that are ar-
guably much more aesthetically-pleasing than those gener-
ated by a baseline regression-based model, and thus shows
much promise for further development.

Our work therefore lays a solid foundation for future
work. Moving forward, we have identified several avenues
for improving our current system. To address the issue of
color inconsistency, we can consider incorporating segmen-
tation to enforce uniformity in color within segments. We
can also utilize post-processing schemes such as total varia-
tion minimization and conditional random fields to achieve
a similar end. Finally, redesigning the system around an ad-
versarial network may yield improved results, since instead
of focusing on minimizing the cross-entropy loss on a per-
pixel basis, the system would learn to generate pictures that
compare well with real-world images. Based on the quality
of results we have produced, the network we have designed
and built would be a prime candidate for being the generator
in such an adversarial network.

References
[1] Lasagne. https://github.com/Lasagne, 2015.
[2] R. Dahl. Automatic colorization.

http://tinyclouds.org/colorize/, 2016.
[3] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. In International
conference on artificial intelligence and statistics, pages
249–256, 2010.

[4] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Hyper-
columns for object segmentation and fine-grained localiza-
tion. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 447–456, 2015.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015.

[6] M. J. Huiskes and M. S. Lew. The mir flickr retrieval eval-
uation. In Proceedings of the 1st ACM international con-

ference on Multimedia information retrieval, pages 39–43.
ACM, 2008.

[7] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[8] D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097–1105, 2012.

[10] A. Oliva and A. Torralba. Modeling the shape of the scene: A
holistic representation of the spatial envelope. International
journal of computer vision, 42(3):145–175, 2001.

[11] A. Olmos et al. A biologically inspired algorithm for the
recovery of shading and reflectance images. Perception,
33(12):1463–1473, 2004.

[12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
et al. Imagenet large scale visual recognition challenge.
International Journal of Computer Vision, 115(3):211–252,
2015.

[13] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[14] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the im-
portance of initialization and momentum in deep learning. In
Proceedings of the 30th international conference on machine
learning (ICML-13), pages 1139–1147, 2013.

7

https://github.com/Lasagne

