Tractable Neural Networks for Identity Recognition

David Eng
dkeng@stanford.edu

Abstract

Deep neural networks are state-of-the-art for many ap-
plications, but the weights that parametrize them require
significant computational resources, making them inacces-
sible to less powerful devices (eg. mobile). In this project,
we aim to reduce the computational demand of existing ap-
proaches for identity recognition. We propose the use of
augmented hints which extend on the idea of hints from
the FitNets model described by Romero et al., combining
it with knowledge distillation as proposed by Hinton and
Dean. Augmented hints use the outputs and intermediate
representations of a larger teacher network to improve the
training process of a smaller student network. The two-step
augmented hints process first initializes weights up to an in-
termediate layer of the student, using an intermediate layer
of the teacher. The second step involves training the full stu-
dent network, using the teacher network to regularize. Us-
ing augmented hints definitely allows student networks to
achieve higher accuracies with fewer training epochs. Our
results show that the larger the student network, the more
the student accuracy improves as a result of using the aug-
mented hints method. However, our results do not support
the idea that augmented hints reduces the time it takes a
small model to get to a fixed accuracy. With very simple
models, there is not enough complexity in the network for
the time it takes to find a good initialization to pay off at
training or test time.

1. Introduction
1.1. Problem

Deep neural networks have set numerous records in a
number of computer vision and other computational appli-
cations. However, the most effective neural networks used
for visual recognition tasks require gigabytes of memory
to store and weeks of time to compute. These significant
computational loads make it difficult to use deep neural net-
works to solve computer vision tasks specific to mobile de-
vices and other devices ordinary consumers have access to,
where computational resources are limited. Existing meth-
ods for individuals to leverage neural networks for personal

Jenny Hong
jyunhong@stanford.edu

data involve interfacing with an external server. However,
this approach (1) requires Internet connection for instanta-
neous use and (2) sacrifices users’ privacies by communi-
cating personal data and model parameters to an external
service.

A mobile-specific computer vision task of interest to us
is identity recognition, applied to image retrieval. For ex-
ample, mobile users may want to query their devices for
“all selfies with Alice and Bob.” We could complete these
queries in a remote data center; however, we imagine that
users might want this feature on their phones in situations
without a reliable network connection. Considering this use
case, we will design a identity recognition system that func-
tions without the cloud and limited computing power.

1.2. Approach

In this paper, we study the tradeoffs between accuracy
and computational tractability as it applies to identity recog-
nition. In particular, we extend the idea of the FitNets model
described by Romero et al. [6], an example of network
compression via student-teacher networks. The student-
teacher networks operate by training a smaller student net-
work to imitate a larger teacher network or ensemble of net-
works. Before training, an intermediate representation of
the teacher network is used to train the weights of the lay-
ers up to some (smaller) intermediate layer of the student
network. We also borrow ideas from knowledge distillation
as proposed by Hinton and Dean. [3]]. During training, the
final representation of the larger teacher network is used in
regularizing the learning of the student network. Our spe-
cific models and loss functions are described in Section [3]
and results are presented in Section 4]

2. Background
2.1. Identity Recognition

One existing deep neural network facial recognition ar-
chitecture is the Facenet [7] architecture. The FaceNet
model, rather than directly classifying a face into one of a
fixed number of personal identity classes, produces an em-
bedding in a 128-dimensional unit hypersphere, with the
property that a larger distance between two face embed-

Batch L2 128- Triplet
inapﬁl :b ¢> norm ¢> embed. ¢> |':ste

Deep architecture

Figure 1: FaceNet model structure

dings means that the faces are likely not of the same person.
Figure [T shows the general structure used in training.

We detail a particular FaceNet architecture in Section [3}
and the others are similar but of different sizes. Here, we
describe the loss function used in the particular application
of identity recognition, known as triplet embedding loss. A
triplet indexed by 7 is defined as (2%, z¥, 27*), where z¢ is an
anchor image of a specific person, ¥ is a positive image of
the same person, and 7’ is a negative image of some other
person. Let f(x) be the embedding of image x. The loss
Lrg(f) is then given by

N
ZmaX{Q 1f @) = FEDIE = 1 (25) = @3 + o,

where NV is the number of all possible triplets and « is a pa-
rameter for the margin enforced between positive and neg-
ative pairs. In essence, the loss penalizes any triplet where
the negative image is not more than « farther than the posi-
tive image from the anchor image.

One open source implementation based on the FaceNet
model is OpenFace [1]], which uses Python and Torch [2].

2.2. Knowledge Distillation

The knowledge distillation framework proposed by Hin-
ton and Dean [3] trains a student network from a teacher
network, which can be a single network or an ensemble of
networks. If the teacher is an ensemble, we assume that the
averaging required to combine their outputs into a single
output has been done before this framework. Let ar and ag
represent the pre-softmax outputs of the teacher and student
networks, respectively. Knowledge distillation defines soft-
ened outputs P7. = o(“%), P§ = o(%) of the teacher and
student, respectively, for a parameter 7 > 1. The student
network is trained to minimize the following loss function:

ﬁKD(Ws) = H(ytrumPS) + XH(P%»P;'—)’

where W are the weights of the student network, Pg is the
student’s outputs with softmax, # is cross-entropy, and J is
a regularization that enforces the student network to learn
more from the teacher network than from only the labels.

2.3. Hint-Based Training

Hint-based training as proposed by Romero et al. [6]
again uses the student-teacher framework to train student
networks. Hint-based training uses a “guided” layer G in

Batch |-y il of Ky Conv —N
input student regress [N 4
L2 loss
First
?:tﬁ? $ half of :)
P teacher

Figure 2: Hint-Based Training

the student network and a “hint” layer H in the teacher net-
work. Layers 1 through G of the student layer are trained to
minimize the following loss function:

1
Lur(Wa, W,) = §||Uh(33; W) — r(vg(z; Wa); o153,

where uy, and v, are the teacher/student respresentations at
their respective hint/guided layers with parameters Wy and
Wg, r is the regressor function on top of the guided layer
so that the dimensions match the outputs of u,, with param-
eters W,.

The particular model described is known as FitNets, be-
cause these models are, compared to their teacher networks,
“thin” (fewer parameters at each layer) and “tall” (more lay-
ers). The FitNet model uses two stages. It first uses hint-
based training, and then in sequence uses knowledge distil-
lation training.

3. Methods
3.1. Augmented Hints

We implement a new framework known as augmented
hints, combining knowledge distillation and hint-based
training in the specific application of producing facial em-
beddings.

The first step of the augmented hints framework is to
use hint-based training to initialize the student network. A
schematic of the process is shown in Figure [2| Double ar-
rows denote links followed in both forward and backward
passes, and forward arrows denote only a forward pass. We
are given a teacher model whose weights have already been
trained. A fixed layer H in the teacher network and a fixed
layer G in the student network are chosen, and layers 1
through G of the student network are trained to minimize
Lur(We,W,.), where W,. are the weights of a convolu-
tional regressor.

Figure [2] shows that this is done by computing a for-
ward pass in the teacher up to layer H, computing a forward

First Second .
Batch L2 128- Triplet
input :b half of @ half of ¢> norm ¢> embed. ¢> loss
student student
Batch Deep (teacher) L2 128-
input :b architecture => norm :> embed. :b L2 loss

Figure 3: Augmented hints framework

pass in the student up to layer G, passing the student repre-
sentation through a regressor, and then computing the loss
between the teacher output and the regressed student out-
put. The gradients from this loss are then backpropagated
through only the student, and through only the first G lay-
ers of the student. After just a relatively small number of
epochs, this procedure produces a strong initialization for
the student network.

The next step is to incorporate a form of knowledge dis-
tillation to aid in training the full student network. This is
a loss based on the 128-dimensional embeddings of the stu-
dent and the teacher F's and E, respectively. We introduce
a new loss function:

Lrg(Ws)=(1-XNLre(Es)+ A|Es — Er|3,

where Lrp is the triplet embedding loss introduced in
Seciton[2.1]as used in the FaceNet framework and X is a reg-
ularization that enforces the student network to learn from
the teacher network.

Figure |3| shows the training pipeline. In parallel, the
student and teacher each perform a forward propagation.
(Note that the convolutional regressor from the hints-based
training for initialization is NOT part of the student net-
work.) The output of both the student and the teacher are
fed into the L2 loss, which refers to the ||[Es — Er||3 term
of L7y (Ws). The output of the student is also fed into
the triplet loss, which corresponds to the L1 (FEgs) term of
L1 (Ws). These two loss functions both produce gradi-
ents, and a weighted sum of these gradients is fed back into
the output (embedding) layer of the student network and
used in backpropagation.

3.2. Teacher Network

For the teacher network, we use the NN4 Small network
in OpenFace, which is a smaller version of the NN2 Incep-
tion architecture in the FaceNet system [7]. This architec-
ture is depicted in Figure[5] The size of the conv and pool
operations are given in the format (F, S, P), where F is the
size of the filter, S is the step size, and P is the padding,
in each of width and height. The Inception layers [§]] are
the same as those described in the original FaceNet system,

except that the (5a) and (5b) layers do not have the 5 x 5
kernels and produce smaller output layers. The output of
the last layer is taken to be 128 by default.

| type output size
conv (7,2, 3) 48 x 48 x 64
maxpool (3, 2, 1) and norm | 24 x 24 x 64
maxpool (3,2, 1) and norm | 24 x 24 x 64
inception (2) 24 x 24 x 192
maxpool (3,2, 1) and norm | 12 x 12 x 192
inception (3a) 12 x 12 x 256
inception (3b) 12 x 12 x 320
inception (3¢) 6 x 6 x 640
inception (4a) 6 x 6 x 640
inception (4e) 3 x 3 x 1024
inception (5a) 3 x3x736
inception (5b) 3 x3x736
average pool (3, 1, 0) 1x1x736
fully connected 1x1x128
L2 normalization 1x1x128

Figure 4: Small NN4 Architecture

3.3. Implementation Details

We implemented our augmented hints method as a new
branch in our own fork of the OpenFace project. Therefore,
we integrated our model definitions and training methods
with their existing pipeline. OpenFace provides pre-trained
models for their NN4 Small (version 2) network.

Because we wanted our code to fit within the frame-
work of the OpenFace pipeline, we did not introduce entire
new classes for the augmented hints framework. Rather,
we added methods and options in the existing framework to
run through the training procedure twice: first for part of the
student network with an extra convolutional layer, and sec-
ond for the entire student network, copying over the weights
from initialization.

The convolutional layer was chosen in the following
way. We choose the layer G in the student network such
that its the same spatial size as the output of layer H in
the teacher network. Only the depths differ. We imple-
mented the convolutional regressor by adding a spatial con-
volutional layer of 1 x 1 x Dy filters, where Dy is the depth
of the teacher network at layer H. This regresses the output
of the student network into an output of the same size as the
teacher network, which we can then compare using the L2
norm.

4. Experiment
4.1. Student Architectures

We experimented with a number of student architectures.
To control the number of variables in the experiment, all
of the students whose results are reported used a structured
architecture. In particular, the student networks had 9 iter-
ations of the spatial convolution, batch normalization, and
ReLU. This was followed by an average pooling layer to
reduce the spatial size to 1 x 1. The last two layers were
a fully connected layer, followed by an L2 normalization.
The guided layer G used in hint-based training was always
the output of the 6th ReLU.

The variables we restricted ourselves to were the sizes of
the filters and the number of filters in each spatial convo-
lutional layer. This makes it easy to compare pairs of net-
works that differ only in the sizes of the filters used, or to
compare networks that differ only in the number of filters,
or to compare networks by number of parameters.

| | Model 5 | Model 6 | Model 7 |
convl 5,2,2) 5,2,2) 5,2,2)
outl 48 x 48 x 8 48 x 48 x 8 48 x 48 x 8
conv2 5,2,2) 5,2,2) 5,2,2)
out2 24 x 24 x 16 | 24 x 24 x 16 | 24 x 24 x 10
conv3 5,1,2) 5,1,2) 5,1,2)
out3 24 x 24 x24 | 24 x24x24 | 24 x24 x 12
conv4 5,2,2) 5,2,2) 5,2,2)
out4 12 x 12 x28 | 12x12x 28 | 12x 12 x 16
conv5S 3,2, 1) 3,2, 1) (3,2,1)
out5 6 X6 x 32 6 X 6 x 32 6 X 6 x 20
convb 3, 1,1 3, 1,1 3, 1,1
out6 6 X 6 x 36 6 X 6 x 36 6 X6 x 24
conv7 3,2, 1) 3,2, 1) (3,2,1)
out7 3 x 3 x48 3 x3x40 3 x 3 x 28
conv8 3,1,1) 3,1,1) 3, 1,1
out8 3 X3 x 64 3 X3 x44 3 x 3 x 32
conv9 3, 1,1 3, 1,1 3, 1,1
out9 3x3x128 3 x3x48 3 x3x 36
param | 183224 103540 47374

Figure 5: Sample student architectures

Figure [5] shows the convolutional filter sizes and inter-
mediate representation sizes for each of the convolutional
layers in some example student models (which we index 5,
6,7).

Note that these are much smaller than the original
FaceNet NN4 Small2 model, which contains around 5 mil-
lion parameters. Model 5 is a mere 3% of the original
model! Model 6 is around 2%, and Model 7 more than
100 times smaller than even the smaller version of FaceNet
NN4.

Figure 6: Raw (upper) and deep funneled (lower) images
from Labeled Faces in the Wild

4.2. Dataset

We use the Labeled Faces in the Wild [5]] dataset from the
University of Massachussetts, Amherst, which is a dataset
of faces detected by the Viola-Jones framework and labeled
with their identities. It contains 13233 images of 5749 dis-
tinct people. We filter this dataset to use only those people
who have at least some number of instances. 1680 people
have 2 or more images, and 898 people have 3 or more im-
ages. We use a preprocessing step called deep funnelling
[4] to align images. Figure[6]shows images of raw and deep
funneled images from Labeled Faces in the Wild. OpenFace
[1] reports that the aligning process can account for signif-
icant parts of the time their system requires to produce an
embedding of an image, up to 20 or 30 percent.

4.3. Metrics

We are interested in the tradeoff between computational
tracatbility and accuracy. Because we do not have a fixed
number of classes, accuracy is not measured by traditional
classification accuracy. Rather, we use nearest neighbor
classification on the embeddings of a test image and the

training images. Accuracy is evaluated according to pairs
of images. The Labeled Faces in the Wild dataset uses a
ground truth list of positive pairs of images (images that
are of the same person) and list of negative pairs of images
(images that are not of the same person). Our classification
accuracy is the classification accuracy with respect to this
list.

We are interested in the effect of a teacher network on
a student network in aiding the student’s training process.
We compare the accuracy of a student network architecture
trained with no hints or knowledge distillation compared to
the accuracy of a student network trained using augmented
hints. After every epoch, we save a the state of the two net-
works and evaluate the accuracy on each network for each
epoch.

In all experiments, we split our dataset into training and
validation on the image level. That is, a single person may
have some of his or her photos in the training dataset and
the others in the validation dataset.

Then, we evaluate the accuracy of our learned embed-
ding by having it predict whether various pairs of images in
the dataset contains the same or different persons.

5. Results

l \ time \ train acc. | num. params

nn4.small2.vl.t4 | 1303 | 0.8525 3733968
Model 5 43.5 | 0.8380 183224
Model 6 352 | 0.8368 103540
Model 7 33.6 | 0.8230 47374

Figure 7: Validation Accuracy, Time, and Space Tradeoffs

All our results should be viewed from the perspective of
a computationally starved environment. The student net-
works range in size from 1% to 5% of the teacher network
(FaceNet NN4 Small). We train these student networks for
up to 10 epochs each, while the default setting in the Open-
Face implementation is to train for 1000 epochs, for the
same batch size.

Figure [/| shows the time required to train 10 epochs, the
training accuracy at 10 epochs, and the total number of pa-
rameters for the teacher network and our sample student
networks.

At face value, we significantly reduce training time and
space required to store the models for little loss in training
accuracy at 10 epochs. However, we conduct the follow-
ing experiments to determine whether we can leverage aug-
mented hints to further reduce the time required to train one
of these smaller networks.

5.1. Varying Hint Training Epochs

We conducted one experiment by varying the number of
epochs spent on the first step of our procedure. Recall that
the first step of augmented hints uses hint-based training to
train the first G layers of the student network. The variable
we use is the number of epochs spent on this part of the
training process.

Figure [8| shows the results of this experiment on models
5, 6, and 7. Recall that the second step of augmented hints
uses a system similar to knowledge distillation to train the
full student network.

The horizontal axis of each of the nine plots refers to the
number of epochs in this part of the training. The green
line shows the validation accuracy of some model for some
variable setting. For each model, we also include the per-
formance of a control model in a dotted black line. The dot-
ted black line shows the performance of the accuracy for the
corresponding architecture trained versus number of epochs
trained for under vanilla backpropagation.

From this figure we see that for larger models (e.g.
model 5), initializing using augmented hints allows the
model to achieve much higher accuracy in many fewer
epochs. However, we found that when the model became
very small, with only a dozen or two filters per level, (e.g.
model 7), augmented hints does not seem to improve the
accuracy.

5.2. Validation Accuracy and Time Tradeoffs

We also explored whether our model would improve val-
idation accuracy relative to the amount of time it takes to
reach a certain accuracy. The hypothesis is that investing
some amount of time in the stage 1 hints-based training to
get a good parameter initialization will result in some pay-
off for the model later on.

Figure 9 shows the validation accuracy for various num-
bers of epochs used to train model 5 in the stage 1 hint-
based training and stage 2 KD-based training. Rows corre-
spond to number of epochs in stage 1 hint-based training,
and columns correspond to number of epochs in stage 2
KD-based training. We note that the first row of the diagram
is very light. So, no matter how many epochs we spend on
the initialization, we definitely need to spend more than a
couple epochs training the whole student network before
getting any reasonable results.

Model 5 achieved the highest validation accuracy when
initialized after training for 5 epochs and when its full net-
work was trained for 7 epochs. We explore the speed of this
network’s training as well.

Figure |10| plots the validation accuracy against time for
which the model has trained. The green line represents
Model 5 training for 5 hint-based epochs to initialize its
weights, followed by 7 epochs on the full network. The dot-
ted black line shows a control for Model 5 under the vanilla

0.9 0.9 0.9

0.8 I o8 o8 L]
0.7 0.7 0.7

0.6 0.6 0.6

0% 2 2 6] 10 0'50’ 2 2 6] 10 0':0// 2 2 6 8 10

(a) Model 5, 2 hint-based epochs

(b) Model 5, 6 hint-based epochs

(c) Model 5, 10 hint-based epochs

0.9 0.9 0.9
o8 o8 o8 .
0.7 . e 0.7 T 0.7 S
0.6 0.6 0.6
l' ':
03 2 4 6 8 10 0.5 2 4 6 8 10 0'50/ 2 4 6 8 10

(d) Model 6, 2 hint-based epochs

(e) Model 6, 6 hint-based epochs

0.9 0.9 0.9

o8 0.8 I o8~
o ""‘---. ,u‘ o --".," o ""‘-- "o.

0.6 0.6 0.6

0':0’ 2 4 6 8 10 %% 2 4 6 8 10 %% 2 4 6 8 10

(g) Model 7, 2 hint-based epochs

(h) Model 7, 6 hint-based epochs

(1) Model 7, 10 hint-based epochs

Figure 8: Accuracy vs. number of epochs the (full) student network has trained. The dotted black line is a control for each

model trained without augmented hints.

training framework in OpenFace.

The green line is flat for around 160 seconds. This corre-
sponds to the time it spends in stage 1, training the first half
of the network. The green line then sharply grows, steeper
than the black dotted line. This shows that augmented hints
is paying off once the full network trains. However, the
green line never surpasses the black dotted line. So, at no
point in training was the increased rate of training worth the
time spent in initialization paid up front.

Figure further reinforces the upfront cost of hints-
based training. If we consider the ratio of the validation
accuracy to the training time as a heuristic for whether the
initial investment was “worthwhile,” we observe that taking

the least amount of time training the guided layer of the stu-
dent results in the maximum expected payoff. This shows
that while this augmented hints may have improved valida-
tion accuracy, at no point was it worth the extra time it took.

6. Conclusion

Though the student-teacher networks seem to offset the
cost of training for larger network architectures for the stu-
dent, the approach actually hampered completion of our
task. To be usable in a mobile setting, the student network
must be small enough to train without the assistance of a
hint. For networks in which this is true, guiding a hidden

Figure 9: Validation accuracy (darker is higher). Rows cor-
respond to number of epochs in stage 1 hint-based training,
columns correspond to number of epochs in stage 2 KD-
based training.

0.8
--.."'
0.7 "
.
.0
0.6|!
0% 100 200 300 400

Figure 10: Validation accuracy vs. time (seconds)

layer of the student with a hidden layer of the teacher ac-
tually impedes the training process. This is not particularly
surprising given the original use case for knowledge distil-
lation proposed by Dean and Hinton—to consolidate knowl-
edge from an ensemble of large networks into a single one.

Our results indicate that the time required to train the
student with the teacher does not payoff in terms of valida-
tion accuracy for such a small network. In fact, our time
would be better served by training the network with vanilla
forward and backpropagation.

It follows that deep learning for mobile devices might
require student-teacher networks for distillation of informa-
tion from multiple source networks; however, in the base-
line use case of compressing a single network for iden-
tity recognition, our results indicate that these methods are
somewhat unnecessary.

Figure 11: Ratio of validation accuracy to the training time
(darker is higher payoff). Rows correspond to number of
epochs in stage 1 hint-based training, columns correspond
to number of epochs in stage 2 KD-based training.

6.1. Future Work

Future work should focus primarily on improving the
speed of the initialization hint-based training phase. How-
ever, another question of interest is whether the student ar-
chitecture can be inherently improved. Suppose we fix a
teacher model and provide constraints on the student net-
work, such as the number of parameters the student network
can use, the maximum depth of the student network, or the
maximum intermediate representation size of the student.
Is there a systematic way to find the student network(s) that
train the fastest and achieve the same accuracy?

We are also curious about having the student network
synchronize with the teacher. The intended use case is for
the hints training to occur once to initialize a student net-
work, which can then retrain quickly when new training
data comes in. Would it be useful to periodically train the
teacher on the most recent batch of new images?

Once we have successfully designed a student-teacher
framework that performs well not only as a time of number
of initialization epochs required but also as a function of
time, we would be excited to test this model on a mobile
application for content-based image retrieval, as suggested
in the motivation for the project.

Acknowledgements

We thank the OpenFace project team for their open
source implementation that allows us to try variants of the
FaceNet model in practice. We thank the Labeled Faces in
the Wild team for their large and quality dataset.

We thank Nishith Khandwala for allowing us to run our
experiments on his computer cluster.

References

(1]

(2]

(3]
(4]

(]

(6]

(7]

(8]

B. Amos, B. Ludwiczuk, J. Harkes, P. Pillai, K. Elgaz-
zar, and M. Satyanarayanan. OpenFace: Face Recogni-
tion with Deep Neural Networks. http://github.com/
cmusatyalab/openfacel Accessed: 2016-01-11.

R. Collobert, K. Kavukcuoglu, and C. Farabet. Torch7: A
matlab-like environment for machine learning. In BigLearn,
NIPS Workshop, number EPFL-CONF-192376, 2011.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge
in a neural network. arXiv preprint arXiv:1503.02531, 2015.
G. B. Huang, M. Mattar, H. Lee, and E. Learned-Miller.
Learning to align from scratch. In NIPS, 2012.

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. La-
beled faces in the wild: A database for studying face recogni-
tion in unconstrained environments. Technical Report 07-49,
University of Massachusetts, Amherst, October 2007.

A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,
and Y. Bengio. Fitnets: Hints for thin deep nets. arXiv preprint
arXiv:1412.6550, 2014.

F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A uni-
fied embedding for face recognition and clustering. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 815-823, 2015.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov,
D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1-9, 2015.

http://github.com/cmusatyalab/openface
http://github.com/cmusatyalab/openface

