
Automated Image Timestamp Inference Using Convolutional Neural Networks

Prafull Sharma
prafull7@stanford.edu

Michel Schoemaker
michel92@stanford.edu

Stanford University

David Pan
napdivad@stanford.edu

Abstract

With the rise in amateur and professional photography,
metadata associated to images could be valuable for both
users and companies. In particular, the prediction of the
time a photograph has been taken is not currently an active
area of public research, and vast amounts of accurately la-
beled data is not available. In this paper, we propose meth-
ods to classify the time taken of a picture in two ways: us-
ing user submitted tags, namely “morning”, “afternoon”,
“evening” and “night” and four time buckets (i.e. 12 AM to
6 AM, 6 AM to 12 PM, etc.). Among the prediction models
used were vanilla SVMs and their variants, along with Con-
volutional Neural Networks ranging from three layer archi-
tectures to deeper networks, namely, AlexNet and VGGNet.
The best performing models were the vanilla SVM and the
three layer AlexNet (50 and 60 percent accuracy, respec-
tively) suggesting deeper networks that are better equipped
to deal with complex features do not necessarily perform
better in this particular task.

1. Introduction
Amateur photography has become a novel and popular

interest around the world with the emergence of social ap-
plications like Flickr, Instagram and Snapchat. These appli-
cations allow users to take and upload photographs taken on
the spot along with the tags that describe the image. On the
other hand, professional photography involves the usage of
high-end cameras that record all the information involving
location, settings and time taken is also rising in popular-
ity. This information is called the EXIF data which includes
ISO, shutter speed, aperture among many other information
categories. Perhaps the most insightful and necessary in-
formation one can gather from EXIF data is the time of the
day when a photograph was taken, as it can allow users to
search through their photographs more efficiently as well as
provide invaluable data to users and image hosting compa-
nies. Most photographs on the internet either don’t have the
time information or are tagged with the incorrect time.

In this paper, we apply Convolutional Neural Networks
to predict when a given input image was taken during the
day both using both time windows from EXIF data as well
as user submitted time tags. Convolutional Neural Net-
works have been proven to be efficient in recognizing vision
features such as edges, curvatures, corners, etc. We will ex-
plore how Convolutional Neural Networks perform in iden-
tifying brightness and contrast, among other features, for
this task. Specifically, we interpret time in two ways for the
purpose of the paper: 1) by tags like morning, afternoon,
evening and night and 2) by time bucketing like 00:00 to
6:00, 6:00 to 12:00 etc. The input to our algorithm will be
an image which will be classified into a time tag or bucket
using SVM and several variants of convolutional neural net-
works.

2. Previous Work
The premise of inferring time windows or time stamps

from images is fairly novel, as such, there is no previous
public work to be found that closely aligns to our project.
There is however a myriad of related work, such as geospa-
tial location detection. In a collaborative effort between
Google and RWTH Aachen University, the publication
PlaNet - Photo Geolocation with Convolutional Neural
Networks attempted to determine the location where a
photo was taken merely from its pixels [1]. The task
is straightforward when the image contains a famous
landmark or recognizable patterns, but it becomes more
complex as abstract features related to weather, markings,
architectural details among others need to be inferred.
Similarly, we presumed our task would face similar issues,
since time detection relies on a variety of factors as well.
Their classification approach (they subdivided the earth’s
surface into thousands of cells) achieved accuracies ranging
from ∼15% by street (∼1km) to ∼42% by country and
∼62% by continent. The results improved significantly
by introducing LSTMs to solve the problem. Google,
however, has access to millions of pictures with extremely
accurate location tags, whereas time tags are rarer to find
and not very reliable.

1



Other related work concerns the use of tags on pic-
tures in social media. Though the relationship is not
entirely intuitive between the usual tags and tags that
we use for this project, one of our approaches relies on
self-tagged pictures from a social media platform, Flickr,
that give hints to the time (for example, a picture might
have the tag “afternoon” or “night” included). In the
publication User Conditional Hashtag Prediction for Im-
ages (a collaborative effort between New York University
and Facebook AI Research), users were modeled by their
metadata to perform “hashtag” prediction by photo [2].
The team found that the addition of user information gave
a significant performance boost. They found, however, that
when working on real world datasets rather than curated
ones, the highly skewed natures of “hashtags” needs to be
addressed by downsampling the more frequent hashtags to
produce more varied predictions. While modeling Flickr
users is beyond the scope of this project, this conclusion led
us to the hypothesis that introducing related but rarer image
tags (along with the common “afternoon”, or “morning”
ones) would allow us to gather a more diverse dataset as
well.

3. Dataset

Figure 1: Sample data from the dataset

The dataset of images was collected from Flickr using
the Flickr API. We collected a dataset of 3766 images which
are all the images on Flickr that contained EXIF data and
were relevant to the scope of the project. All images had
3 channels, Red, Green and Blue and were 150x150 pix-
els large. Figure 1 shows sample data from our collected
dataset. We originally intended to gather all of the most
recent images related to the corresponding tags to general-

Table 1: Data distribution based on image tag

Image Tag Count
Morning 989

Afternoon 759
Evening 990

Night 1,028
Total 3,766

Table 2: Data distribution based on time window

Time Window Count
[12am, 6am) 367
[6am, 12pm) 930
[12pm, 6pm) 933
[6pm, 12am) 1,536

Total 3,766

ize our algorithm but we realized that many of the images
in the dataset (for example, of close-up shots of food or
faces) would not be suitable for our purposes. There were
many grayscale images that would most likely only intro-
duce noise to our model, as such, we had to filter them out.
Additionally, many pictures taken indoors did not clearly
correspond to the time tags presented. In keeping with our
hypothesis that introducing additional tags leads to a more
diverse dataset, we experimented with tags such as “out-
door” and “sky”, though ultimately we reverted back to the
original ones (namely “morning”, “afternoon”, “evening”,
and “night”) since we decided to be consistent with the tags
used for collecting the datasets. The images were sorted us-
ing the Flickr API sorting tag “most interesting” descend-
ing, as we observed that these were usually more vivid and
accurate portrayals of the time tags they depicted.

We approach two image classification problems: time
window and tag. In the time window problem, the goal is
to classify the time window in which the photo was taken,
where we have the four time windows [12am, 6am), [6am,
12pm), [12pm, 6pm), and [6pm, 12am). In the tag problem,
the goal is to classify the tag which was used to search and
collect the image, where we have the four tags “morning”,
“afternoon”, “evening”, and “night”. Table 1 illustrates the
data distribution by image tag and Table 2 illustrates the
data distribution by time window.

3.1. Pre-processing

We preprocessed the images to increase the accuracy of
our models. The two techniques that we used were data
augmentation and application of adaptive histogram equal-
ization on the dataset to make a new dataset.

2



3.1.1 Data Augmentation

Figure 2: Result of flipping an image horizontally

To expand our training set, we used a traditional method
of data augmentation. Originally the training set had 2974
images, and we doubled the training set to 5948 images by
flipping the images horizontally. Flipping the images hori-
zontally can help prevent a model from biasing towards one
side of an image. Figure 2 shows an example of an image
after being flipped for reference.

3.1.2 Adaptive Histogram Equalization

Figure 3: Result of applying Adaptive Histogram Equaliza-
tion

The dataset contained similar images taken in different
dynamic ranges. This problem can be solved by manipulat-
ing the histogram of the images. Manipulation of histogram
will change the density function which results in a a better

dynamic distribution [3]. We applied adaptive histogram
equalization (AHE) to all the images in our original dataset
to make a new dataset. The adaptive histogram equalization
uses multiple histograms in different sections of an image
to enhance the contrast of the image. Algorithm 1 describes
adaptive histogram equalization and the result can be seen
in Figure 3.

Algorithm 1 Adaptive Histogram Equalization

1: procedure ADAPTIVE HISTOGRAM EQUALIZATION
Read input image as img

2: Convert img to HSV color space
3: Run CLAHE algorithm on the V (Value) channel of img
4: Convert img back to RGB space
5: return img
6: end procedure

Contrast Limited Adaptive Histogram Equalization
(CLAHE) mentioned in Algorithm 1 is an processing tech-
nique to improve contract in images. We used the sci-kit-
image library to perform the adaptive histogram equaliza-
tion for this project [4].

4. Approach
We used TensorFlow along with other python packages

such as numpy, matplotlib, skimage, etc to code all the ex-
periments in this project [4], [9], [10]. We applied the fol-
lowing models to our dataset to classify images into their
correct categories:

1. Multiclass Support Vector Machine (SVM)

2. Multiclass SVM + HOG + HSV

3. Three Layer ConvNet

4. Five Layer ConvNet

5. AlexNet

6. VGGNet

4.1. Multiclass Support Vector Machine (SVM)

The multiclass Support Vector Machine (SVM) is the
generalization of ordinary SVM for multiple classes. It uses
the following loss function

Li =
∑
j 6=yi

max(0, sj − syi + ∆)

where Li is the loss for the ith example, si is the score for
the ith class, yi is the true label for the ith example, and
delta is the margin. Our multi class SVM takes in a numpy
vector of flattened raw image data of length 150*150*3 =
67500 (150 being the width and height pixels, and 3 being
the RGB channels) and outputs the raw score for each class.

3



The class that the SVM predicts is the one with the high-
est score. The optimization method is Stochastic Gradient
Descent (SGD) using mini batches of data.

4.2. Multiclass SVM + HOG + HSV

This multi class SVM+HOG+HSV is very similar as the
vanilla version described above, except that it takes in HOG
and HSV features of the image instead of raw image data.
Conceptually, HOG captures texture but no color informa-
tion from the image, while HSV captures color but no tex-
ture information from the image. By extracting these fea-
tures independently and then concatenating during training
time, we obtain a richer feature landscape.

4.3. 3-Layer ConvNet

The architecture of the 3-layer ConvNet consists of three
sections. The first section consists of a convolutional layer,
followed by a ReLU activation, and ending with max-
pooling. The second section is the same as the first. The
third section consists of a fully-connected layer, followed
by a ReLU activation, and ending with a linear affine. The
convolution layers use 32 5x5 filters with a stride of 1. Max-
pooling is 2x2 (which essentially halves the planar dimen-
sions) with a stride of 2. The fully-connected layer has 1024
nodes. For training, SGD with Adam optimization is used,
and dropout is used for regularization [5],[6].

Adam is the state-of-the-art gradient update rule for Con-
vNets. It combines elements from RMSProp and momen-
tum update. Dropout is a regularization technique that helps
prevent ConvNets from overfitting. The idea that during
each a training step, a random group of neurons are dis-
abled, which helps prevent neurons from co-adapting (i.e.
developing an overly strong dependence on one another).
The 3-layer ConvNet takes in a raw image as a 150x150x3
dimensional array and classifies the input image to one par-
ticular tag.

4.4. 5-Layer ConvNet

The architecture for our 5-layer ConvNet is the similar
to the 3-layer ConvNet, except there are two more [conv -
relu - pool] layers appended. The parameters for the convo-
lutional layer, max-pooling, and fully-connected layer are
the same, and SGD with Adam optimization and dropout
are used as well[6].

4.5. AlexNet

We use AlexNet as presented in this paper [7]. A unique
feature of AlexNet is that is uses local response normaliza-
tion to normalize the “brightness” of neurons. The local
response normalization use the following equation to nor-
malize the brightness of the neurons:

Where aix,y denotes the activity of a neuron computed by
applying kernel i at position (x, y) [7].

The AlexNet consists of four sections. The first, second,
and third sections consist of a convolutional layer, followed
by a ReLU activation, max-pooling, and ending with local
response normalization. The fourth section consists of a
fully-connected layer, followed by a ReLU activation, and
ending with a linear affine to obtain the class scores.

Max-pooling is 2x2 with stride 2 throughout the AlexNet
(which essentially halves the planar dimensions at each
step). The first convolutional layer has 64 filters, the sec-
ond 128 filters, and the third 256 filters, where the filters
are of size 3x3 with stride 1. The fully-connected layer has
1024 nodes. For training, SGD+Adam optimization is used
along with dropout.

4.6. VGGNet

VGGNet uses very small convolution filters (3x3), which
allows the depth to be increased with less overhead than if
it used larger filters [8]. The VGGNet consists of 8 sec-
tions. The first 5 sections consist of two pairs of convolu-
tion layers and a ReLU activation, which are followed by
max-pooling. The last 3 sections consist of fully-connected
layers.

Max-pooling is 4x4 with a stride of 4 in the first section
and 2x2 with a stride of 2 in the other sections. The convo-
lution layer has 3x3 filters throughout the VGGNet, while
the number of filters varies per section. The number of fil-
ters are 64, 128, 256, 512, and 512 for the first five sections
respectively. The number of neurons in the fully-connected
layers are 4096, 10, and 4 respectively for the last three sec-
tions. For training, SGD+Adam optimization is used along
with dropout.

5. Results and Discussion
We experimented with methods like SVM,

SVM+HOG+HSV, 3 and 5 layer Convolutional Neu-
ral Network, AlexNet and VGGNet. One of us also
manually performed the task to get a measure of human
performance for this task. The person trained on around
400 images and predicted the tags (i.e. morning, afternoon,
evening, night) for around 200 images. Several aspects
of the data make this task very difficult, which was made
obvious when the person scored a test accuracy of around
40%.

We implemented the convolutional neural networks us-
ing the recently-released framework TensorFlow [9]. We
used a keep-rate of 75% for dropout, and we used learning

4



Table 3: SVM results with tag classification

Model Train Val Test
SVM 0.525 0.47 0.475

SVM + HOG + HSV 0.426 0.458 0.428

Table 4: SVM results with time bucket classification

Model Train Val Test
SVM 0.517 0.455 0.453

SVM + HOG + HSV 0.371 0.383 0.343

rates ranging from 1-e2 to 1-e4. For all of the models, we
used the same training, validation, and test sets, where the
sizes are 5948, 400, and 400, respectively. The sets were
obtained by randomly shuffling the dataset and partitioning.

5.1. SVM

The vanilla SVM had a test and validation accuracies of
about 47 percent for tag classification task, and about two
percent lower for bucket classification as shown in Table 3
and Table 4 respectively. The SVM+HOG+HSV performed
significantly lower, which suggests that isolating texture
and color is not beneficial for the time inference tasks.
Figure 4 is the loss function for SVM applied to tag classi-
fication task. It converges after ∼250 iterations.

Figure 4: SVM loss for tag classification

Figure 5 is the confusion matrix for the multiclass SVM
applied to tag classification problem. The horizontal axis
represents the predicted labels, and the vertical axis repre-
sents the actual labels. The color of the square indicates the
number of examples that have the vertical label that were
classified as the horizontal label. In this instance, the SVM
confused evening for night in 90/400 examples, and con-
fused night for evening and afternoon. It did the best for the
night label, mediocre for evening, and subpar for morning

Figure 5: Confusion matrix for SVM applied to tag classi-
fication

Table 5: SVM on adaptive histogram equalized dataset

Train Val Test
SVM 0.504 0.495 0.5125

Table 6: Results of 3-Layer ConvNet

Train Val Test
Tag Classification 0.44 0.41 0.4

Time Bucket Classification 0.46 0.43 0.41

Table 7: Results of 3-Layer ConvNet on adaptive histogram
equalized dataset

Val Test
Tag Classification 0.45 0.455

Time Bucket Classification 0.4175 0.415

and afternoon. The vanilla SVM performed best with the
adaptive histogram equalized dataset, with a validation and
test accuracy of about 50 percent as shown in Table 5. This
was the second-best accuracy achieved from all the models.

5.2. 3-Layer ConvNet

We trained the 3-layer ConvNet for 10,000 iterations
with a mini-batch size of 20. The ConvNet performed bet-
ter on the Adaptive Histogram Equalized dataset than the
normal one. In particular, test accuracy increased by 5.5%
for tags. Table 6 shows the results of 3 layer on both tag
classification and bucket classification problem. Results of
the 3-layer ConvNet are shown in Table 7.

5



Table 8: Results of 5-layer ConvNet

Val Test
Tag Classification 0.47 0.4675

Time Bucket Classification 0.3425 0.35

Table 9: Results of 5-layer ConvNet on adaptive histogram
equalized dataset

Val Test
Tag Classification 0.49 0.465

Time Bucket Classification 0.3425 0.35

5.3. 5-Layer ConvNet

We trained the 5-layer ConvNet for 100,000 iterations
with a minibatch size of 20. The ConvNet performed
equally well on the normal and adaptive histogram equal-
ized datasets. Table 8 shows results of 5-layer ConvNet on
the normal dataset and Table 9 shows its performance on
adaptive histogram equalized dataset. It performed better
than the 3-layer ConvNet with tags as expected. Comparing
its performance on the two datasets, it does equally well on
both the datasets.

Figure 6: Confusion matrix for 5-layer ConvNet on tag clas-
sification with adaptive histogram equalized dataset

Figure 6 the confusion matrix for the 5-layer convnet. It
classifies night correctly almost all the time, does well on
afternoon, average on morning, and subpar on evening. It
confuses afternoon for morning and vice versa

5.4. AlexNet

AlexNet was the most fine-tuned and trained model from
the bunch, and is the only model to score test and train ac-
curacies above 50. The learning rate was 0.0012, the batch
size was 20 and the training iterations were 20,000. Ta-

Table 10: Results of AlexNet

Val Test
Tag Classification 0.55 0.6

Table 11: Results of AlexNet on adaptive histogram equal-
ized dataset

Val Test
Tag Classification 0.4425 0.42

Time Bucket Classification 0.4 0.42

ble 10 shows the results of AlexNet on the tag classification
task. AlexNet did not benefit from the adaptive histogram
equalization as the accuracies were very close to human ac-
curacy as shown in Table 11.

Figure 7: Confusion matrix of AlexNet

Figure 7 the confusion matrix for the AlexNet. Like the
5-layer net, the AlexNet does very well for night. It does
well for evening, but does subpar for morning and after-
noon. It tends to confuse evening as afternoon and morning.

5.5. VGGNet

VGGnet was the weakest performer of all the models,
with accuracies as 0.35 for training set, 0.3 for validation set
and 0.33 for test set. This is likely due to the VGG being a
more suitable architecture for complex and feature sensitive
tasks. In addition, it was extremely tricky to tune the VGG,
as the range between under and overfitting was very narrow,
so our results may not have reached an optimal level. Ta-
ble 12 shows the results for VGGNet on adaptive histogram
dataset.

5.6. Discussion

All the models perform equal or better as compared to
the human accuracy. During the project, we came across

6



Table 12: Results of VGGNet

Train Val Test
Tag Classification 0.35 0.3 0.33

several noticable insights which can effectively explain the
difficulty of the task and the behavior of the models.

5.6.1 Errors in EXIF data

Since the data was collected from Flickr, which is a pub-
lic image portal, it contained some disparities with the pro-
vided and most likely “photo taken” time.

Figure 8: Example images with EXIF errors

In Figure 8, the left image seems to be taken during the
day, but the provided time was 00:00:00, which is midnight.
The right image seems to have been taken at night but the
provided time was 11:37:19, which is around noon time.
The cause of these errors cannot be properly deduced , as
they may vary from photo to photo. One of the possibilities
is that the time obtained from the device could be in a dif-
ferent time zone or may have a miscalibrated system time.
The user could have as well misreported or edited the time
taken at upload time or afterwards. Furthermore, such er-
rors cannot be manually corrected, even on a small scale, as
we don’t know the actual time when the image was taken.

5.6.2 Ambiguity in Categories

This task is really difficult even for humans due to the am-
biguity between categories. For example, it is very easy
to confuse morning and evening images as both have a
very similar sky color palette, brightness and contrast due
to how similar sunrises and sundowns are. Figure 9 show
the ambiguity between images from morning and evening.
Furthermore, some of the photographs such as in Figure 10
were verging on the border of two categories, such as
evening and night or morning and afternoon. Since the con-
volutional neural network needs to pick one, it becomes a
significantly hard choice to make.

Figure 9: Example images showing ambiguity in categories

Figure 10: Images on the border of evening and night

5.6.3 Edited photographs

Figure 11: Examples of edited photographs in the dataset

Many of the photographs on Flickr are preprocessed in
some way for aesthetic purposes, which causes a loss of
original information and a distortion between perceived and
actual time or category. This distortion in data makes the
task of predicting the correct time trickier and might induce
a bias towards a particular bucket or label. The images in
Figure 11 were taken in the evening but the photographers
seem to have toned down the brightness of the image, caus-
ing the network to misclassify the images as having been
taken at night.

7



6. Conclusion
In this project, we attempted to predict time bucket or

tag for when an image was taken. The best performing al-
gorithms were Support Vector Machines and AlexNet, not
the deeper network, the VGGNet, that we assumed would
outperform most other models. This suggests that for our
dataset, basic feature metrics such as color palettes were
much more valuable in predicting the time taken for a pic-
ture as opposed to subtler and more complex detailed fea-
tures that deeper networks are best known for. The most
limiting challenge was the dataset, which was not as diverse
as we had hoped and contained some glaring mislabelings.

Future work should involve collecting correctly labeled
dataset which has accurate EXIF data with time adjusted to
the local timezone where the image was taken. It would be
interesting to use a model which is pretrained on the places
dataset from MIT [11]. In this project we tested individ-
ual models on our dataset, it will be interesting to train an
ensemble of models on the dataset. The images taken at
the same time would be different for different locations.
For example, a photo taken at 7 AM in California will be
very different from an image taken at 7 AM in Greenland.
Weather also plays an important role as a cloudy photograph
might be darker and has a good chance of getting classified
as evening or night. The dataset can also include geoloca-
tion and weather information to better guide the classifier.
This problem is very challenging and an open question to
the research community. More accurate data with thought-
ful strategies can improve the results provided in this paper.

7. References
[1] Weyand, Tobias, Ilya Kostrikov, and James Philbin.

“PlaNet-Photo Geolocation with Convolutional Neural Net-
works.” arXiv preprint arXiv:1602.05314 (2016).

[2] Denton, Emily, et al. “User Conditional Hash-
tag Prediction for Images.” Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining. ACM, 2015.

[3] Zhang, Hong et al. “Perceptual Contrast Enhance-
ment with Dynamic Range Adjustment.” Optik 124.23
(2013): 10.1016/j.ijleo.2013.04.046. PMC. Web. 14 Mar.
2016.

[4] Stfan van der Walt, Johannes L. Schnberger, Juan
Nunez-Iglesias, Franois Boulogne, Joshua D. Warner, Neil
Yager, Emmanuelle Gouillart, Tony Yu and the scikit-image
contributors. scikit-image: Image processing in Python.
PeerJ 2:e453 (2014)

[5] Kingma, Diederik, and Jimmy Ba. “Adam:
A method for stochastic optimization.” arXiv preprint
arXiv:1412.6980 (2014).

[6] Srivastava, Nitish, et al. “Dropout: A simple way to
prevent neural networks from overfitting.” The Journal of

Machine Learning Research 15.1 (2014): 1929-1958.
[7] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E.

Hinton. “Imagenet classification with deep convolutional
neural networks.” Advances in neural information process-
ing systems. 2012.

[9] Abadi, M. et al. (2015). TensorFlow: Large-Scale
Machine Learning on Heterogeneous Distributed Systems.

[10] J.D. Hunter, “Matplotlib: A 2D Graphics Environ-
ment,” Computing in Science and Eng., vol. 9, no. 3, 2007,
pp. 90-95.

[11] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A.
Oliva. “Learning Deep Features for Scene Recognition us-
ing Places Database.” Advances in Neural Information Pro-
cessing Systems 27 (NIPS), 2014.

8


