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ABSTRACT

We approach the task of automatic music segmentation

by musical form structure. After reviewing previous ef-

forts which have achieved good results, we consider the

rapidly evolving application of convolutional neural net-

works (CNNs). As CNNs have revolutionized the field of

image recognition, especially since 2012, we investigate

the current and future possibilities for such an approach to

music, and specifically the task of structure segmentation.

We implement a straightforward example of such a system,

and discuss its preliminary performance as well as future

opportunities. 1 2

1. INTRODUCTION

This paper describes our ongoing attempts to automat-

ically segment songs according to musical song struc-

ture. To accomplish this, convolutional neural networks

are trained on spectral audio features via human-annotated

structural “ground truth” segment times. Our system’s in-

put is a song, and its outputs are predicted times of struc-

ture boundaries (i.e. the start or end or a section, such as

a verse, bridge, or chorus in Western popular music termi-

nology).

Reliable automatic music segmentation is worthwhile

for several reasons. If we characterize the structures of

arbitrarily large amounts of recorded music, we can use

statistics to conduct musicological analysis at a huge scale.

This is one aspect of the field of computational musicology

[3, 5]. Perhaps by seeing the forest instead of the trees, we

1 Our efforts on this project are combined jointly with CS231N
(http://cs231n.stanford.edu/) and Music 364 (https://
ccrma.stanford.edu/courses/364/). Blair Kaneshiro, in-
structor for Music 364, and Andrej Karpathy, instructor for CS231N, both
agreed to this arrangement.

2 Code for this project is available, such as it is, at https://
github.com/tsob/cnn-music-structure.
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can gain new insight into the role of music structure as a

compositional element.

Additionally, consumer applications such as music rec-

ommendation systems benefit by taking into account song

structure, as it is a salient aspect of human apprecia-

tion of music. One could even employ music structure

boundaries to automatically generate music “thumbnails”

or summaries, short snippets of music that include exam-

ples of all the sections of the larger work (see, for exam-

ple, [1]).

More broadly, the essence of this task is interesting in

and of itself. Humans can perceive musical sections and

their boundaries quite quickly and easily, even without

prior instruction in music. However, just like image clas-

sification, natural language processing, or speech recog-

nition, this is no easy task for a computer. This is partly

because music structure is inherently tied to human per-

ception; the ultimate judge of music structure is the human

auditory and cognitive system. Like other perceptual at-

tributes, this is unavoidably subjective.

Structural segmentation is a well-known task in the do-

main of music information retrieval (MIR), and has been

an official task at MIREX 3 since 2009. Approaches have

included self-similarity matrix evaluation [17], and flavors

of unsupervised non-negative matrix factorization [8, 19],

to name a couple. Typically, spectral features such as

chroma (pitch classes) or MFCCs are used as the input.

One popular variant is beat-synchronous time warping [9],

in which temporal frames are nonuniform and dictated by

beat detection, as opposed to a more typical uniform frame

size.

We discuss related work in more detail in the follow-

ing section. We then take a deep dive into the methods we

employ here (§3), explore our dataset and the features we

utilize (§4), and discuss our current results (§5). We con-

clude with some final remarks and look toward future work

in §6.

3 MIREX, the Music Information Retrieval Evaluation eXchange, is
an annual competition run by ISMIR, the International Society for Mu-
sic Information Retrieval. Website: http://www.music-ir.org/
mirex/wiki/MIREX_HOME.



2. RELATED WORK

Musical structure analysis, as an outgrowth of music the-

ory, has existed for centuries. In the Western classical tra-

dition, musical form is as much a dimension of invention

and refinement as any other, from perhaps the Renaissance

to the present day. For as long as composers and perform-

ers were creating and manipulating musical forms, schol-

ars have been analyzing their structure—albeit mostly by

hand (and ear). (See [22] for expert commentary relating

to musical form as it evolved from the Medieval through

the 20th Century periods of Western classical music.)

More recently, attempts to automatically segment musi-

cal structure have begun to show promise. For an exhaus-

tive treatment of the task and its history, we found Nieto’s

Ph.D. thesis [18] to be invaluable. Additionally, Smith and

Chew [28] performed a useful meta-analysis of the task up

to 2013.

2.1 Nonnegative Matrix Factorization

While a comprehensive summary of NMF techniques is

beyond the scope of this paper, we provide some intuition

so as to compare our approach with the competition. Some

of the mathematical formalism which is often applied to

music structure segmentation can be found in [8].

Nieto and Jehan [19] offer an example application of

convex NMF in music structure segmentation, though its

use for this task dates back to 2010 [13]. Essentially, any

piece of music may be transformed into a feature matrix

(using features like FFT, MFCC, pitch chroma, etc.) This

feature matrix may then be factored into lower dimensional

matrices whose outer product reconstructs the original fea-

ture matrix, more or less. One of the factored matrices

may be viewed as a collection of basis features which may

be combined to reassemble the song. The other factored

matrix represents the activations of our basis features in

time, throughout the song. This is illustrated graphically

in Fig. 1, from [20].

Figure 1: An illustration of convex NMF applied to music

structure segmentation from [20, Fig. 1].

From this lower-dimensional representation of song

features and their activations, it becomes easier to draw

conclusions regarding song structure. Additionally, and

fortuitously, the boundary identification and segment as-

sociation are both straightforward after factorization, since

segments with the same basis features can reasonably be

assumed to come from the same segment type (e.g. first

verse and second verse of a pop song.)

2.2 Convolutional Neural Networks

While artificial neural networks have existed since at least

the 1960s, and notionally since 1943 [7], the pace of inno-

vation and performance improvements has increased dra-

matically in the past decade. This is perhaps most evident

in the field of image- and vision-related tasks. In 2012,

a deep convolutional neural network system won the Im-

ageNet Challenge [14]; every winning ImageNet system

since then has also been based on CNNs. (See [23] for de-

tailed information on the ImageNet challenges, as well as

a chronicle of the turning point in 2012).

However, usage of CNNs in music and audio has been

fairly limited. An early example, [15], uses a CNN to ex-

tract musical patterns from audio, as a path to genre clas-

sification. Li et al. used the dataset GTZAN, common for

music genre classification, and extracted the first 13 MFCC

features upon which to build their 4-layer CNN system. By

today’s standards, it is a fairly small CNN: three convolu-

tion layers with 3, 15, and 65 convolution kernels, respec-

tively, followed by a fourth fully-connected layer. While

yielding interesting results, this is not exactly music struc-

ture segmentation.

Karen Ullrich, Jan Schlüter and Thomas Grill, how-

ever, have published several papers in recent years regard-

ing music and CNNs, including music structure segmen-

tation. We model a great deal of our work on their 2014

paper [29], upon which their well-performing MIREX sub-

mission [25] was based. Recently [11,12], Grill et al. have

achieved improved results by combining spectrograms and

sliding self-similarity matrices, and using those concate-

nated features as the input to their CNN systems [24].

3. METHODS

Our initial approach is inspired by [25, 29] and related

work. This focuses on the task of boundary retrieval. The

subsequent task of associating segments within a song, e.g.

identifying each verse in a song with the same label, is dis-

cussed in §3.2, but left to future work.

We should note that this is a major drawback of the

CNN approach to this task. In nonnegative matrix factor-

ization, for example, the task of boundary identification

and segment similarity/labelling are accomplished simul-

taneously. However, the CNN approach should be much

faster at test time, since NMF approaches require factoring

a huge matrix for each tested song, and much better at seg-

ment boundary retrieval (as evidenced in the MIREX 2015

results 4 ).

Our method, at a high level, takes a set of audio features

related to a particular moment in a song, and outputs a sin-

gle number which we regard as a segment boundary score.

Higher values indicate a higher likelihood of a boundary

occurring at that moment. As we will discuss in §4, dur-

ing training, each of these moments have a corresponding

4 See http://www.music-ir.org/mirex/results/

2015/mirex_2015_poster.pdf, under Structure Segmentation.
GS1 and GS3 [24] both return state-of-the-art results in the second
column, which corresponds to hit rate, or correct identification of
boundaries, within 3 seconds of their human-annotated occurrence.



Figure 2: An illustration of our convolutional neural network.

ground-truth score between 0 and 1, where 1 corresponds

to a human-annotated segment boundary. Thus, at each

time step in a song, the CNN performs a regression on the

segment boundary score.

One might ask: why not pose this as a classification

task? After all, we are interested in the segment bound-

ary times as well as their associations (e.g. verse, cho-

rus). However, this strikes us as an ill-advised approach,

since we aim to produce a system which works regardless

of genre or type of music. Even within a genre, the musical

variability and plasticity of song parts makes us skeptical

that classification of song part would yield generalizable

models.

3.1 Network architecture

We implemented a small-scale convolutional neural net-

work, shown in Fig. 2, inspired by VGGNet [26] as well

as [29]. We do not claim that such a small architecture is

optimal or even sufficient; indeed, as we will discuss with

our results, we likely require a network which is larger in

either or both the number of convolution kernels, or the

size of the dimensions, to allow adequate capacity to gen-

eralize the notion of a segment boundary. However, we re-

gard this as a good start, in the sense that the small model is

less time- and computation-intensive during training, and

yields evidence as to whether we are on the right track.

This a sequential CNN, which is similar to vanilla feed-

forward neural networks with the exception that lower-

dimensional kernels are convolved over the input volume,

with the dot product of the convolution kernel and the par-

ticular region of input being one output into the next hid-

den layer. The convolution kernels (weights and biases)

are learned via gradient descent.

At each layer, activations are fed through a ReLU (rec-

tified linear unit) nonlinearity. Batch normalization is also

applied at each layer. To aid in regularization, 50% dropout

is applied at the penultimate fully-connected (i.e. non-

convolution) layer. We use a mean squared error loss func-

tion (with L2 regularization on weights) on minibatches of

training input and annotated ground truth scores. Gradi-

ents are back-propagated through every level of the CNN,

which contains all differentiable units. Our particular

means of optimization is stochastic gradient descent with

Nesterov momentum.

We implemented this network in Python with Keras 5

using Theano [2, 4] as a backend. We utilized Theano’s

GPU capabilities, interfacing with NVIDIA’s cuDNN 4 li-

brary [6] on an NVIDIA GeForce 980M GPU.

3.2 Post-processing network output

As the output of the CNN described above is a scalar score

for each time step, we generate a prediction signal for each

song, made up of predicted segment boundary scores at

each time step in the song. However, this requires two lev-

els of post-processing to arrive at our desired output.

First, we must implement a peak-picking algorithm on

the song’s prediction signal, as in [29], to arrive at discrete

times of predicted segment boundaries. Second, now that

we’ve defined our segment predictions, we need to clus-

ter our segments based on some audio features in order to

predict labels. Segment labels need not be as explicit as

“verse” and “chorus;” simple alphabetical labels such as

A, B, etc. are acceptable. The important aspect is to cor-

rectly associate the first occurrence of a section with any

subsequent occurrences. This may be done by comput-

ing average spectral features for the segments, for exam-

ple, and assigning the same labels to those segments which

are closer than a given similarity distance threshold.

Once we have the discrete segment predictions, and/or

their predicted labels, we may apply several evaluation

metrics, as in the MIREX task. These evaluation metrics

are conveniently implemented and available as the Python

package mir_eval [21]. We should note, however, that

these post-processing procedures are currently beyond the

scope of our inital efforts, and thus won’t be evaluated

here.

4. DATASET AND FEATURES

Our datasets fall into two categories. First, we require hu-

man annotations of music structure segmentation. Second,

we require audio of songs with those human annotations.

5 http://keras.io/



Furthermore, we need to compute audio features and as-

semble them into a form suitable for input into the CNN

described above.

4.1 Dataset

The ground truth on which we train our system must con-

sist of human annotations, since structure and segmenta-

tion are perceptual distinctions. To that end, we chose to

use the SALAMI (Structural Analysis of Large Amounts

of Music Information) dataset [27], which is the largest

single set of human song structure annotations of which

we are aware, and is commonly used in the music struc-

ture segmentation literature. SALAMI contains human-

annotated song structure segmentations for some 1,164

songs taken from several sources and genres. An exam-

ple of functional segmentation for a given track in the

SALAMI dataset is reproduced in Fig. 3. 395 are from

the Internet Archive, from which the freely available au-

dio tracks were downloaded. Additionally, 74 of the pub-

licly available SALAMI annotations are sourced from the

RWC Music Databases [10]. These are high-quality stu-

dio recordings of various genres, meant for music research,

to which we gained access through Stanford University li-

braries. Although these works are under copyright, we are

allowed to use them for research as affiliates of Stanford

University.

Time (s) Segment

0.0 silence

43.56063492 Intro

66.992426303 Verse

89.808163265 Bridge

107.144058956 Chorus

118.560272108 Verse

141.28047619 Bridge

153.137029478 Chorus

176.392086167 Instrumental

187.880385487 Verse

210.856281179 Bridge

228.176712018 Chorus

228.176712018 Outro

277.912562358 no function

303.83154195 End

303.83154195 Silence

Figure 3: Example SALAMI function annotations for the

song with SALAMI ID 1003.

We note that, for the vast majority of SALAMI con-

stituents, there are two human annotations. This adds a

minimal level of variance to the ground truth, reflecting

differences in human perception.

Thus in total, we have audio and human annotations for

469 songs. Features are extracted from audio in Python,

with some help from the popular Librosa package [16].

Figure 4: An illustration of audio feature preprocessing

for input to our CNN, for an example song.
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Figure 5: Segment boundary ground truth labelling, per

frame. Note that the blue spikes represent the binary la-

bels derived from SALAMI annotations, whereas the green

signal shows our smoothed ground-truth achieved by con-

volving a Gaussian kernel over the blue signal.

4.2 Audio Features

We implemented functionality to retrieve a song, given its

SALAMI ID number and availability in our SALAMI au-

dio subset, and compute features such as spectra, Mel-scale

spectra, MFCC, and others. For our initial efforts, we de-

cided to use Mel-scale spectrograms. Mel spectra may be

thought of like FFT spectra, but the frequency bins corre-

spond to the perceptually-warped Mel scale. The Mel scale

is an attempt to transform the linear frequency scale into a

mostly logarithmic one which better reflects the way hu-

mans perceive pitch. Thus, equally spaced pitches on the

Mel scale should correspond to an equal pitch difference

in semitones, regardless of the register (low or high).

The frame length and hop size are chosen to be typi-

cal values (2048 samples, or 46 ms, per frame, and 50%

hop, or 23 ms, between frames), but may also be treated

as hyperparameters. We also constrain our Mel spectra to

128 mel-frequency bins, representing a range of 0 Hz to

16 kHz. Finally, each Mel-spectrogram is expressed in dB

and normalized on a per-song basis. The top plot of Fig. 4

shows an example Mel-spectrogram.

4.3 Feature Pipeline

After the audio feature computation step of §4.2, we have

each song in a large two-dimensional feature matrix. The



horizontal axis is frame number, and the vertical is feature

index (Mel spectrum bin, in our case). As in [25], we break

each 2D feature matrix into a volume of meta-frames cor-

responding to each time step. We do this by sliding an “im-

age” of some number of frames (i.e. temporal context), and

associate each “image” with a single ground-truth value in-

dicating whether a segment boundary occurs at the middle

of this context. We decided to make this meta-frame 129

frames wide, i.e. 3 seconds long. This is a hyperparameter,

and intuitively seems suitable: if we were played 3 sec-

onds of audio and asked whether a segment boundary had

occurred at the middle, it strikes us as reasonable. If we

listened to just a tenth of a second, on the other hand, we

would not expect to predict the correct answer. Thus, for a

song with 10,000 frames (slightly less than 4 minutes) we

have 10,000 individual 128×129 training examples.

As mentioned above, we may transform our ground

truth segment boundaries from discrete times, as in Fig. 3,

to signals which represent the presence of a segment

boundary at every computed feature frame. We do this by

assigning float values between 0 and 1, where 1 indicates

the presence of a boundary within that particular frame,

and 0 indicates its absence. To account for the sparse oc-

currence of segment boundaries in a song, as well as the

perceptual variance in ground truth, we convolve these la-

bels with a Gaussian kernel (see Fig 5). This differs from

[25], who assigned a binary value of 1 within a certain time

around the ground truth, 0 otherwise, but further assigned

each example lower weight or “importance” depending on

the temporal distance from the ground truth label.

Four examples from our dataset are shown in Fig. 6.

Thus, we expect results broadly similar to that reported by

[25], an example of which is reproduced in Fig. 7.

5. EXPERIMENTAL RESULTS AND DISCUSSION

Results remain somewhat preliminary, as we did not have

time to train our model on the full set of 469 songs. We

used a training set of 15 songs, a validation set of 1 song,

and a test set of 10 songs, all of which were randomly cho-

sen without replacement. As discussed above, depending

on the length of a song, it may have tens of thousands of

training examples; thus, a full run remains to be performed.

5.1 Test song predictions

Although we fear that the training set was not varied

enough to produce a fully generalizable model, we do see

evidence in our test predictions that the model is retaining

some generalizable hallmarks of music structure bound-

aries. Several example plots are shown in Figs. 8 and 9.

Fig. 8a shows perhaps the best performance in the test

set. Upon visual inspection, 4 or 5 of 8 boundaries have

corresponding prediction signal peaks which are at least

reasonably close to the ground truth and above the back-

ground noise in the signal. We expect the signal noise

to subside with increased training time and an increased

number of training songs. Fig. 8b seems to show at least

two boundary identifications, but also perhaps two spuri-
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Figure 6: Four examples of Mel-spectrogram context

frames. The top two are centered temporally at a human-

annotated segment boundary, whereas the bottom two are

not. Note that visual inspection of the center of the top two

examples shows novel material in relation to the preced-

ing and succeeding context, whereas the bottom two show

somewhat homogeneous examples.

Figure 7: Example results reported by Schlüter et al. [25,

Fig. 1]. The top graph shows the Mel-spectrogram for a

test example, while beneath the corresponding CNN output

is shown in blue. In that bottom plot, human-annotated

segment boundaries are shown as red dotted lines, whereas

the predicted segment boundaries, after peak-picking, are

shown as green dashes at the top of the plot.

ous boundary identifications. Fig. 9b also appears to show

a correct boundary identification, as well as a couple spuri-

ous boundaries following it. Fig. ?? shows relatively well-

behaved predictions, except for the intermittent plunges to

large negative predictions.

We may contrast these admittedly anecdotal observa-

tions with our previous small-scale training runs on one

song. These were mainly for quick system tests. However,

it was evident that training on one song does not produce

prediction signals with any sort of reliable peaks. That is,

as we’d expect, the system did not learn to generalize the

notion of segment boundary when it only saw examples

from one context (a single song). The fact that, with 15

songs, we start to see halfway decent predictions gives us

hope that we may be able to achieve much better results

when training with some significant fraction of our corpus

of 469 songs.



However, based on the sizes of other, similar systems,

we expect to have to enlarge our model. Given our intu-

itive knowledge of the breadth of sonic phenomena that

constitute segment boundaries, we plan to at least double

the number of convolution kernels at each layer, as well as

the size of the hidden fully-connected layer. Additionally,

to capture more complex patterns, we plan to add addi-

tional convolution layers; more complex graph structures

may also be beneficial.

5.2 Model visualization

One of the most interesting ways to interrogate our model

is to visualize the weights. That is, given a particular con-

volution neuron, we optimize an image (or in this case, the

3-second context Mel-spectrogram) to maximally activate

that neuron. 6

Visualizations of several of our weights from the first

convolution layer are shown in Fig. 10. The top row

appears to show consecutive vertical lines, which would

translate to broadband impulsive sounds such as succes-

sive drum hits. Indeed, the regular patterns suggest rhyth-

mic temporal hits. This makes sense; firstly, broadband

rhythmic hits seem to be a reasonable low-level feature of

music; secondly, and intuitively, transitions between struc-

tural sections in music are often marked by pronounced

and accentuated rhythmic content.

In the bottom row of Fig. 10, we see two examples of a

more complex phenomenon. They suggest perhaps a rising

harmonic trajectory, though not in a straightforward man-

ner. Perhaps it is sufficient to characterize them as smooth

harmonic trajectories over time. This also makes sense,

as musical structure boundaries are often characterized by

broad and continuous sweeps over harmonic or melodic

terrain, thereby connecting disparate structural elements.

Finally, we may remark that these low-level patterns

seem analogous to the low-level patterns such as edges

which we expect to find in visual recognition systems. This

makes us optimistic, since our model appears to be learn-

ing relevant patterns.

6. CONCLUSIONS AND FUTURE WORK

We have chronicled our efforts in implementing a convo-

lutional neural network to automatically segment music by

song structure. After reviewing the task and relevant back-

ground, we introduced our system, and showed prelimi-

nary evidence that it has returned promising results. In the

immediate future, we plan to train on a set of songs which

are an order of magnitude larger than our current exper-

iment. Simultaneously, we plan to enlarge our network

architecture to allow enough capacity to model this large

set.

6 Our code for this section was adapted from the following post to
the Keras blog by François Chollet: http://blog.keras.io/

how-convolutional-neural-networks-see-the-world.

html

6.1 Rebalancing the training examples

We should note that most context-frame examples will not

be boundaries, leading to an unbalanced set of training ex-

amples. We should perhaps boost the number of positive

examples (i.e. those context frames centered at segment

boundaries) shown during training. Indeed, [25] report

boosting the probability of a positive training example by

a factor of 3. We will accomplish this, quite easily, by

randomly inserting some number of positive examples to

the training set. Indeed, we may center each context frame

exactly at the annotated segment boundary, leading to ad-

ditional context frames that are not only centered at the

boundary frame, but whose boundary frames are exactly

centered at the segment time. Whether this is at all benefi-

cial remains to be seen, but it does allow us to add context

frames that are not exact duplicates to the training set.

6.2 MIREX-style evaluation

The ultimate system evaluation should follow the MIREX

task evaluation procedures, 7 as implemented in [21], and

discussed above in §3.2.

However, we should acknowledge Nieto’s [18] remarks

about the pitfalls of any individual metric. These evalu-

ation metrics are necessarily imperfect because they seek

to objectively measure subjective perception. Thus, bet-

ter performance in the metrics is certainly a goal, but not

the only one. We should carefully interpret the details of

our ultimate model, as a better-performing system might

be quite valuable in any insight its individual weights and

elements can provide.

6.3 Transfer learning with pre-trained models

Finally, in the field of image processing, we note the preva-

lence of systems which leverage transfer learning on pre-

trained CNN models. For example, the Caffe Model Zoo 8

features many state-of-the-art models which any investiga-

tor can freely use for a subsequent system. Although sys-

tems such as the one described in this paper are already in

use at companies such as Google and Spotify, though their

models are currently proprietary. Sources tell us that this

may soon change, in which case a transfer learning project

would be extremely interesting and compelling.
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[29] Karen Ullrich, Jan Schlüter, and Thomas Grill. Bound-

ary Detection in Music Structure Analysis Using Con-

volutional Neural Networks. Proceedings of the 15th

International Society for Music Information Retrieval

Conference (ISMIR), 2014.


