
Flower Taxonomic Classification using CNNs

Xavier Mignot
05788346

xmignot@stanford.edu

Maxwell Siegelman
05815725

maxsieg@stanford.edu

Abstract

We attempt to use a convolutional neural network to clas-
sify a 102 class image dataset of flowers. We resized the
original images to be 32 by 32 pixels, and with a small con-
volution net and several data augmentation strategies (ran-
dom cropping, mirroring) were able to achieve relatively
high classification accuracies of 0.61. We also tested a pre-
trained deeper architecture by fine-tuning the last layers but
did not achieve high accuracies, leading us to conclude that
the task of naive automated taxonomy is both difficult and
different from more classic image recognition tasks.

1. Introduction
Convolutional Neural Nets (CNNs) have in recent years

vastly increased computer accuracy in many image classi-
fication and processing tasks. However, while much work
has been done on classification of broader groups of images
with a variety of classes, classification in a narrower scope
is less well researched.

Floral taxonomy is a prime example of such a problem
- while flora is diverse and varied, the fundamental subject
matter is the same so many of the images still share a large
overlap in features (i.e., most flowers have petals and fall in
to broadly the same shapes). And, flowers are non-rigid
objects and so can deform in different ways from image
to image. More broadly, taxonomy is an interesting image
classification problem in its own right - it takes significant
training for humans to correctly distinguish between some
species, and often very particular morphological traits are
the only thing separating closely related organisms. More-
over, these particular traits can be completely different from
one particular species of plant to another (stem length vs
petal shape, for example).

1.1. Previous Work

This dataset was originally used by Nilsback and Zis-
serman from the University of Oxford, who attempted to
classify the flowers with an SVM. They noted many of the
same challenges in classifying species of flowers as we en-

countered in our own work, such as the large amount of
similarity between classes and the fact that features which
distinguish two given classes are often much different from
features which distinguish a different pair of classes. In par-
ticular, they noted that ”what distinguishes one flower from
another can sometimes be the colour, e.g. blue-bell vs sun-
flower, sometimes the shape, e.g. daffodil vs dandelion, and
sometimes patterns on the petals, e.g. pansies vs tigerlilies
etc. The difficulty lies in finding suitable features to rep-
resent colour, shape, patterns etc, and also for the classi-
fier having the capacity to learn which feature or features to
use.” [4]

Using an SVM with hand designed features meant to de-
scribed the shape, texture, boundary, distribution of petals
and the color of the flowers, the team was able to achieve
a 0.728 accuracy on the dataset. Some previous work has
been done using Fully-Connected Nets to address taxo-
nomic classification. Hernndez-Serna and Jimnez-Segura
built a neural network to classify various fish, plant, and
butterfly species and were able to achieve around 0.90 ac-
curacy across classes. However, their methodology relied
on the extraction of features from the image by a trained
taxonomist, and so did not test the ability of a computer to
extract these separating traits unaided [1]. Seung-Ho and
Su-Hee took a similar approach to classifying just butterfly
species. While they also used a neural net, it once again re-
lied on extracted features such as wing length [2].

So, while significant work has been done on specific tax-
onomy, no work has yet attempted to use just a learned
model with no a priori feature selection and preprocess-
ing. Previous work has largely focused on training mod-
els learned with features extracted from images, rather than
the images themselves. Furthermore, in both of the follow-
ing experiments images were not taken in a natural setting
- pictures were of collected samples in the lab, and not the
organism in it’s natural environment. An automated system
that could recognize and classify at species in situ (say, by
sending in a picture of something found in the field) would
be far more useful as a taxonomic tool. Promising results
with our specific dataset could indicate that our methods can
be extrapolated to other species classification problems.

1

Beyond this, good results could indicate new planes of
separation between the species we are looking at (over-
looked trait differences) or even reveal new relationships
between them (by looking at common misclassifications).

CNNs have proven to be quite effective at classification
tasks over recent years, so these seem like a promising ap-
proach. The breakout example of this is of course the per-
formance of the ”AlexNet” on the ImageNet classification
challenge [3]. While the classes in ImageNet have more
broadly differentiable traits (container ships vs cherries, for
example), hopefully a similar model is able to pick up on the
more subtle differences between particular flower species.

2. Dataset and Features

Some example images from the dataset, resized. To train
we resized to a lower resolution (32x32).

We will be working with the dataset developed for a
publication by Nilsback and Zisserman consisting of 103
different flower species commonly occur in the United
Kingdom country side. Each class contains between 40
and 258 individual images. Overall there are 8189 separate
flower images over the 103 classes [4]. The images vary
in position and lighting, as well as scale. Thus, we will
need to size normalize before running the images through
our model. This was done in one pass at the command
line, resulting in a uniform sizing of 32 x 32. Additionally,
several of the categories are quite similar to each other,
consisting of closely related species of flower. Thus we
anticipated that the task would be more difficult than
broader classification challenges like ImageNet. Below,
we’ve included two flowers in different classes (above)
and two flowers in the same class (below) to illustrate this
difficulty:

Images resized to 32x32, then magnified. Note how

difficult the classification task is at this resolution.

Our data split was done over each individual class in or-
der to ensure that the original distribution of examples was
maintained. Our initial data split that we used for the base-
line used 680 images in the training set and 340 in the val-
idation set from the data with 17 classes. We then started
working with our larger 102 class dataset - from this spread
we withheld 15% as a final test set, and a further 15% as a
validation set to tune our model hyperparameters. The data
split was done over each individual class in order to ensure
that the original distribution of examples was maintained.
With the larger dataset we had 5762 training images, and
1210 validation images (1215 testing images).
We also built data augmentation into our models, with ran-
dom cropping (to 28x28) and mirroring as well as more
traditional overfitting defenses such as batch normalization
and dropout. This should allow us to train for more itera-
tions despite the relatively small size of the dataset. These
methods were used to enhance the number of ”novel” ex-
amples fed into the network. We also computed an image
mean over the training set and subtracted it from each ex-
ample, as neural nets work most effectively on data centered
around the origin across dimensions.

3. Approaches and Techniques

Note: All models with exception of the baseline were
trained locally using Caffe on OS X Yosemite MacBooks.
The fine-tuned network was trained on the GPU with
smaller batch-sizes, while the from-scratch networks were
trained on CPU so as to have larger batches.

Initially, we implemented a simple 3 layer convo-
lutional network similar to the one built in class. With
minimal hyperparameter tuning this net was able to achieve
49% validation accuracy and 85% training accuracy. The
high training accuracy indicated to us that with some hy-
perparameter tuning, and perhaps more data, we should be
able to reduce our overfitting and achieve a solid validation
accuracy. This was not a bad baseline, but we hoped to
use deeper CNNs to improve our accuracy even further.
These results led us to believe that a sufficiently deep
network with a more optimal number of filters, especially
one that is pretrained, which is run for more epochs with
more carefully chosen hyperparameters could achieve very
good results. Note however that this baseline was trained
using the smaller 17 class dataset. On the larger dataset we
trained a naive bayes model as an even simpler baseline,
and were able to get 0.031538 accuracy. But we simply
used the average color of each image as our feature, so we
expected rather poor results. This doubled as a good way to
test our intuition of how much the flower color really said

2

about the class. This model does barely better than random
chance (1

102 0.0098), indicating that color is not a very
powerful separating feature on it’s own.

Note that in the original paper, the authors were able
to get accuracies of 0.72 using hand-extracted features on
an SVM with the larger dataset [8]. We expected that a
trained neural net, while perhaps not outperforming this
expert built model, would be able to seriously improve on
our baseline.

First, we decided to train a shallower network from
scratch. We chose to keep the network small in order to be
able to compute all layer weights more quickly and iterate
over hyper parameters. Our final architecture was:
Layer 1: A convolutional layer (with 96 outputs), a RELU
activation, a max pool, and then a normalization layer.
Layer 2: A convolutional layer (with 256 outputs), a RELU
activation, a max pool, and then a dropout layer.
Layer 3: A Fully-Connected inner product layer
Loss: Softmax

The softmax function takes a vector of K arbitrary real
values and transforms it to a vector of values between 0 and
1 that collectively sum to 1:

σ(z)j =
ezj∑K

k=1 ezk

The loss function for the ith training example is then the log
of this value for the correct label of that training example:

Li = −log(efyi∑
j efj

)

Here yi is the correct label for the training example. In the
context of training a neural network, the output values of
the softmax function can be interpreted as the normalized
probabilities of each class being correct for a given input.
In turn, the loss function is expressing how much our prob-
ability estimations are off from the real probability, which
is of course 1 for the correct class and 0 for all the other
classes. This function is then minimized by repeatedly com-
puting gradients relative to the loss for different subsets of
the training examples (batch gradient descent). We tried
varying learning rate decay policies in tandem with SGD as
our solver.

To perform SGD, the gradients of all the weights in
the network are calculated with respect to the softmax loss
value, and then the weights are adjusted according to:

W =W − λW
′

where W is the weights, W
′

is the gradient of the weights
with respect to the loss function, and λ (the learning rate) is
a hyperparameter meant to control how much the network
adjusts its parameters in response to each batch of training

data. In this way we aim to minimize the value of the loss
function, which has the effect of moving the outputs our
network makes as close to the actual labels of the data as
possible.

To tune these hyper parameters (λ and ρ the rate of
learning rate decay), we tested validation accuracies at a
variety of learning rates after 400 Iterations:

Learning Rate Validation Accuracy Test Loss
0.1 0.01785 4.451
0.01 0.10119 4.0513
0.005 0.172619 3.34423
0.001 0.3392 2.61414
0.0005 0.3392 2.95198
0.0001 0.22024 4.7147
0.00005 0.077381 4.17213
0.00001 0.017857 4.49171

We also wanted to test the ability of a deeper network to
learn more effectively. In order to deal with issues of in-
sufficient data and longer training times, we decided to use
an already trained network (from the Caffe-Model Zoo) and
fine-tune the last layers.

Normally all the parameters in a network are updated us-
ing this method. However, a network that has already been
trained for one task can be fine-tuned to a different but re-
lated task by only updating the weights at the later layers
and not the earlier ones. The intuition behind this practice
is that the earlier layers will have been tuned to pick out
certain low level features which will generalize across re-
lated problems while the higher level layers pick out more
abstract features, so the earlier layers can be reused and the
later layers can be updated for the new task. This reason-
ing makes particularly good sense in the context of convo-
lutional neural networks for image recognition, since the
lower level layers often learn to detect very basic and gen-
eral features such as edges. The later layers represent com-
binations of these more general features and can be fine-
tuned for the new image recognition task. The advantage
this approach has over simply retraining the whole network
is that it takes less time, since weight changes do not have
to be calculated for the whole network, and it allows large
networks to be used for tasks with small datasets without
overfitting since only a portion of the network is trained on
the small dataset.

Because of limits on GPU memory, we decided to fine
tune the NIN-CIFAR10 model which achieved an error rate
of 10.4% on CIFAR10. This net has 3 conv-relu layers fol-
lowed by pooling and dropout, followed by 3 more conv-
relu layers and another round of pooling and dropout, fol-
lowed by 3 more conv-relu layers, another round of pool-
ing and finally a softmax loss layer. Using the pre-trained
weights, we altered the learning rate of the layers so that

3

only the final four conv layers had non-zero learning rates,
then set the base learning rate for the entire model fairly
high in order to train the back end of the model. This choice
was not based on a rigorous hyperparameter search given
the constraints on our computation, but of the combinations
of overall learning rate and layer learning rate combinations
we attempted this was the most effective. A further inves-
tigation of what setup is optimal is an important part of our
future plans, since we cannot think of a theoretical reason
why a pretrained model should not be able to perform well
on this task.

4. Results and Error Discussion

4.1. Architecture 1 - Small Net

For the first architecture, we tuned hyperparameters by
training the model for 2000 iterations and periodically test-
ing loss and validation loss to ensure learning was proceed-
ing in the correct direction. The optimal learning rate set-
tled in the range of 1e-4, with a momentum of 0.9. While
we weren’t seeing overfitting, the gains in accuracy and cor-
responding decrease in loss quickly plateaued (by iteration
20000 - see the first figure below).

Train and Test Losses for architecture 1 with tuned hyper
parameters

We decided to experiment further and determine if we were
seeing initial signs of overfitting or if perhaps the lack of
learning rate decay was causing our model to bounce around
the optimal parameters instead of continuing the optimiza-
tion process. Thus we modified our solver to use a step-
wise learning rate decay at the point where we began to see
plateauing (15000-20000 iterations), but this unfortunately
did not change the results very much.

Validation Accuracy, architecture 1 with stepwise decaying
learning rate vs static learning rate

The accuracy and loss both plateau around the same place,
indicating that these hyperparameters are fairly good even
with a constant learning rate. We were surprised by how
effectively a relatively small net was able to classify these
images. The trained model achieved accuracy of 0.628 on
the validation set and 0.619 on the test set. This falls short
of the mark of 0.728 achieved by Nilsback and Zisserman,
and it seems likely that even with a larger model and more
hyperparameter optimization hand designed features would
retain a lead of at least a few percent over a deep learning
approach. Nonetheless, the approach clearly has good pre-
dictive power as it outperformed both our baseline and our
fine-tuned network significantly.

The errors the network made seemed to most often have
to do with small, subtle differences between flowers. It
seemed common for misclassified examples to have the
same color as the class they were mistaken for, as well as
similar general petal structure. It was relatively uncommon
for a flower to be mistaken for a class that was a completely
different color. We were unable to detect any common pat-
tern in what could have been confusing the network on ex-
amples that it misclassified. Of course, it is possible that
our lack of knowledge about flowers is contributing to these
errors - it would be interesting to have a botanist look at the
mistakes.

4.2. Architecture 2 - Fine-tune Net

Once we achieved good results on our first net, we
wanted to see if we could fine-tune a pre-trained net and
get accuracy gains without having to commit large amounts
of computational power to training a very deep network.

It was much more difficult to find suitable hyper pa-
rameters to train this model with, and we would often get
divergent or static loss over many iterations. We eventually
picked hyper parameters that gave us good loss decreases,
but even then the loss plateaued relatively quickly.

4

Train and Validation Loss over 120000 Iterations

The final model tested at 0.294 validation accuracy and
0.291 testing accuracy, sadly not performing as well as we
had expected.

Train and Validation Loss over 120000 Iterations

Note that in both of these graphs the values fluctuate
more seriously than in architecture 1 because we trained lo-
cally on a GPU, so the testing batch size was smaller. How-
ever final accuracies reported are over the entire validation
and withheld test sets.

The accuracy of the fine-tuned pretrained model did not
get as high as the model trained from scratch. Loss could
not be driven below 2.5 for either training or validation
data. This does not appear to be a problem of overfitting,
since training loss was equally resistant to improvement af-
ter about 20000 iterations. We hypothesized that the plateau
could be broken by lowering our learning rate at sufficiently
high iteration counts, but our experiments did not bear this
out. Our next hypothesis for why this was the case is that
flower classification requires very specific features to be ex-
tracted, and the low level features that were learned by the
network may not be appropriate for the task of flower clas-
sification. As discussed previously, the distinguishing fea-
tures for flower species are fairly tricky and the low level
features learned from the CIFAR-10 dataset may lack some
low level features that would be important to learn for a
flower classification task. This could explain why the loss
was plateauing, since a problem in the lower layers would
not be optimized away because the learning rates for those
layers was set to zero. We also discussed the idea that
CIFAR-10 only having 10 classes was contributing to prob-
lems with having insufficiently rich low level features, but

we don?t have any good evidence that a higher number of
classes in the original dataset would have made a difference
- there is no reason to think that in general a higher num-
ber of classes leads to more diverse low level features. An-
other potential reason for the plateaus we observed is that
we were forced to train with a batch size of only 20 be-
cause of GPU memory constraints. This could have caused
problems with parameter convergence, since larger batches
would have done a better job approximating the entire train-
ing set.

To remedy these problems, we tried fine-tuning even
more layers of the net. Our hope was that doing this would
allow the earlier layers to be optimized for our problem,
potentially capturing low level features that are important
for flower classification. This approach also unfortunately
did not seem to work and yielded even lower accuracy val-
ues. One reason for this failure could be that our hyper-
parameters were wrong, an explanation which is plausible
because loss jumped around a lot even as the learning rate
dropped (although this could be an artifact of using such
small batches of training data). Another possible reason for
this failure is that we still did not train enough layers of the
network. Even in our experiment which allowed the largest
number of layers to be adjusted, the bottom two layers were
frozen. We decided not to experiment with changing all the
layers since it seemed to defeat the purpose of trying to fine-
tune a net at all rather than simply starting from scratch.

It was difficult to detect much of a pattern in the mistakes
the network was making since it made so many. The diffi-
culty distinguishing flowers with similar petal shapes and
colors we observed with the previous model no longer ap-
peared, and no classes appeared significantly harder for the
net to predict.

Ultimately, these results were disappointing since it
seemed reasonable that a pretrained model should be able
to at least come close to equaling the performance of our
model built from scratch - especially since it has many more
layers.

5. Conclusions and Future Work
Classifying flowers turned out to be a fairly tricky task

for a convolutional neural network to pull off. Training a
convolutional neural network from scratch was clearly more
effective than fine-tuning one trained on another dataset,
possibly because the low level features required to differ-
entiate flowers are different from those needed for other im-
age classification tasks. While our best model did not beat
out hand designed features from previous work, it still per-
formed admirably given the number of classes and the com-
plexity of the task. It suggests that a larger network trained
from scratch could potentially come quite close to equaling
a model trained with hand designed features.

However, our largest regret from this project was that

5

we could not achieve better performance with a fine-tuned
model, and in future work we would definitely want to im-
prove on this. There are a number of options we could pur-
sue on this front. First off, it would be interesting to exper-
iment with more hyperparameter combinations and larger
batch sizes on a faster machine. Secondly, it would be
worthwhile to fine-tune a larger model than the one we used
and perhaps also to allow even more layers of that model to
be adjusted. If our suspicions about the lower level features
being the main obstacle to achieving better performance are
correct then using a model which is larger could provide us
with a richer set of low level features. We would have liked
to investigate whether our hypothesis that the low level fea-
tures learned for a flower classification task are significantly
different from the low level features learned from a dataset
like CIFAR-10 is in fact correct. This sort of investigation
could help tell us whether our attempt to fine-tune a larger
net trained on a different dataset were doomed from the start
or if we simply made mistakes tuning our model?s hyper-
parameters.
Another experiment we would like to perform is training a
larger model from scratch. Our results from the first model
we trained from scratch are encouraging, but the plateaus
we hit as the number of iterations grew indicate that perhaps
a more powerful model is needed. However, the fact that we
are already seeing signs of overfitting on this smaller model
means that either a larger dataset or a higher dropout param-
eter would have to be used if a larger model was employed
(or more aggressive data augmentation).

There are a number of other goals aside from increas-
ing classification accuracy that we think would be interest-
ing. We are very interested to see if a successful model for
this classification task could be built into a successful model
for a localization or detection task.This would require some
work to modify our dataset, since it is currently not designed
for a localization task, but we are curious because our intu-
itive notion is that it should be very easy to localize a flower
from other objects. We wonder if the distinctiveness be-
tween flowers and their backgrounds is as stark for a com-
puter vision algorithm as it is for the human visual system.

Finally, our primary motivation for picking this topic was
that we wanted to be able to take a picture of a random
flower in the wild and have our phone tell us what kind of
flower it was. Building an application to do this, along with
generalizing the model to work with many more species
than the ones in our dataset, would be a somewhat ambi-
tious but fun future undertaking.

6. References

1. Hernndez-Serna A, Jimnez-Segura LF. (2014) Auto-
matic identification of species with neural networks.
https://doi.org/10.7717/peerj.563

2. Seung-Ho Kang, Su-Hee Song, Sang-Hee Lee, Identi-
fication of butterfly species with a single neural net-
work system, Journal of Asia-Pacific Entomology,
Volume 15, Issue 3, September 2012, Pages 431-
435, ISSN 1226-8615, http://dx.doi.org/10.
1016/j.aspen.2012.03.006.

3. A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet
classification with deep convolutional neural networks.
In NIPS, 2012.

4. Nilsback, M-E. and Zisserman, A. Automated Flower
Classification over a Large Number of Classes Pro-
ceedings of the Indian Conference on Computer Vi-
sion, Graphics and Image Processing (2008)

6

https://doi.org/10.7717/peerj.563
http://dx.doi.org/10.1016/j.aspen.2012.03.006
http://dx.doi.org/10.1016/j.aspen.2012.03.006

