
Automatic Colorization with Deep Convolutional Generative Adversarial
Networks

Stephen Koo
Stanford University

Stanford, CA
sckoo@cs.stanford.edu

Abstract

We attempt to use DCGANs (deep convolutional genera-
tive adversarial nets) to tackle the automatic colorization of
black and white photos to combat the tendency for vanilla
neural nets to ”average out” the results. We construct a
small feed-forward convolutional neural network as a base-
line colorization system. We train the baseline model on
the CIFAR-10 dataset with a per-pixel Euclidean loss func-
tion on the chrominance values and achieve sensible but
mediocre results. We propose using the adversarial frame-
work as proposed by Goodfellow et al. [5] as an alternative
to the loss function—we reformulate the baseline model as
a generator model that maps grayscale images and random
noise input to the color image space, and construct a dis-
criminator model that is trained to predict the probability
that a given colorization was sampled from data distribu-
tion rather than generated by the generator model, condi-
tioned on the grayscale image. We analyze the challenges
that stand in the way of training adversarial networks, and
suggest future steps to test the viability of the model.

1. Introduction

In this project, we tackle the problem of automatically
colorizing grayscale images using deep convolutional gen-
erative adversarial networks (DCGANs)[14]. The input to
our system is a grayscale image. We then use conditional
convolutional generative adversarial networks to output a
prediction of a realistic colorization of the image.

Colorization of old black and white photos provides an
eye-opening window to visualizing and understanding the
past. People, at least from my generation, tend to imagine
any scene from the years between the invention of the pho-
tograph and the invention of the color photograph as black
and white, when of course humans have always perceived
color from the dawn of civilization. It stretches the imagi-
nation to mentally add color to those old timey photographs,

Figure 1: Left: the original black and white image. Cen-
ter: image colorized by non-adversarial convolutional neu-
ral network. Right: image colorized by a human (Reddit).
Images courtesy of Ryan Dahl [4].

but being able to picture 19th century London as anything
other than a distant black and white caricature can enhance
one’s connection with, and appreciation for, history.

Despite the lack of color information in black and white
photos, humans are able to take contextual clues from the
contents of the image to fill it in with realistic colors. This
indicates that black and white images still contain latent
information that may be sufficient for full colorizations,
though a human may take time on the order of hours in order
to fill in colors for a single photo. Convolutional neural net-
works (ConvNets), with their incredible results in extracting
features from images, constitute a promising method for fast
automatic colorization, which could be applied toward effi-
cient colorization of black and white videos.

However, previous systems that use ConvNets toward
automatic colorization tend to produce sepia-tone colors for
objects for which the color might be ambiguous[4], even to
human eyes. For example, a dark-looking car in a black and
white photo could easily be dark green or dark red in real-
ity, and a plain feed-forward ConvNet archiecture that uses
a Euclidean distance loss function will tend to take a middle
of the road solution, averaging the possible colors and thus
outputting a brownish color (Figure 1).

To address this problem, we propose using the genera-
tive adversarial network framework, as first introduced by

1

Goodfellow et. al. last year1: in our case, the generative net
will take as input the grayscale image in additional to some
random noise, and generate color channels for the image.
Meanwhile, the discriminator net will randomly be given ei-
ther a generated colorization or a true color image, predict-
ing whether or not the input was a true color image. While
the discriminator net will try to maximize the accuracy of
its predictions, the generative net will try to minimize the
accuracy of the discriminator, leading to natural loss func-
tions for backpropagation that do not depend on Euclidean
distance measures while working to match the generated
distribution of colors to the true distribution in the dataset.
By modifying the objective to producing more realistic col-
orizations, rather than colorizations that are ”close” to the
training set, we hope that our system will produce brighter
and more life-like colorizations.

2. Related Work
2.1. Hint-based colorization

Levin et al. [10] proposed a simple but effective method
that incorporates colorization hints from the user in a
quadratic cost function, imposing that neighboring pixels
in space-time with similar intensities should have similar
colors. The hints are provided in the form of imprecise
colored ”scribbles” on the grayscale input image, and with
no additional information about the image, the method is
able to efficiently generate high quality colorizations. Ex-
tensions of this approach have further improved its perfor-
mance: Huang et al. [7] addressed color-bleeding issues
using adaptive edge detection, [19] used luminance-based
weighting of the user-supplied hints to boost efficiency for
video applications, and Qu et al. [13] extended the cost
function to enforce color continuity over similar textures in
addition to similar intensities.

Welsh et al. [18] proposed an alternative approach that
further reduces the burden on the user by only requiring
a full-color example image of similar composition. By
matching luminance and texture information between the
example image and the target grayscale image, the algo-
rithm achieves realistic results as long as a sufficiently sim-
ilar image can be found to use as the example image.

Regardless of the degree of automation, however, both
these ”scribble”-based and example-based techniques re-
quire significant human assistance, in the form of hand-
drawn color hints or suitable examples.

2.2. Deep colorization

In our proposed method, we aim to leverage the the large
amount of image data available on the internet to fully auto-
mate the colorization process without any human interven-
tion. Neural networks have shown great promise in learning

1 http://arxiv.org/abs/1406.2661

a hierarchical model necessary for understanding images,
and so we turn to neural networks. Cheng et al. [3] pro-
posed training neural networks on per-pixel patch, DAISY
[17], and semantic 2 features to predict the chrominance val-
ues for each pixel, with joint bilateral filtering to smooth
out accidental image artifacts. When trained on a large-
scale image database with a simple Euclidean loss function
against the ground-truth chrominance values, this method
resulted in equivalent or superior performance to example-
based methods that used hand-selected examples.

Ryan Dahl [4] went a step further, forgoing the poten-
tially limited image segmentation features and utilizing a
convolutional neural network pretrained for image classi-
fication as a feature extractor in a novel residual-style ar-
chitecture that directly outputs full color channels for the
input image. Trained on the ImageNet database with a Eu-
clidean loss function on the chrominance values, the ap-
proach achieved mixed results: the predicted colors were
almost always reasonable, but also in general tended to-
ward desaturated and even brownish colors. The Euclidean
loss function in this case likely led to ”averaging” of colors
across similar objects.

2.3. Generative adversarial networks

First proposed by Goodfellow et al. [5], the adversar-
ial modeling framework provides an approach to training a
neural network model that estimates the generative distribu-
tion pg(x) over the input data x. Using neural networks net-
works as universal function approximators [1], we use neu-
ral networkG(z; θg) with parameters θg to represent a map-
ping from input noise variable with distribution pz(z) to a
point x in the data space, and use neural network D(x; θd)
as mapping from point x in data space to probability that x
came from the data rather than G(z; θg).

Radford et al. [14] applied the adversarial framework to
training convolutional neural networks as generative mod-
els for images, demonstrating the viability of deep convolu-
tional generative adversarial networks (DCGANs) with ex-
periments on class-constrained datasets such as the LSUN
bedrooms dataset and human faces scraped from the web.

In this proposal, we reformulate the DCGAN frame-
work for a conditional generative modeling context, train-
ing G(xY , z; θg) to jointly map input noise z and grayscale
image xY to the color image x, and training D(x; θd) to
assign the correct label to generated colorizations and true
colorizations.

3. Methods
We use the YUV colorspace instead of the RGB col-

orspace, since the YUV colorspace minimizes the per-pixel

2Per-pixel category labels from a state-of-the-art scene parsing algo-
rithm [11].

2

correlation between the color channels. The Y channel en-
codes the luminance component of the image, and can be
intepreted as the grayscale version of the image, while the
U and V color, or chrominance, channels encode the col-
ors of the corresponding pixels. Our colorization systems
thus take as input the Y component and outputs a prediction
for the UV components. More formally: given a set of im-
ages X , where the full color image x ∈ X is composed of
grayscale and color components xY and xUV respectively,
we aim to build a model to predict xUV given xY . Note that
this may or may not match a user’s actual objectives for col-
orization: given a grayscale image xY , there may be many
realistic colorizations of the image that do not necessarily
match the original colors xUV of the image exactly. In fact,
there may not be enough information in xUV inherently to
infer the corresponding colors unambiguously, regardless of
the method. Thus we relax this objective to proposing real-
istic colors x̂UV given xY in our adversarial model.

To determine the benefit of introducing the adversarial
net framework to deep automatic colorization approaches,
we first construct a simple baseline implementation, then
incorporate the baseline implementation into an adversarial
framework.

3.1. Baseline

Our baseline approach directly learns a mapping from
the grayscale image space to the color image space. We
train a convolutional neural networkF as a mapping x̂UV =
F (xY ; θ), where x̂UV is our estimate of xUV .

We train our baseline model to minimize the Euclidean
distance between the prediction x̂UV and the ground-truth
xUV , averaged over the pixels. More formally, we aim to
minimize this least-squares objective:

L(x; θ) =
1

n

n∑
p=1

‖F (xY ; θ)(p) − x(p)UV ‖
2
2 (1)

where the superscript ∗(p) represents the vector of compo-
nents of the pth pixel of the image, and n is the total number
of pixels in an image. Note that this corresponds with the
objective of matching the original ground-truth colors ex-
actly, and does not necessarily reward different but realistic
colorizations.

3.1.1 Architecture

We use an entirely convolutional model architecture without
any pooling or upscaling layers, such that the output images
have the same spatial dimensions (i.e. width and height) as
the input images. Specifically, we use a series of 3× 3 con-
volutions, followed by a series of 1 × 1 convolutions that
successively collapse the activation volume to a depth of 2,
representing the predicted U and V chrominance channels

of the image (see Figure 2). These 1×1 convolutions essen-
tially constitute a series of fully-connected layers that map
the activation depths of each pixel to a color prediction for
that pixel. Our architecture employs batch normalization
[8], which stabilizes the learning process by normalizing the
input to each of the following activation units to have zero
mean and unit variance. This has been shown to make train-
ing more robust against poor weight initialization as well as
improve gradient flow when backpropping through deeper
networks. We also use the ReLU activation function [12] to
ensure proper gradient flow through our model.

3.1.2 Training

We train our baseline model on the dataset X =
{(xY , xUV)} using minibatch stochastic gradient descent
with momentum, as described in Algorithm 1 with momen-
tum µ and learning rate λ. We defined our minibatch loss as
the mean of the individual example losses:

LB =
1

|XB |
∑
x∈XB

L(x; θ) (2)

where XB is a minibatch sampled from X .
Since we are using ReLU activation units, we use the

following weight initialization for all components wl ∈
Rdl×nl of the filter weights of every convolutional layer l
as proposed by He et al. [6]:

wl =
z√
nl/2

(3)

where dl is the number of filters in l, nl is the number of
connections of a response to l, and z ∼ N(0, 1). This en-
sures proper gradient flow through the ReLU neurons.

3.2. Adversarial nets

We build on top of this baseline model by modifying
it to take a sample of random noise z as a second addi-
tional input, effectively transforming it into a generative
model G(z|xY ; θg), which generates a colorization condi-
tioned on the grayscale input image xY . We also construct
a discriminator model D(x̂UV |xY ; θd), which takes as in-
put both the grayscale image xY and a colorization x̂UV ,
outputting a prediction of the probability that x̂UV was the
true colorization xUV rather than the generated colorization
G(z|xY ; θg). As will be described in greater detail in the
following sections, while D is trained to assign the correct
labels to its input colorizations, G is trained to generate col-
orizations that ”fool” D into assigning incorrect labels to
them (see Figure 3).

3.2.1 Architecture

The architecture of the generatorG is identical to that of the
baseline model, with the sole addition of a fully-connected

3

Algorithm 1 Baseline Model Training

1: Initialize weights wl in θ according to Equation 3.
2: Initialize update velocity v := ~0.
3: repeat
4: for each minibatch XB sampled from X do
5: Forward grayscale components xY of x ∈ XB through network to compute F (xY ; θ).
6: Compute minibatch loss LB according to Equation 2.
7: Compute gradients ∂LB

∂θ of LB w.r.t. θ.
8: v ← µv − λ∂LB

∂θ (momentum update)
9: θ ← θ + v (momentum update)

10: end for
11: until convergence

Figure 2: The convolutional architecture of the baseline
model. The model is first composed of three convolutional
layers with 3 × 3 filters, with 32, 32, and 64 filters respec-
tively. These layers are then followed by two convolutional
layers with 1 × 1 filters, with 32 and 2 filters respectively.
Each convolutional layer except the last is followed by a
spatial batch normalization layer and a ReLU activation
layer.

layer from the input noise z to a activation vector of size
1024, which is then reshaped into a single-channel 32× 32
activation layer that is added to the grayscale input image
before the first convolutional layer. This essentially adds
random perturbations to the input, with the fully-connected
layer theoretically allowingG to learn what this added noise
should look like. We keep all other elements of the archi-
tecture the same; batch normalization and ReLU activation
units have been shown to be critical to ensuring that the
learned generative model is able to cover the colorspace of
the data distribution it is trying to model [14].

We construct the discriminator D as a conventional con-
volutional neural network classifier: a series of three 3 × 3
convolutional layers with max-pooling followed by two
fully-connected layers and a sigmoid activation to output a
single probability prediction. We use standard ReLU activa-

Figure 3: Diagram of the adversarial nets system. The gen-
erator G takes a grayscale image along with some random
noise and proposes a colorization for the image. The dis-
criminator D takes a colorization along with the original
grayscale image and predicts whether or not the coloriza-
tion came from the data distribution or the generator.

tions and likewise initialize weights according to Equation
3. We use dropout [15] to regularize the network, but do not
use batch normalization, to prevent the discriminator from
learning too quickly and overwhelming the generator early
in training [9].

3.2.2 Training

We adapt the training procedure proposed by Goodfellow et
al. [5] (see Algorithm 2). In essence, we train D to mini-
mize the cross-entropy loss of assigning the correct labels to
colorizations given the original grayscale image, while we
train G to maximize the loss, where we define the binary
cross-entropy loss on a pair of examples x, x̃ ∈ X as:

− logD(x̃UV |x̃Y)− log(1−D(G(z|xY)|xY)) (4)

4

The most important consideration when training adver-
sarial nets is carefully balancing this minimax game: if the
discriminator performs too well and labels all of the images
correctly with high confidence, the final sigmoid activation
will become saturated and the gradient signal to the gen-
erator will vanish. On the other hand, training the gener-
ator too much without training the discriminator can allow
the generator to exploit meaningless weaknesses in the dis-
criminator (e.g. always outputting a blue pixels because the
discriminator happens to correlate blue with a positive label
in the current iteration). In our experiments, we only fo-
cus on addressing the former: we assume that because both
the generator and discriminator take the original grayscale
image as a conditional input, the discriminator has morein-
formation to reject naive attempts to exploit its weaknesses.
We also assume that our generator model is unlikely to be
powerful enough to exploit such weaknesses due to its size
and thus limited expressiveness.

We use heuristics adapted from Larsen and Sønderby [9]:
for each iteration of training, if the discriminator’s cross-
entropy loss is less than a certain margin, then we skip the
gradient update for D. This gives the generator a chance to
catch up and harness the gradients from the discriminator
before the discriminator starts to perform too well.

We also transfer weights from the pre-trained baseline
model to initialize the generator model: from this point, the
generator need only learn how to employ the stochasticity of
the noise input and continue optimize its outputs to fool the
discriminator. This should give the generator an additional
handicap to stay at pace with the discriminator.

4. Dataset

We trained and evaluated our models on the CIFAR-10
dataset of 60,000 32× 32 RGB color images in 10 classes.
We chose the CIFAR-10 datasets because smaller images
are much faster to train on, and thus more suitable for the
first prototypes of our proposal. Limiting our dataset to 10
classes also constrains the space of potential objects that the
model would need to learn how to color, giving our smaller
models a chance to fit the data. Moreover, since the im-
ages in CIFAR-10 are taken ”in the wild,” there are often
auxiliary unclassified objects in the images that can still test
the generalization capabilities of the model. However, 1024
pixels is still very little information to go off of, there is less
detail in the image to infer color from, so ultimately this is
still just a exploration.

We withhold 10,000 images for the validation set, leav-
ing 50,000 images for the training set.

4.1. Preprocessing

To each image in the dataset, we apply each of the fol-
lowing preprocessing steps:

Figure 4: The loss history over 60 epochs of training the
baseline model on the naive least-squares objective. The
training loss of each epoch in this chart was computed as a
running average of the minibatch losses, while the valida-
tion loss was computed at the end of each epoch.

1. Convert the image from the RGB colorspace to the
YUV colorspace.

2. Apply spatial contrastive normalization to the Y com-
ponent with a 7-pixel Gaussian kernel. This brings out
the local details in the grayscale images, making it eas-
ier for the models to discern patterns and textures in the
image.

3. Normalize the U and V components globally across
the dataset to have zero mean and unit variance (e.g.
normalize all U values in the dataset by a single global
mean and variance). This smooths out variations in
color profiles across the images in the dataset due to
different illumination contexts.

We did not perform data augmentation in our experiments,
but future work should incorporate data augmentation in the
preprocessing pipeline.

5. Experiments
5.1. Baseline

We trained our baseline model with minibatch size of
128 images, an initial learning rate of λ = 1, momentum
of µ = 0.9, a learning rate decay of 1 × 10−7 for every
iteration, and a step decay of 1

2 for every 25 epochs. We
define the loss on an entire dataset to be the average per-
pixel loss averaged over the examples:

L(X; θ) =
1

|X|
∑
x∈X

L(x; θ) (5)

We trained the baseline model for 60 epochs and plot the
loss at each epoch for both the training and validation sets

5

Algorithm 2 Minibatch stochastic gradient descent of our adversarial colorization nets. We used a standard normal distribu-
tion for the noise prior p(z). In our experiments, used RMSProp [16] for our gradient updates, and a margin of γ = 0.5 for
the error heuristic.

1: for number of training iterations do
2: Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior p(z).
3: Sample minibatch of m grayscale examples {x(1)Y , . . . , x

(m)
Y } from X .

4: Sample minibatch of m full color examples {(x̃(1)Y , x̃
(1)
UV), . . . , (x̃

(m)
UV , x̃

(m)
UV)}.

5: errorFake := − 1
m

∑m
i=1 log

(
1 +D

(
G
(
z(i)
∣∣∣x(i)Y)∣∣∣x(i)Y))

6: errorReal := − 1
m

∑m
i=1 logD

(
x̃
(i)
UV

∣∣∣x̃(i)Y)
7: if errorFake > γ and errorReal > γ then
8: Update D by ascending its stochastic gradient:

∇θd
1

m

m∑
i=1

[
logD

(
x̃
(i)
UV

∣∣∣x̃(i)Y)+ log
(
1 +D

(
G
(
z(i)
∣∣∣x(i)Y)∣∣∣x(i)Y))]

9: end if
10: Sample new minibatch of m noise samples {z(1), . . . , z(m)} from noise prior p(z).
11: Sample new minibatch of m grayscale examples {x(1)Y , . . . , x

(m)
Y } from X .

12: Update G by descending its stochastic gradient:

∇θg
1

m

m∑
i=1

log
(
1 +D

(
G
(
z(i)
∣∣∣x(i)Y)∣∣∣x(i)Y))

13: end for

Figure 5: Example colorizations from the baseline model
after training on 50,000 images for 60 epochs. (in) The non-
normalized grayscale images. (out) The images colorized
by the baseline model, converted back into the original data
space. (true) The original ”ground-truth” color images.

(Figure 4). Starting from a training loss of 0.0118, the sys-
tem achieved a final training loss of 0.0071 and a validation
loss of 0.0073. The loss history indicates that the system
was able to learn a fit on the data, though further improve-
ments in the baseline model could potentially bring the loss
even lower.

To subjectively evaluate the results, we feed some im-

ages from the validation set through the trained model, and
combine the predicted colorizations with the original unnor-
malized grayscale channels, and perform the inverse of the
global normalization on the U and V channels to convert the
prediction the original data space. The results are shown in
Figure 5.

We can see that the baseline model is able to assign some
sensible colors to the images. Patches of sky are colored
with varying shades of blue—if a little patchy—while fo-
liage and grass receive greenish or brownish tints. Other
surfaces, such as the horse and the frog, are often given a
brownish color. The car in the fourth column is even given
a blue color, which may indicate the frequent occurrence of
blue vehicles in the training data. In general, the model is
able to learn a sensible if naive mapping from textures to
colors.

However, the overall lack of deeper or brighter colors
and the abundance of brownish hues could indicate that
the least-squares loss function results in overly conservative
predictions. For example, given many objects with similar
textures but very different colors in the training set will re-
sult in an averaging of those colors in the model output,
which in the YUV colorspace often leads to brownish col-
ors. Doing so leads to a lower least-squares loss, but also
creates less colorful and thus potentially less realistic im-

6

Fake Real

Fake 64 0

Real 14 50

Figure 6: An example confusion matrix for the predictions
by model D on a single minibatch of 128 images from the
first epoch of training. The rows represent the true labels,
and the columns represent the predicted labels.

(a) (b)

Figure 7: Example colorization from the adversarial mod-
els. (a) input grayscale image. (b) output color image.

ages. This is exactly the problem we seek to address with
the adversarial nets framework.

5.2. Adversarial Results

We trained our adversarial models using Algorithm 2
with minibatch size of 128 images, a learning rate decay
of 1 × 10−7 for every iteration, and a step decay of 1

2 for
every 25 epochs. The discriminator is heavily regularized
with a dropout probability of 0.8 in the convolutional layers
and 0.5 in the penultimate fully-connected layer.

In our experiments, we were unable to effectively train
the adversarial models, regardless of the learning rates we
chose. Invariably, after a few minibatch updates, D had
already become too good at classifying the colorizations,
and even after disabling the training of D by the heuristic
defined in Algorithm 2, G was never able to catch up. The
confusion matrix for the predictions on a minibatch by D
after 3-5 iterations can be typified by Figure 6.

Meanwhile, the gradient toG vanished to near zero, with
the norm of the total gradient vector ‖ ∂L∂θg ‖2 reduced to less
than 1 × 10−4. Without convenient ways to improve the
current models, we chose the best possible learning rates
(i.e. 1 × 10−3 for D and 1 × 10−2 for G) and trained the
models overnight for 125 epochs, and tested the resulting
models on the horse image from Figure 5, generating the
color image in Figure 7. As is easily surmised, the result
is a meaningless image with no semblance of the original
object.

5.2.1 Error Analysis

The generator was not able to ”catch up” and learn how
to fool the discriminator, regardless of the number of it-
erations that the discriminator was deactivated. Once the
discriminator’s predictions become too accurate, the result-
ing saturation of the sigmoid activation leads the gradient
to G to vanish. And even when the learning parameters are
set just right to freeze D at an imperfect state with a more
varied confusion matrix, G was not able to maximize the
cross-entropy loss significantly in our experiments. This
seems to indicate that our generator model is not expres-
sive enough to fit the data distribution—indeed, the current
model simply maps textures in a 9 × 9 patch around each
pixel to its corresponding color prediction. With this archi-
tecture, there is no way for the model to learn or leverage
higher-level (e.g. semantic) features. Employing a much
deeper and sophisticated model, potentially pre-trained on
large image dataset, may yield better performance from teh
generator. Meanwhile, concurrently limiting the capacity of
the discriminator model may also yield better training pro-
gression.

The fully blue-green image in Figure 7 was generated af-
ter overnight training, at which point the discriminator was
still accurately labeling almost all the colorizations. This
seems to corroborate potential problems with the genera-
tor model architecture, and possibly with how gradients are
propagated from the discriminator to the generator.

Be as it may, we only tried one model architecture and
one training procedure, and there is much to be improved in
tuning the adversarial training.

6. Future Work

We were able to demonstrate reasonable results with the
baseline model, however there is much more work to be
done to get the adversarial models to work.

To improve the expressiveness of the generator, we could
use the deep VGG-based colorization model presented by
Ryan Dahl [4] as the baseline generator model. Better
ways to incorporate the noise inputs should also be inves-
tigated: perturbing the input image may not be the most
effective way of introducing stochasticity to the generator—
instead, noise could be added or concatenated to a higher-
level layer. Goodfellow et al. [5] also suggested maxi-
mizing logD(G(z|xY)|xY) instead of minimizing log(1−
D(G(z|xY)|xY)) when training the generator to improve
the gradient.

To improve the discriminator, Radford et al. [14] as-
serted that batch normalization in the discriminator is im-
portant to improving the gradient flow to the generator. Fur-
ther suggestions also include using LeakyReLU activation
in the discriminator, and replacing pooling layers in the dis-
criminator with strided convolutions. Larsen and Sønderby

7

[9] also suggested increasing the regularization strength on
D as its classification accuracy improves, which potentially
improves upon the naive all-or-nothing heuristic in Algo-
rithm 2.

Other things to try include employing proper data aug-
mentation, such as rotating the images and programmati-
cally perturbing their color profiles, as well as trying the
L-a-b colorspace, which was used by Charpiat et al. [2]
due to its basis on approximating human vision. Try L-a-b
colorspace, designed to approximate human vision (used by
Charpiat et al).

References
[1] Approximation capabilities of multilayer feedforward net-

works. Neural Networks, 4(2):251 – 257, 1991.
[2] G. Charpiat, M. Hofmann, and B. Schölkopf. Automatic im-

age colorization via multimodal predictions. In Computer
Vision–ECCV 2008, pages 126–139. Springer, 2008.

[3] Z. Cheng, Q. Yang, and B. Sheng. Deep colorization. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 415–423, 2015.

[4] R. Dahl. Automatic colorization, Jan 2016. http://
tinyclouds.org/colorize/.

[5] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-
erative adversarial nets. In Advances in Neural Information
Processing Systems, pages 2672–2680, 2014.

[6] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. CoRR, abs/1502.01852, 2015.

[7] Y.-C. Huang, Y.-S. Tung, J.-C. Chen, S.-W. Wang, and J.-
L. Wu. An adaptive edge detection based colorization algo-
rithm and its applications. In Proceedings of the 13th Annual
ACM International Conference on Multimedia, MULTIME-
DIA ’05, pages 351–354, New York, NY, USA, 2005. ACM.

[8] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
CoRR, abs/1502.03167, 2015.

[9] A. B. L. L. Larsen and S. K. Sønderby. Generating faces with
Torch, Nov 2015. http://torch.ch/blog/2015/
11/13/gan.html.

[10] A. Levin, D. Lischinski, and Y. Weiss. Colorization using
optimization. In ACM Transactions on Graphics (TOG), vol-
ume 23, pages 689–694. ACM, 2004.

[11] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3431–3440, 2015.

[12] V. Nair and G. E. Hinton. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10),
pages 807–814, 2010.

[13] Y. Qu, T.-T. Wong, and P.-A. Heng. Manga colorization.
In ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, pages
1214–1220, New York, NY, USA, 2006. ACM.

[14] A. Radford, L. Metz, and S. Chintala. Unsupervised repre-
sentation learning with deep convolutional generative adver-
sarial networks. CoRR, abs/1511.06434, 2015.

[15] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov. Dropout: A simple way to prevent neural
networks from overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[16] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Di-
vide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning,
2012.

[17] E. Tola, V. Lepetit, and P. Fua. A fast local descriptor for
dense matching. In Computer Vision and Pattern Recog-
nition, 2008. CVPR 2008. IEEE Conference on, pages 1–8.
IEEE, 2008.

[18] T. Welsh, M. Ashikhmin, and K. Mueller. Transferring color
to greyscale images. ACM Trans. Graph., 21(3):277–280,
July 2002.

[19] L. Yatziv and G. Sapiro. Fast image and video coloriza-
tion using chrominance blending. Image Processing, IEEE
Transactions on, 15(5):1120–1129, 2006.

8

http://tinyclouds.org/colorize/
http://tinyclouds.org/colorize/
http://torch.ch/blog/2015/11/13/gan.html
http://torch.ch/blog/2015/11/13/gan.html

