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Abstract

Static frames from videos can provide information about
the inherent motion in the scene. In particular, given an im-
age of someone performing an action, humans can reason-
ably guess how pixels in the scene will move in subsequent
frames. In this work, we use an unsupervised learning pro-
cedure to predict optical flow from static video frames by
training an AlexNet convolutional neural network architec-
ture on the HMDB-51 video dataset from scratch. We also
train a fully-convolutional architecture which achieves sim-
ilar performance with over an order-of-magnitude reduc-
tion in the number of network parameters. We extend our
procedure to generate video predictions in raw pixel space
through iterative flow prediction followed by spline inter-
polation, and suggest methods to improve the quality of our
generative video model.

1. Introduction
Given a single frame from a video, human beings are

good at predicting where objects in the frame will move
to next. For example, in Figure 1, we can say with rea-
sonable certainty that the torso of the woman is about to
move up and to the left. Predicting actions and movement
in videos has been a source of active research. A number of
studies have attempted to predict the overall action or event
that is about to take place [16, 17, 21] while others attempt
to predict future frame representations using LSTMs [12].
The ability to anticipate the immediate future could pro-
vide a significant advantage in fields such as robotics, where
an agent that interacts with the external world could plan
around what it believes to be the most likely future sequence
of events. One way to anticipate future actions is to at-
tempt to predict future optical flow. Optical flow is a vector
field which represents the apparent motion of each pixel be-
tween two frames. A method that reliably predicts optical
flow in the immediate future could be helpful in predicting
the paths of pedestrians in a busy intersection, in restoring
video with missing frames, or in compressing video by de-
liberately dropping frames which can be reliably predicted.

Figure 1: Extracted optical flow from a HMDB-51 frame,
along with our model’s prediction. We visualize the flow by
superimposing the HSV color corresponding to the angle of
the flow at each pixel.

Notably, the last two applications require the transformation
of optical flow predictions back to pixel space.

In [11], random forests were used to predict dense op-
tical flow from a single static image in the small KTH
dataset [13]. Very recently, [18] used an AlexNet convo-
lutional neural network in the style of [6] to predict opti-
cal flow from a static image, significantly outperforming
previous results. In this work, we implement and train a
similar architecture from scratch and compare its perfor-
mance to a fully-convolutional neural network with no pool-
ing or fully-connected layers. The input to each model is a
static 200x200 RGB frame from a video and the output is
a coarse 20x20 vector field representing the predicted opti-
cal flow that the frame will experience in the immediate fu-
ture. Figure 1 shows an example of a real prediction by our
model. Overall, both architectures generate successful pre-
dictions in scenes with unambiguous motions and compare
well quantitatively with the state-of-the-art. We also find
that the fully-convolutional neural network achieves similar
performance as [18]’s approach with over 15 times fewer
parameters. We extend our flow prediction model to warp
the original image through spline interpolation. By itera-
tively feeding the warped image back into the network to
generate a new optical flow prediction, we are able to gener-
ate predictions from single frames in the form of raw video.
Generated videos are convincing for a few frames before the
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predictions experience distortion. In the final section of this
paper, we propose two extensions to our model that may
improve our synthetic video predictions.

2. Dataset and Features

We train our models on the HMDB-51 dataset [7], which
is originally intended for action recognition and is made up
of natural footage of humans performing 51 different activ-
ities such as walking or boxing. Computing the optical flow
between two frames is an active area of research. To obtain
the ground truth optical flow between two frames, we use
the publicly-available DeepFlow implementation in [20].
Training is therefore unsupervised since ground truth labels
are automatically computed.

We extracted over 48,000 frames and their correspond-
ing optical flows from more than 2,300 HMDB-51 videos.
Only the videos which were labeled as being of medium or
good quality and containing no camera movement were pro-
cessed. This is because compression artifacts in poor qual-
ity video result in unreliable optical flow estimation. Simi-
larly, shaky camera footage would add too much movement
between frames to be able to extract a meaningful optical
flow, and the computational complexity of stabilizing every
video before extracting the flow was deemed too great for
this project. Each frame in the dataset was resized so that
its height was 200 pixels, and a center 200x200 crop was
taken. The optical flow for each frame was then computed
using DeepFlow, averaging the flow between the frame and
the subsequent three frames to mitigate the effects of noise.
The optical flow was extracted every 5 frames in the video,
effectively downsampling the original dataset by a factor
of 5. The resulting 48,000 frames and their corresponding
optical flows were shuffled and split into training, valida-
tion, and test sets. The mean frame was subtracted from the
dataset to center the data and the pixel values were scaled
to between -1 and 1.

3. Methods

Given an input 200x200 RGB frame, our model must
produce a two-dimensional vector field representing the
predicted optical flow that the frame will experience in the
immediate future. We predict a coarse 20x20 optical flow
corresponding to the flow at pixels spaced 10 units apart in
each dimension in the ground truth.

Following the lead of [8, 18, 19], we formulate the prob-
lem as a classification problem rather than a regression
problem. Specifically, we first resize the computed flows
to 20x20 flows and then cluster all flow vectors in the train-
ing set into a codebook of 40 representative clusters using
the minibatch K-Means implementation from [10]. We use
the centroids of the 40 clusters to generate 20x20 class la-
bels for each frame in the training and validation sets, with

Figure 2: Effects of clustering optical flow vectors. The
first column shows the original image, the second column
shows the original optical flow and the third column shows
the coarse, clustered optical flow.

each entry representing the cluster which most closely ap-
proximates the motion of that pixel. The results of resizing
and classifying vectors are shown in Figure 2. The resulting
flows are not significantly different from the ground truth
flows, although there is some loss of precision.

We use the spatial softmax function from [18, 19] to
quantify the loss of the network for a given set of param-
eters. Let I represent the input image and Y be the ground
truth optical flow labels represented as quantized clusters.
Then our spatial loss function L(I, Y ) is:

L(I, Y ) = −
20×20∑
i=1

40∑
c=1

(1(yi = c) logFi,c(I))

where Fi,c(I) is the probability that the ith pixel will fol-
low the optical flow of cluster c and 1(x) is the indicator
function.

At test-time, we can still predict flow vectors in con-
tinuous space by using the cluster scores of each pixel as
weights in a weighted sum of the corresponding cluster cen-
troids. More explicitly, if we denote the 40 cluster centroids
as {~m1, ..., ~m40}, we predict pixel i’s optical flow ~fi as:

~fi =

40∑
c=1

Fi,c ~mc
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Layer Filters Width Stride Pad Dropout Output
Input - - - - - 200x200x3
ConvBN 96 11 4 2 - 49x49x96
MaxPool - 3 2 0 - 24x24x96
ConvBN 256 5 1 2 - 24x24x256
MaxPool - 3 2 0 - 11x11x256
ConvBN 384 3 1 1 - 11x11x384
ConvBN 384 3 1 1 - 11x11x384
ConvBN 256 3 1 1 - 11x11x256
MaxPool - 3 2 0 - 5x5x256
FC - - - - 0.5 (5x5x256)x4096
FC - - - - 0.5 4096x4096
FC - - - - - 4096x16000

Table 1: AlexNet-like CNN architecture.

Layer Filters Width Stride Pad Dropout Output
Input - - - - - 200x200x3
ConvBN 96 7 4 2 - 50x50x96
ConvBN 128 3 2 1 - 25x25x128
ConvBN 256 4 2 0 - 22x22x256
ConvBND 256 3 1 1 0.3 22x22x256
ConvBND 512 3 1 0 0.3 20x20x512
ConvBND 512 3 1 1 0.3 20x20x512
ConvBN 512 3 1 1 - 20x20x512
ConvBN 40 1 1 0 - 20x20x40

Table 2: All-convolutional architecture.

Figure 3: Generative video procedure.

We use two different network architectures to approach
this problem: an AlexNet-like network from [18] and an
all-convolutional network in the spirit of [15] with no pool-
ing or fully-connected layers. The networks are summa-
rized in Tables 1 and 2. ConvBN represents a convolutional
layer followed by a spatial batch normalization layer and
a ReLU nonlinearity. ConvBND represents the same with
a dropout layer after spatial batch normalization. FC rep-
resents a fully-connected layer, and MaxPool represents a
spatial max pooling layer.

The AlexNet network’s 16,000-wide output is split into
400 groups of 40 (each group corresponding to the vector
cluster scores for a single pixel) and the softmax loss for

Figure 4: Flow prediction using the AlexNet architecture.

Figure 5: Flow prediction using the all-convolutional archi-
tecture.

each group is evaluated against its corresponding target la-
bel. The losses are then summed across all 400 groups as
described above. This is illustrated in Figure 4.

In the all-convolutional network, pooling operations are
achieved through convolutional layers. Instead of aggres-
sive pooling to successively reduce the spatial dimensions
of the activations to 1x1, the convolutional layers stop
shrinking the spatial dimensions when the desired 20x20
output is reached. We can think of the next to last acti-
vation volume as containing a 512-deep feature vector for
each output pixel prediction. The final 40 1x1 convolu-
tions entail learning a 512-deep filter for each flow clus-
ter that can transform the feature vectors of pixels into a
class score for that filter’s cluster. This is illustrated in Fig-
ure 5. The removal of the fully-connected layers drastically
reduces the number of parameters in the network from about
112 million to 7.16 million, while both networks use similar
amounts of memory.

We considered horizontal flips as a data augmentation
technique but this would have entailed reclassifying every
label in the training set – it is not sufficient to also hori-
zontally flip the target label since this does not change the
direction of the target flow vectors.

Finally, we use the test-time optical flow predictions
of our models to generate video predictions in raw pixel
space. We use the input image to generate an initial optical
flow prediction. This flow prediction is then scaled up to
200x200, and the scaled flow is used to warp the original
frame to generate a new frame. The warping is achieved
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Figure 6: Training set loss of all-convolutional network over
time. The AlexNet network loss decayed very similarly so
we omit the plot.

through interpolation. Denote the coordinates of pixel i as
~xi. We use the RGB value of pixel i as the value of the
“pixel” at position ~xi + ~fi in the new frame, and use bilin-
ear spline interpolation to fill in the new frame’s pixels at
the regularly spaced pixel positions. The resulting frame is
then used as a new input to the model, and the procedure is
repeated. This model is summarized in Figure 3. Smoother
video is obtained by generating multiple frames per opti-
cal flow prediction at intermediate steps. If we generate m
frames for every optical flow prediction, the kth frame of
this prediction is generated by warping as above at positions
~xi +

k
m
~fi for all i.

4. Experiments and Results
We implemented both networks using Torch7 [2], and

trained them on AWS on a NVIDIA GRID K520 GPU with
4 GB of memory. We used OpenCV [1] for frame extraction
and SciPy [4] for preprocessing. We used a minibatch size
of 125 for both networks. The AlexNet network was trained
using a learning rate of 0.0001. The all-convolutional net-
work was trained using a learning rate of 0.001, which was
reduced by a factor of 10 after 3 epochs of training. No L2
regularization was used on the AlexNet network, but a reg-
ularization of 1× 10−5 was used on the all-convolutional
network. We used the Adam update rule from [5] to op-
timize the loss function with parameters β1 = 0.9 and
β2 = 0.999, and initialized layer weights using the Xavier
method from [3]. The AlexNet network was trained for 55
epochs and the all-convolutional network was trained for 81
epochs.

During training, we tracked the loss on the training set
and used this to optimize hyperparameters. We also tracked

Figure 7: Average per-pixel top-1 accuracy of both models
over time.

Figure 8: Average per-cluster recall of both models over
time.

the top-1 accuracy over all pixels and the average recall
across all clusters on the training and validation sets. We
increased the regularization penalty and dropout frequency
and restarted training from scratch whenever signs of heavy
overfitting were exhibited. The results of training each net-
work are summarized in Figures 6, 7 and 8. Note that the
training set accuracy was computed during the learning pro-
cess after each iteration (unlike the validation set accuracy
which was computed at the end of each epoch) so during
the first few epochs training set accuracy trails validation
set accuracy.

Perhaps the biggest challenge to training networks on
this dataset was the skewed nature of the labels. About
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Model Recall Precision Top-1 Top-5 Top-10
AlexNet 11.12% 15.88% 76.67% 91.9% 96.5%
All-Conv Net 9.44% 12.73% 75.89% 90.7% 96.3%

Table 3: Validation set statistics of final models. The pre-
cision and recall values refer to the average precision and
recall over all cluster classes, respectively. Top-k refers to
the percentage of pixels where the ground truth cluster class
was among the k cluster classes with the highest scores.

75% of all flow vectors belong to the cluster correspond-
ing to no optical flow motion. Accordingly, hyperparameter
choices were hard to make because training and validation
set accuracy tended to stay constant for the first few epochs,
predicting no motion for every single pixel. Tracking the
average recall across clusters was therefore instrumental to
evaluating the performance of networks over time. Indeed,
as seen in Figure 7 the validation set top-1 accuracy tended
to stay flat or even slightly fall. However, the average recall
increased, indicating that the network was learning to dif-
ferentiate between types of motion. Finding an aggressive
learning rate that broke through the initial phase of predict-
ing the most frequent cluster (without leading to an explod-
ing loss) was instrumental to training successful models.

The all-convolutional model did a much better job avoid-
ing overfitting on the training set, as evidenced by how
closely the validation set recall tracks the training set re-
call. This is likely due to the L2 regularization penalty we
imposed, as well as the implicit regularization caused by
the smaller number of parameters it uses. Although we ran
out of budget, we suspect that if we had continued to train
the all-convolutional network we would have continued to
improve the recall rate beyond that of the AlexNet network,
since the training set accuracy on the latter was already very
high by the 55th epoch. The final accuracy statistics on the
validation set for both networks are shown in Table 3. Al-
though the Top-1 accuracy is not much better than guess-
ing no motion for every pixel, the Top-5 accuracy is much
higher. This is encouraging because at test-time we take
into account the scores of all cluster classes, not just the
top one. We also show the confusion matrix for the net-
works on the validation set in Figure 9. The matrix shows
that it is common for the models to predict no motion as the
highest-scoring class for pixels that do experience motion in
the ground truth. Again, since our model takes into account
all class scores, this is not a deal-breaker. We compute other
quantitative evaluation metrics on the test set later on in this
section.

We experimented with VGG-like architectures [14] but
were unable to have the network learn beyond predicting no
motion for all pixels. We suspect this is due to a narrower
range of appropriate hyperparameter choices in deeper net-

Figure 9: Confusion matrices for the AlexNet model (top)
and the all-convolutional model (bottom) on the validation
set. Rows are normalized to the number of pixels of that
cluster type. The value of the square at row i, column j is
equal to the fraction of pixels that move according to flow
cluster i that were predicted by the model to move accord-
ing to flow cluster j. The brighter diagonal represents pixels
that were classified correctly. The vertical band at the ninth
column corresponds to the no-movement cluster, so it rep-
resents pixels that were predicted to stay still but moved in
the ground truth.

works. Moreover, we were forced to use a smaller batch size
of 25 due to the larger memory requirement of this network,
so the increased noise in the loss signal was also likely to
blame. We also experimented with weighting the loss func-
tion for each class with a factor inversely proportional to
the frequency of the class, but found that while this pro-
vided considerably better recall rates in the initial stages of
learning, the top-1 accuracy on the validation set was only
slightly better than random.

Qualitative results of the networks on the test set are
shown in Figure 10. There was no significant qualitative
advantage to one of the two networks. Strongest results
were seen in frames with clear actions, such as punching,
walking, or performing pullups or pushups. The networks
tended to perform poorly on scenes with fine-grained or am-
biguous motions such as smiling or talking, as seen in Fig-
ure 10(e). Many frames which were not correctly predicted

5



Figure 10: Predicted optical flows for five different HMDB-51 frames.

by the networks were similarly unpredictable by humans.
Some mispredictions were consistent with the motion am-
biguity in the scene. For example, in Figure 10(b), both net-
works predicted rightward motion of the boxer and the bag
but the ground truth was opposite. However, based on the
input frame, it is hard to say in which of the two directions
the motion will proceed.

The top-1 pixel accuracy for each pixel is plotted in Fig-
ure 11 for the all-convolutional model. As expected, the
accuracy is higher around the edges of the image where mo-
tion is less likely to take place. The center of the image is
the most unpredictable region since most actions are cen-
tered in the frame. We omit this plot for the AlexNet model
since it is nearly identical.

We evaluate the performance of the models against the
ground truth optical flow using a number of performance
metrics. Given vectors {u1, u2, ..., uN} in the predicted op-
tical flow and ground truth vectors {v1, v2, .., vN}, the aver-
age Euclidean distance between vectors in the ground truth
and the predicted optical flow 1

N

∑N
i=1 ||ui − vi|| gives a

general estimate of how far off the predictions are. The av-

Figure 11: Average top-1 cluster accuracy per pixel for the
AlexNet model.

erage cosine similarity between vectors 1
N

∑N
i=1

uT
i vi

‖ui‖‖vi‖
gives an estimate of how well the model predicts the direc-
tion of movement. Finally, the average orientation similar-
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Model L2 Dir Ori Top-5 Top-10 #params
[11] 1.23 0.000 0.461 - - -
[18] 1.21 0.016 0.636 90.2 95.9 112M
All-Conv Net 1.12 0.036 0.664 90.7 96.3 7.16M
AlexNet 1.10 0.096 0.676 91.9 96.5 112M

Table 4: Evaluation results. L2 refers to the average Eu-
clidean distance, Dir refers to the average cosine similarity,
Ori refers to the average orientation similarity, and Top-k
refers to the percentage of predictions where the ground
truth cluster was among the k clusters with the highest
scores. The lower the L2 distance, the better. The higher
the other metrics, the better. The results of [11] on HMDB-
51 are quoted from [18]. The results of [18] on HMDB-51
are taken from their model trained on both HMDB-51 and
UCF101.

ity between vectors 1
N

∑N
i=1

|uT
i vi|

‖ui‖‖vi‖ gives an estimate of
how parallel the predicted vectors are to the ground truth.
This is especially important in cases where the exact direc-
tion of movement is ambiguous, but one of two directions
can be given. For example, in Figure 1, the person in the
frame may be on the way down instead of up, in which
case the direction of each vector will be flipped. Likewise,
in Figure 10(b) it is hard to say from the original frame
whether the person will move right or left.

The results of the quantitative evaluation of both mod-
els are summarized in Table 4. Note that while we outper-
form both previous works, we likely gain from overfitting
on the 51 action types encountered in HMDB-51, while
[18] is probably a more general model that could outper-
form our approaches on outside datasets. Nevertheless, our
models perform competitively with the state of the art, and
the all-convolutional network performs well with a fraction
of the parameters. We think we could have significantly
improved the metrics of both networks with more training
time since we were forced to cut training short before the
loss plateaued due to a limited computational budget.

Generative video samples are available in this re-
port’s submission as well as at https://youtu.be/
CPUnVs3X48c. We used 5 successive flow predictions per
video and generated 5 frames per prediction. The gener-
ated videos are convincing and capture the underlying mo-
tion of the scene, although distortion becomes too great in
the last few frames. We believe the coarse nature of the
flow predictions is a large source of error. In the next sec-
tion, we propose an alternative architecture that we believe
could significantly outperform our current ones with regard
to generative video.

5. Conclusion and Future Work
In this work, we explored two different convolutional

neural network architectures to predict optical flow given
a static video frame. We analyzed the predictions of our
models qualitatively and compared their quantitative perfor-
mance to past approaches to the problem. We used iterative
predictions alongside spline interpolation to generate short
video predictions in pixel space. Overall, the networks pre-
dict optical flow remarkably well in frames with clear ac-
tions, and make sensible mistakes.

An extension of our models that we would have liked to
explore given more time would be to generate pixel-wise
predictions rather than coarse ones. Because we formulated
our problem as a classification problem rather than a regres-
sion problem, many of the techniques used in pixel-wise
segmentation models such as [9]’s – namely fractionally-
strided convolution to upscale the activation volumes – can
apply. The process to generate new frames would be the
same as in Figure 3, except the upscaling step would be
learned rather than simple interpolation. In this way, we
would be able to generate dense 200x200 flow predictions,
greatly reducing artifacts in warping that arise due to the
sparse nature of our current predictions.

A second extension would entail learning sequences of
flows using LSTMs. Using a warped image as the only in-
put to make a second flow prediction does not explicitly take
into account the temporal structure of past flow patterns.
For example, if the optical flow in a frame of someone walk-
ing points to the right, it is very likely that the optical flow at
the next frame will also point to the right. [18] briefly exper-
iments with learning sequences of flows and achieves some
success by clustering optical flow frames into 1000 clusters
and using a series of fully connected layers to predict the
optical flow frame at each timestep, with each layer having
access to the states of the past layers. We suspect the combi-
nation of these two extensions could generate much higher
quality synthesized video.
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